Yoshiyasu Ozeki

Japanese


Paper

[17] Explicit bounds on torsion of CM abelian varieties over p-adic fields with values in Lubin-Tate extensions, Pacific J. Math. 330, No. 1 (2024), 171--197.

[16] Bounds on torsion of CM abelian varieties over a p-adic field with values in a field of p-power roots, New York J. Math. 30 (2024), 422--435.

[15] Torsion of algebraic groups and iterate extensions associated with Lubin-Tate formal groups, the Journal of the Mathematical Society of Japan, 75 (2023), no. 2, 735--759.

[14] A note on highly Kummer-faithful fields, Kodai Mathematical Journal, vol 45, No. 1 (2022), pp.49--64.

[13] Torsion of abelian varieties and Lubin-Tate extensions, J. Number Theory, No. 207 (2020), pp. 282--293.

[12] Lattices in crystalline representations and Kisin modules associated with iterate extensions, Doc. Math., vol. 23 (2018), 497--541.

[11] On Galois equivariance of homomorphisms between torsion crystalline representations, the Nagoya Mathematical Journal, vol. 229 (2018), pp. 169-214.

[10] Lattices in potentially semi-stable representations and weak (φ,Ĝ)-modules, Journal de Théorie des Nombres de Bordeaux, Vol 29, No 1 (2017), pp. 217--241.

[9] Full faithfulness theorem for torsion crystalline representations, New York J. Math, vol. 20 (2014), pp. 1043--1061.

[8] On Galois equivariance of homomorphisms between torsion potentially crystalline representations: A resume, Algebraic Number Theory and Related topics 2013 -- a volume in RIMS-Bessatsu Series --.

[7] On congruences of Galois representations of number fields, Publ. RIMS, Kyoto Univ. 50 (2014), pp. 287--306.

[6] Torsion representations arising from (φ,Ĝ)-modules, J. Number Theory, No. 133 (2013), pp. 3810--3861.

[5] Non-existence of certain CM abelian varieties with prime power torsion, Tohoku. Math. J. No. 65 (2013), pp. 357--371.

[4] Torsion representations arising from (φ,Ĝ)-modules: A resume, Algebraic Number Theory and Related topics 2011 -- a volume in RIMS-Bessatsu Series --.

[3] Non-existence of certain Galois representations with a uniform tame inertia weight: A resume, Algebraic Number Theory and Related topics 2009 -- a volume in RIMS-Bessatsu Series --.

[2] Non-existence of certain Galois representations with a uniform tame inertia weight, Int. Math. Res. Not., volume 2011, No. 11 (2011), pp. 2377--2395.

[1] Torsion points of abelian varieties with values in infinite extensions over a p-adic field, Publ. RIMS, Kyoto Univ. 45 (2009), pp. 1011-1031.



Preprint

[1] Some Kummer extensions over maximal cyclotomic fields and a finiteness theorem of Ribet, in preparation


Appendix

[1] Hui Gao, Breuil-Kisin modules and integral p-adic Hodge theory (with app. A by Yoshiyasu Ozeki, and joint app. B with Tong Liu), to appear, J. Eur. Math. Soc.


Ph.D. Thesis

Non-existence results on certain Abelian varieties


E-mail: ft101992yp(at)kanagawa-u.ac.jp

Kanagawa University, Kanagawa 259-1293, JAPAN.