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Abstract. Mark Kisin proved that a certain “restriction functor” on crys-
talline p-adic representations is fully faithful. In this paper, we prove the

torsion analogue of Kisin’s theorem.

1. Introduction

Let p > 2 be a prime number and r, r′ ≥ 0 integers. Let K be a complete
discrete valuation field of mixed characteristic (0, p) with perfect residue field and
absolute ramification index e. Let π = π0 be a uniformizer of K and πn a pn-th
root of π such that πpn+1 = πn for all n ≥ 0. Put K∞ =

∪
n≥0K(πn) and denote

by GK and G∞ absolute Galois groups of K and K∞, respectively. In Theorem
(0.2) of [Kis], Kisin proved that the functor “restriction to G∞” from crystalline
Qp-representations of GK to Qp-representations of G∞ is fully faithful, which was a
conjecture of Breuil ([Br2]). Hence we may say that crystalline Qp-representations
of GK are characterized by their restriction to G∞. It should be noted that there
exists an established theory describing representations of G∞ by easy linear algebra
data, which is called étale φ-modules, introduced by Fontaine ([Fo1] A 1.2). In this
paper, we are interested in the torsion analogue of the above Kisin’s result. For
example, Breuil proved in Theorem 3.4.3 of [Br3] that the functor “restriction to
G∞” from finite flat representations of GK to torsion Zp-representations of G∞ is
fully faithful (Remark 20 (2)). Our main theorem is motivated by his result:

Theorem 1. Suppose er < p − 1 and e(r′ − 1) < p − 1. Let T (resp. T ′) be a
torsion crystalline Zp-representation of GK with Hodge-Tate weights in [0, r] (resp.
[0, r′]). Then any G∞-equivalent morphism T → T ′ is in fact GK-equivalent.

In particular, the functor from torsion crystalline Zp-representations of GK with
Hodge-Tate weights in [0, r] to torsion Zp-representations of G∞, obtained by re-
stricting the action of GK to G∞, is fully faithful.

Here a torsion Zp-representation of GK is said to be torsion crystalline with Hodge-
Tate weights in [0, r] if it can be written as the quotient of two lattices in some
crystalline Qp-representation of GK with Hodge-Tate weights in [0, r]. For example,
a torsion Zp-representation of GK is finite flat if and only if it is torsion crystalline
with Hodge-Tate weights in [0, 1] (Remark 20 (2)). If e = 1, the latter part of
Theorem 1 has been proven by Breuil via Fontaine-Laffaille theory (Remark 20

(3)). On the other hand, our proof is based on results on Kisin modules and (φ, Ĝ)-

modules (the notion of (φ, Ĝ)-modules is introduced in [Li2]). More precisely, we
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use maximal models for Kisin modules introduced in [CL1] and results on “the

range of monodromy” for (φ, Ĝ)-modules given in Section 4 of [GLS].
It seems natural to have the question whether the condition “er < p − 1” in

the latter part of Theorem 1 is necessary and sufficient for the full faithfulness or
not. In fact, we know that the condition “er < p − 1” is not necessary since our
restriction functor is fully faithful for any e when r = 1 (Remark 20 (2)). (Maybe
the necessary and sufficient condition for the full faithfulness is “e(r − 1) < p− 1”
(Remark 20).) In addition, in the last section, we give some examples such that the
restriction functor appeared in Theorem 1 is not full under some choices of K and
r which do not satisfy “er < p− 1” (more precisely, “e(r− 1) < p− 1”). Examples
are mainly given by using two methods: The first one is direct computations of
Galois cohomologies, which is a purely local method. The second one is based on
the classical Serre’s modularity conjecture, which is a global method.

Acknowledgements. It is a pleasure to thank Wansu Kim for useful comments
and correspondences to Theorem 1. The author thanks Naoki Imai and Akio Tam-
agawa who gave him useful advice in the proof of his main theorem. The author
thanks also Keisuke Arai, Seidai Yasuda, Shin Hattori and Yuichiro Taguchi for
their helpful comments on Proposition 16. This work was supported by JSPS KAK-
ENHI Grant Number 25·173.

2. Preliminaries

Throughout this paper, we fix a prime number p > 2. Let r ≥ 0 be an integer.
Let k be a perfect field of characteristic p, W (k) its ring of Witt vectors, K0 =
W (k)[1/p], K a finite totally ramified extension of K0, K a fixed algebraic closure
of K and GK = Gal(K/K). Fix a uniformizer π ∈ K and denote by E(u) its
Eisenstein polynomial over K0. For any integer n ≥ 0, let πn ∈ K be a pn-th root
of π such that πpn+1 = πn. Let K∞ =

∪
n≥0K(πn) and G∞ = Gal(K/K∞).

For any topological group H, we denote by Reptor(H) (resp. RepZp
(H)) the

category of finite torsion Zp-representations of H (resp. the category of finite free
Zp-representations of H). We denote by ReprZp

(GK) the category of lattices in

crystalline Qp-representations of GK with Hodge-Tate weights in [0, r]. We say
that T ∈ Reptor(GK) is torsion crystalline with Hodge-Tate weights in [0, r] if it
can be written as the quotient of L′ ⊂ L in ReprZp

(GK), and denote by Reprtor(GK)
the category of them.

Let R = lim←−OK/p where OK is the integer ring of K and the transition maps

are given by the p-th power map. Write π = (πn)n≥0 ∈ R and let [π] ∈ W (R) be
the Teichmüller representative of π. Let S = W (k)[[u]] equipped with a Frobenius
endomorphism φ given by u 7→ up and the Frobenius on W (k). We embed the
W (k)-algebra W (k)[u] into W (R) via the map u 7→ [π]. This embedding extends
to an embedding S ↪→W (R), which is compatible with Frobenius endomorphisms.

A φ-module (over S) is an S-module M equipped with a φ-semilinear map
φ : M→M. A morphism between two φ-modules (M1, φ1) and (M2, φ2) is an S-
linear map M1 →M2 compatible with φ1 and φ2. Denote by ′Modr/S the category

of φ-modules (M, φ) of height ≤ r in the sense that M is of finite type over S
and the cokernel of 1 ⊗ φ : S ⊗φ,S M → M is killed by E(u)r. Let Modr/S∞

be

the full subcategory of ′Modr/S consisting of finite S-modules which are killed by
some power of p and have projective dimension 1 in the sense that M has a two
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term resolution by finite free S-modules. Let Modr/S be the full subcategory of
′Modr/S consisting of finite free S-modules. We call an object of Modr/S∞

(resp.

Modr/S) a torsion Kisin module (resp. a free Kisin module). A Kisin module is a
torsion Kisin module or a free Kisin module. For any Kisin module M, we define a
Zp-representation TS(M) of G∞ by

TS(M) =

{
HomS,φ(M,Qp/Zp ⊗Zp Sur) if M is torsion
HomS,φ(M,Sur) if M is free.

Here, a G∞-action on TS(M) is given by (σ.f)(x) = σ(f(x)) for σ ∈ G∞, f ∈
TS(M), x ∈M.

Here we recall the theory of Liu’s (φ, Ĝ)-modules (cf. [Li2]). Let S be the p-
adic completion of the divided power envelope of W (k)[u] with respect to the ideal
generated by E(u). There exists a unique Frobenius map φ : S → S defined by
φ(u) = up. Put SK0 = S[1/p] = K0 ⊗W (k) S. The inclusion W (k)[u] ↪→ W (R) via

the map u 7→ [π] induces φ-compatible inclusions S ↪→ S ↪→ Acris and SK0 ↪→ B+
cris.

Fix a choice of primitive pi-root of unity ζpi for i ≥ 0 such that ζppi+1 = ζpi . Put ε

= (ζpi)i≥0 ∈ R× and t = log([ε]) ∈ Acris. Denote by ν : W (R)→W (k) a unique lift

of the projection R → k, which extends to a map ν : B+
cris → W (k)[1/p]. For any

subring A ⊂ B+
cris, we put I+A = Ker(ν on B+

cris) ∩ A. For any integer n ≥ 0, let

t{n} = tr(n)γq̃(n)(
tp−1

p ) where n = (p−1)q̃(n)+r(n) with q̃(n) ≥ 0, 0 ≤ r(n) < p−1
and γi(x) =

xi

i! is the standard divided power. We define a subring RK0 of B+
cris as

below:

RK0 = {
∞∑
i=0

fit
{i} | fi ∈ SK0 and fi → 0 as i→∞}.

Put R̂ = RK0
∩ W (R) and I+ = I+R̂. Put K̂ =

∪
n≥0K∞(ζpn) and Ĝ =

Gal(K̂/K). Lemma 2.2.1 in [Li2] shows that R̂ (resp. RK0) is a φ-stable S-
algebra as a subring in W (R) (resp. B+

cris), and ν induces RK0/I+RK0 ≃ K0

and R̂/I+ ≃ S/I+S ≃ S/I+S ≃ W (k). Furthermore, R̂, I+,RK0 and I+RK0 are

GK-stable, and GK-actions on them factors through Ĝ. For any Kisin module M,

we equip R̂ ⊗φ,S M with a Frobenius by φR̂ ⊗ φM. It is known that the natural

map M → R̂ ⊗φ,S M given by x 7→ 1 ⊗ x is an injection ([CL2], Section 3.1). By

this injection, we regard M as a φ(S)-stable submodule of R̂ ⊗φ,S M.

Definition 2. A (φ, Ĝ)-module (of height ≤ r) is a triple M̂ = (M, φM, Ĝ) where

(1) (M, φM) is a Kisin module (of height ≤ r),
(2) Ĝ is an R̂-semilinear Ĝ-action on R̂ ⊗φ,S M,

(3) the Ĝ-action commutes with φR̂ ⊗ φM,

(4) M ⊂ (R̂ ⊗φ,S M)HK where HK = Gal(K̂/K∞),

(5) Ĝ acts on the W (k)-module (R̂ ⊗φ,S M)/I+(R̂ ⊗φ,S M) trivially.

If M is a torsion (resp. free) Kisin module, we call M̂ a torsion (resp. free) (φ, Ĝ)-
module.

A morphism between two (φ, Ĝ)-modules M̂1 = (M1, φ1, Ĝ) and M̂2 = (M2, φ2, Ĝ)

is a morphism f : M1 → M2 of φ-modules such that R̂ ⊗ f : R̂ ⊗φ,S M1 →
R̂⊗φ,SM2 is Ĝ-equivalent. We denote by Modr,Ĝ/S∞

(resp. Modr,Ĝ/S ) the category of



4 YOSHIYASU OZEKI

torsion (φ, Ĝ)-modules of height ≤ r (resp. free (φ, Ĝ)-modules of height ≤ r). We

often regard R̂ ⊗φ,φ M as a GK-module via the projection GK ↠ Ĝ. A sequence

0 → M̂′ → M̂ → M̂′′ → 0 of (φ, Ĝ)-modules is exact if it is exact as S-modules.

For a (φ, Ĝ)-module M̂, we define a Zp-representation T̂ (M̂) of GK by

T̂ (M̂) =

{
HomR̂,φ(R̂ ⊗φ,S M,Qp/Zp ⊗Zp W (R)) if M is torsion

HomR̂,φ(R̂ ⊗φ,S M,W (R)) if M is free.

Here, GK acts on T̂ (M̂) by (σ.f)(x) = σ(f(σ−1(x))) for σ ∈ GK , f ∈ T̂ (M̂), x ∈
R̂ ⊗φ,S M. Then, there exists a natural G∞-equivalent map

θ : TS(M)→ T̂ (M̂)

defined by θ(f)(a⊗m) = aφ(f(m)) for f ∈ TS(M), a ∈ R̂,m ∈M.

Fix a topological generator τ of Gal(K̂/Kp∞) where Kp∞ =
∪
n≥0K(ζpn). We

may suppose that ζpn = τ(πn)/πn for all n, and this implies τ(u) = [ε]u in W (R).
There exists t ∈W (R)∖pW (R) such that φ(t) = pE(0)−1E(u)t. Such t is unique up
to units of Zp (cf. Example 2.3.5 of [Li1]). The following theorems play important
rolls in the proof of Theorem 1.

Theorem 3 ([Li2]). (1) The map θ : TS(M)→ T̂ (M̂) is an isomorphism.

(2) The contravariant functor T̂ induces an anti-equivalence between the category

Modr,ĜS of free (φ, Ĝ)-modules of height ≤ r and the category of GK-stable Zp-
lattices in semi-stable Qp-representations of GK with Hodge-Tate weights in [0, r].

Theorem 4 ([CL2], Theorem 3.1.3 (4), [GLS], Proposition 5.9). Let T ∈ Reprtor(GK)
and take L′ ⊂ L in ReprZp

(GK) such that T ≃ L/L′.

(1) There exists an exact sequence S : 0 → L̂ → L̂′ → M̂ → 0 of (φ, Ĝ)-modules
such that:

(1) L̂ and L̂′ are free (φ, Ĝ)-modules of height ≤ r,
(2) M̂ is a torsion (φ, Ĝ)-module of height ≤ r,
(3) T̂ (S) is isomorphic to the exact sequence 0→ L′ → L→ T → 0 of Zp[GK ]-

modules.

(2) Let M̂ be as in (1). For any x ∈M, we have τ(x)−x ∈ upφ(t)(W (R)⊗φ,SM).

Proof. The assertion (2) is an easy consequence of [GLS], Proposition 5.9. Here is
one remark: In loc. cit, K is assumed to be a finite extension of Qp, but arguments
in Section 4.1 and 4.2 of loc. cit. proceed even if K is not only a finite extension
of Qp but also any complete discrete valuation field of mixed characteristic (0, p)
with perfect residue field. □

3. Proof of Theorem 1

For any integer α ≥ 0, we denote by m≥α
R the ideal of R consisting of a ∈ R with

vR(a) ≥ α, where vR is a valuation of R such that vR(π) = 1
e . Note that, if we

put t̃ = t mod p ∈ R, then vR(̃t) = 1
p−1 since φ(̃t) ∈ πe t̃ · R× (recall the equation

φ(t) = pE(0)−1E(u)t).

We note that we have natural inclusions M ⊂ S ⊗φ,S M ⊂ R̂ ⊗φ,S M ⊂
W (R) ⊗φ,S M for any M ∈ Modr/S∞

. Denote by Modr,Ĝ,cris/S∞
the full subcategory
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of Modr,Ĝ/S∞
consisting of torsion (φ, Ĝ)-modules M̂ which satisfy the following; for

any x ∈M,
τ(x)− x ∈ upφ(t)(W (R)⊗φ,S M).

We define the full subcategory Repr,Ĝ,cristor (GK) of Reptor(GK) to be the essential

image of the functor Modr,Ĝ,cris/S∞
⊂ Modr,Ĝ/S∞

T̂→ Reptor(GK), where T̂ is defined in

the previous section. By Theorem 4, we have

Reprtor(GK) ⊂ Repr,Ĝ,cristor (GK).

Remark 5. (1) The subscript “cris” of Modr,Ĝ,cris/S∞
is plausible since a free (φ, Ĝ)-

module M̂ satisfying the condition “τ(x)−x ∈ upφ(t)(W (R)⊗φ,SM)” corresponds
to a crystalline representation. See Theorem 21 in the appendix for more precise
information.
(2) Note that objects of Repr,Ĝ,cristor (GK) are not necessarily torsion crystalline rep-

resentations. In fact, we do not know whether torsion (φ, Ĝ)-modules lift to free

(φ, Ĝ)-modules.

It follows Theorem 1 from the following result.

Theorem 6. Suppose er < p − 1 and e(r′ − 1) < p − 1. Let T ∈ Repr,Ĝ,cristor (GK)

and T ′ ∈ Repr
′,Ĝ,cris

tor (GK). Then any G∞-equivalent morphism T → T ′ is in fact
GK-equivalent.

Lemma 7. Let a ∈W (R)∖ pW (R). For any Kisin module M, the map

W (R)⊗φ,S M→W (R)⊗φ,S M, x 7→ ax

is injective.

Proof. We may suppose that M is a torsion Kisin module. By a dévissage argument
([Li1], Proposition 2.3.2 (4)), we may assume pM = 0. In this situation, the
statement is clear since W (R)⊗φ,S M is a finite direct sum of R. □

The following is a key lemma for our proof of Theorem 6:

Lemma 8. Let r and r′ be non-negative integers with e(r − 1) < p − 1 (without

any assumption on r′). Let M̂ and N̂ be objects of Modr,Ĝ,cris/S∞
and Modr

′,Ĝ,cris
/S∞

,

respectively. Then we have Hom(M̂, N̂) = Hom(M,N).

In particular, if e(r−1) < p−1, then the forgetful functor Modr,Ĝ,cris/S∞
→ Modr/S∞

is fully faithful.

The condition e(r − 1) < p− 1 is essential. See Remark 11 below.

Proof. Let f : M → N be a morphism of Kisin modules and put f̂ = W (R) ⊗
f : W (R) ⊗φ,S M → W (R) ⊗φ,S N. It suffices to prove that, for any x ∈ M,

∆(1 ⊗ x) = 0 where ∆ = τ ◦ f̂ − f̂ ◦ τ . We proceed by induction on n such that
pnN = 0.

Suppose n = 1, that is, pN = 0. We may identify W (R)⊗φ,S N with R⊗φ,S N.

Since ∆(1 ⊗ x) = (τ − 1)(1 ⊗ f(x)) − f̂((τ − 1)(1 ⊗ x)), we obtain the following
implication

(0): For any x ∈M, ∆(1⊗ x) ∈ m
≥c(0)
R (R⊗φ,S N)
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where c(0) = p
p−1 + p

e . Note that

∆(1⊗ E(u)rx) = τ(φ(E(u)))r∆(1⊗ x) = (εu)per∆(1⊗ x) ∈ R⊗φ,S N.

On the other hand, since M is of height ≤ r, we can write E(u)rx =
∑
i≥0 aiφ(yi)

for some ai ∈ S and yi ∈M. Then we obtain

∆(1⊗ E(u)rx) =
∑
i≥0

τ(φ(ai))φ(∆(1⊗ yi))

and it is contained in m
≥pc(0)
R (R ⊗φ,S N) by the implication (0). Since R ⊗φ,S N

is free as an R-module, we obtain the implication

(1): For any x ∈M, ∆(1⊗ x) ∈ m
≥c(1)
R (R⊗φ,S N)

where c(1) = pc(0)− pr = p2

p−1 +
p2

e − pr. By repeating the same argument, for any

s ≥ 0, we see the following implication

(s): For any x ∈M, ∆(1⊗ x) ∈ m
≥c(s)
R (R⊗φ,S N)

where c(s) = pc(s− 1)− pr = ps+1

p−1 + ps+1

e − p
sr − · · · − pr. Since e(r − 1) < p− 1,

we know that m
≥c(s)
R goes to zero when s→∞ and then we obtain ∆(1⊗ x) = 0.

Suppose n > 1. Consider the exact sequence (∗) : 0 → Ker(p) → N
p→ pN → 0

of φ-modules. By Lemma 2.3.1 and Proposition 2.3.2 of [Li1], we know that N′ :=

Ker(p) and N′′ := pN are in Modr
′

/S∞
. Equipping R̂⊗φ,SN′′ with Ĝ-action via the

natural identification p(R̂ ⊗φ,S N) = R̂ ⊗φ,S N′′, we see that N′′ has a structure

as a (φ, Ĝ)-module. We can also equip R̂ ⊗φ,S N′ with Ĝ-action via the exact

sequence 0 → R̂ ⊗φ,S N′ → R̂ ⊗φ,S N → R̂ ⊗φ,S N′′ → 0 (for the exactness, see

[CL2], Lemma 3.1.2). Since the sequence 0 → R̂/I+ ⊗φ,S N′ → R̂/I+ ⊗φS N →
R̂/I+ ⊗φ,S N′′ → 0 is also exact ([Oz], Corollary 2.11), we know that N′ also

has a structure as a (φ, Ĝ)-module. Summary, we obtained an exact sequence

0 → N̂′ → N̂
p→ N̂′′ → 0 in Modr

′,Ĝ
/S∞

whose underlying sequence of φ-modules is

(∗). Remark that pN′ = 0 and pn−1N′′ = 0. It is clear that N̂′′ ∈ Modr
′,Ĝ,cris
/S∞

.

Since 0 → R̂ ⊗φ,S N′ → R̂ ⊗φ,S N → R̂ ⊗φ,S N′′ → 0 is exact and pn−1N′′ = 0,

we obtain ∆(1⊗ x) ∈ R̂⊗φ,S N′ ⊂W (R)⊗φ,S N′ for any x ∈M by the induction
hypothesis. Moreover, we have in fact ∆(1 ⊗ x) ∈ upφ(t)(W (R) ⊗φ,S N′) since
Lemma 7 implies (W (R)⊗φ,SN′)∩upφ(t)(W (R)⊗φ,SN) = upφ(t)(W (R)⊗φ,SN′).

IdentifyingW (R)⊗φ,SN′ with R⊗φ,SN′, we obtain ∆(1⊗x) ∈ m
≥c(0)
R (R⊗φ,SN′).

By an analogous argument of the case where n = 1, we obtain the implication

(s)′: For any x ∈M, ∆(1⊗ x) ∈ m
≥c(s)
R (R⊗φ,S N′)

for any s ≥ 0 and this implies ∆(1⊗ x) = 0. □

Before giving the proof of Theorem 6, we have to recall the theory of maximal
Kisin modules. Now we give a very rough sketch of it (for more precise information,
see [CL1]. Our sketch here is the case where “r = ∞” in loc. cit.). For any M ∈
Modr/S∞

, put M[1/u] = S[1/u] ⊗S M and denote by FS(M[1/u]) the (partially)

ordered set (by inclusion) of torsion Kisin modules N of finite height which is
contained in M[1/u] and N[1/u] = M[1/u] as φ-modules. Here, a torsion Kisin
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module is called of finite height if it is of height ≤ s for some integer s ≥ 0. The set
FS(M[1/u]) has a greatest element (cf. loc. cit., Corollary 3.2.6), which is denoted
by Max(M). We say that M is maximal if it is the greatest element of FS(M[1/u]).
The implication M 7→ Max(M) defines a functor “Max” from the category of
torsion Kisin modules of finite height into the category Max/S∞ of maximal torsion
Kisin modules. Furthermore, the functor TS : Max/S∞ → Reptor(G∞), defined by
TS(M) = HomS,φ(M,Qp/Zp ⊗Zp W (R)), is fully faithful (cf. loc. cit., Corollary
3.3.10). It is not difficult to check that TS(Max(M)) is canonically isomorphic to
TS(M) as representations of G∞ for any torsion Kisin module M.

Lemma 9. Suppose er < p− 1. Then any M ∈ Modr/S∞
is maximal.

Proof. We prove by induction on n such that pnM = 0. If n = 1, then the assertion
follows by Lemma 3.3.4 of [CL1]. Suppose n > 1 and pnM = 0. Take any N ∈
FS(M[1/u]) such that M ⊂ N and put M = M[1/u] = N[1/u]. Denote by pr the
natural surjectionM →M/pM . PuttingM′ = pM∩M,M′′ = pr(M),N′ = pM∩N
and N′′ = pr(N), we see that M′ and M′′ are objects of Modr/S∞

, and N′ and

N′′ are torsion Kisin modules of finite height. Furthermore, we see that natural

sequences 0 → M′ → M
pr→ M′′ → 0 and 0 → N′ → N

pr→ N′′ → 0 of φ-modules
are exact. By the induction hypothesis, we know that M′ and M′′ are maximal
and thus N′ = M′ and N′′ = M′′ (remark that M′[1/u] = N′[1/u] = pM and
M′′[1/u] = N′′[1/u] =M/pM). This implies N = M. □

Proof of Theorem 6. Suppose that er < p − 1 and e(r′ − 1) < p − 1. Let T ∈
Repr,Ĝ,cristor (GK) (resp. T ′ ∈ Repr

′,Ĝ,cris
tor (GK)) and take M̂ ∈ Modr,Ĝ,cris/S∞

(resp. M̂′ ∈

Modr
′,Ĝ,cris
/S∞

) such that T = T̂ (M̂) (resp. T ′ = T̂ (M̂′)). Note that M = Max(M) by

Lemma 9. By Theorem 3 (1), we have the following commutative diagram:

HomGK
(T, T ′) �

� // HomG∞(T, T ′)

Hom(M̂′, M̂)

T̂

OO

forgetful// Hom(M′,M)
Max // Hom(Max(M′),M).

TS

OO

The first bottom horizontal arrow is bijective by Lemma 8 and the second is also
by an easy argument. Since the right vertical arrow is bijective, the top horizontal
arrow must be bijective. □

Remark 10. By Lemma 8, we can prove the latter part of Theorem 1 directly
without using the former part of Theorem 1 as below: Suppose that er < p−1. Let
T ∈ Reprtor(GK) (resp. T ′ ∈ Reprtor(GK)) and take M̂ (resp. M̂′) be as in Theorem

4, which is an object of Modr,Ĝ,cris/S∞
. By Theorem 3 (1), we have the commutative

diagram

HomGK
(T, T ′) �

� // HomG∞(T, T ′)

Hom(M̂′, M̂)

T̂

OO

forgetful // Hom(M′,M)

TS

OO

and then we obtain the desired result by an analogous argument before this remark.
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Remark 11. The condition e(r − 1) < p − 1 in Lemma 8 is essential for the

fullness of the forgetful functor Modr,Ĝ,cris/S∞
→ Modr/S∞

(note that this functor is

always faithful). In fact, we have an example which implies that this forgetful
functor is not full even if e(r−1) = p−1. We show below that the forgetful functor

Modr,Ĝ,cris/S∞
→ Modr/S∞

is not full when K = Qp and r = p.

Suppose K = Qp. Let Eπ be the Tate curve over Qp associated with π. Lemma
18 in the next section says that the 2-dimensional Fp-representation Eπ[p] of GQp

is torsion crystalline with Hodge-Tate weights in [0, p]. In particular, by Theorem

4, there exists a (φ, Ĝ)-module M̂ ∈ Modp,Ĝ,cris/S∞
such that T̂ (M̂) ≃ Eπ[p]. On

the other hand, for any non-negative integer ℓ, define the (φ, Ĝ)-module Ŝ1(ℓ) =

(S1(ℓ), φ, Ĝ) as below: S1(ℓ) = k[[u]] · fℓ is the rank-1 free k[[u]]-module equipped

with the Frobenius φ(fℓ) = c−ℓ0 ueℓ · fℓ, and define a Ĝ-action on R̂ ⊗φ,S S1(ℓ) by

τ(fℓ) = ĉℓ · fℓ. Here, ĉ =
∏∞
n=1 φ

n( E(u)
τ(E(u)) ), which is contained in R̂× (cf. Example

3.2.3 of [Li4]). Then Example 3.2.3 of loc. cit. says that T̂ (Ŝ1(ℓ)) ≃ Fp(ℓ). On

the other hand, we define the (φ, Ĝ)-module Ŝ1(ℓ)0 = (S1(ℓ)0, φ, Ĝ) as below: Put
ℓ0 = max{ℓ′ ∈ Z≥0; eℓ− (p− 1)ℓ′ ≥ 0}. We denote by S1(ℓ)0 = k[[u]] · gℓ the rank-1
free k[[u]]-module equipped with the Frobenius φ(fℓ) = c−ℓ0 ueℓ−(p−1)ℓ0 ·gℓ, and define

a Ĝ-action on R̂ ⊗φ,S S1(ℓ) by τ(g
ℓ) = ε−pℓ0 ĉℓ · gℓ. (The generator gℓ is taken to

behave as u−ℓ0 fℓ.) Then we see that Max(S1(ℓ)) = S1(ℓ)0, and Ŝ1(ℓ)0 (and Ŝ1(ℓ))

are objects of Modℓ,Ĝ,cris/S∞
. We also see T̂ (Ŝ1(ℓ)0) ≃ T̂ (Ŝ1(ℓ)) ≃ Fp(ℓ). Now we

consider the following commutative diagram (here we remark that S1(0)⊕S1(1)0
is maximal):

HomGQp
(Fp ⊕ Fp(1), Eπ[p]) �

� // HomG∞(Fp ⊕ Fp(1), Eπ[p])

Hom(M̂, Ŝ1(0)⊕ Ŝ1(1)0)

T̂

OO

forgetful// Hom(M,S1(0)⊕S1(1)0)
Max // Hom(Max(M),S1(0)⊕S1(1)0).

TS

OO

The second bottom horizontal arrow and the right vertical arrow are bijective since
S1(0)⊕S1(1)0 is maximal. On the other hand, it is well-known that the inclusion
HomGQp

(Fp ⊕ Fp(1), Eπ[p]) ⊂ HomG∞(Fp ⊕ Fp(1), Eπ[p]) is not equal. Therefore,
the first bottom horizontal arrow is not surjective. This implies that the forgetful

functor Modp,Ĝ,cris/S∞
→ Modp/S∞

is not full.

Remark 12. Combining Theorem (2.3.5) of [Kis], Theorem 4 and Lemma 8, we see

that the forgetful functor Mod1,Ĝ,cris/S∞
→ Mod1/S∞

is an equivalence of categories.

4. Non-fullness: Examples

In the previous section, we showed that the restriction functor Reprtor(GK)
res−→

Reptor(G∞) is fully faithful under the condition that er < p− 1. However, the full
faithfulness may not hold if er ≥ p − 1. In this section, we give some examples
of this phenomenon. It should be noted that all our examples appearing in this
section are given under the condition e(r − 1) ≥ p− 1.

Let µpn be the set of pn-th roots of unity in K, µp∞ :=
∪
n≥0 µpn and denote

by G1 ⊂ GK the absolute Galois group of K(π1). Remark that, if the restriction
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functor C → Reptor(G1) is not fully faithful for a full subcategory C of Reptor(GK),
then the restriction functor C → Reptor(G∞) is not fully faithful. Furthermore,
we also remark that restriction functors C → Reptor(G∞) and C → Reptor(G1) are
always faithful.

Proposition 13. Let K be a finite extension of Qp. Let s be the largest integer
n such that µpn ⊂ K. Suppose that s ≥ 1 and K(µps+1)/K is ramified. Then the
functor from torsion crystalline Zp-representations of GK with Hodge-Tate weights
in [0, p + 1] to torsion Zp-representations of G1, obtained by restricting the action
of GK to G1, is not full.

The lemma below follows from direct calculations.

Lemma 14. Let s ≥ 1 be an integer and ψ : GK → Z×
p an unramified character

with the property that s is the largest integer n such that ψ mod pn is trivial.
Define βψ : GK → Zp by the relation ψ = 1+ psβψ and put β̄ψ = β mod p. Denote
by δ0ψ : H

0(GK ,Qp/Zp(ψ)) → H1(GK ,Fp) the connection map coming from the

exact sequence 0 → Fp → Qp/Zp(ψ)
p→ Qp/Zp(ψ) → 0 of GK-modules. Then

β̄ψ ∈ H1(GK ,Fp) and Im(δ0ψ) = Fp.β̄ψ.

Proof of Proposition 13. Let ε : GK → Z×
p be the p-adic cyclotomic character and

ε̄ := ε mod p the mod p cyclotomic character. Let K and s ≥ 1 be as in Proposition
13. Let χ : GK → Z×

p be an unramified character such that χ mod ps is trivial.
It suffices to show that, for some choice of χ, there exist ρ : GK → GL2(Zp) and
2 ≤ r ≤ p+ 1 with an exact sequence 0→ χεr → ρ→ 1→ 0 of representations of
GK such that ρ mod p is not trivial on GK but is trivial on G1. Here, 1 in the above
exact sequence means the trivial character. Note that such ρ is always crystalline
(cf. [BK, Example 3.9]). Since µp ⊂ K, we can define f0 ∈ H1(GK ,Fp) such that f0
factors through Ĝ, f0(τ) = 1 and f0|HK

= 0, where HK is defined in Definition 2.
The kernel of the restriction map H1(GK ,Fp) → H1(G1,Fp) is a one dimensional
Fp-vector space which is generated by f0. Let H ⊂ H1(GK ,Fp) be an annihilator
of f0 under the Tate paring. For any integer ℓ, denote by δ1χ,ℓ : H

1(GK ,Fp) →
H2(GK ,Zp(χεℓ)) (resp. δ0χ,ℓ : H

0(GK ,Qp/Zp(χ−1ε1−ℓ)) → H1(GK ,Fp)) the con-

nection map coming from the exact sequence 0 → Zp(χεℓ)
p→ Zp(χεℓ) → Fp → 0

(resp. 0 → Fp → Qp/Zp(χ−1ε1−ℓ)
p→ Qp/Zp(χ−1ε1−ℓ) → 0) of GK-modules. By

Tate local duality, the condition that f0 lifts to H1(GK ,Zp(χεℓ)) is equivalent to
the condition that Im(δ0χ,ℓ) ⊂ H. Hence it is enough to choose χ which satisfies the
latter condition for some 2 ≤ ℓ ≤ p+ 1.

Since K(µps+1)/K is ramified, we know that s is the largest integer n such that

χ−1ε−1 mod pn is trivial. Take βχ−1ε−1 and β̄χ−1ε−1 as in Lemma 14. For simplicity,

we write αχ := βχ−1ε−1 and ᾱχ := β̄χ−1ε−1 . By Lemma 14, Im(δ0χ,2) is generated
by ᾱχ. If ᾱ1 is contained in H, then we finish the proof (choose χ as the trivial
character 1). Suppose ᾱ1 is not contained in H. From now on, we fix χ as follows; χ
is the unramified character GK → Z×

p with χ(FrobK) = (1+ps)−1, where FrobK is
the arithmetic Frobenius ofK. Let u1 : GK → Fp be the unramified homomorphism
with u1(FrobK) = 1. Then we obtain ᾱχ = u1+ ᾱ1. Since K(µps+1)/K is ramified,
we see that ᾱ1|IK is not zero where IK is the inertia subgroup of GK . This implies
u1 /∈ Fp.ᾱ1. Noting that H1(GK ,Fp) = H⊕Fp.ᾱ1, we have ᾱχ+ āᾱ1 ∈ H for some
ā ∈ Fp. Let 0 ≤ a ≤ p− 1 be the integer such that a mod p is ā. Under the modulo

p2s, we have χ−1ε−(1+a) = χ−1ε−1 ·ε−a = (1+psαχ)(1+p
saα1) = 1+ps(αχ+aα1).



10 YOSHIYASU OZEKI

Since ᾱχ+ āᾱ1 = u1+(ā+1)ᾱ1 ̸= 0, we see that s is the largest integer n such that

χ−1ε−(1+a) mod pn is trivial. Hence, defining βχ−1ε−(1+a) as in Lemma 14, we obtain

β̄χ−1ε−(1+a) = ᾱχ+āᾱ1. Therefore, we obtain that Im(δ0χ,2+a) = Fp.β̄χ−1ε−(1+a) ⊂ H
and we are done. □

Unfortunately, Proposition 13 can not be applied even when K = Qp. On
the other hand, the following proposition is effective for K = Qp, but we need a
certain restriction on the choice of the uniformizer π. Let L be the unique degree
p extension of K which is contained in K(µp∞).

Proposition 15. Let K be a finite extension of Qp. Suppose that π is contained
in NormL/K(L×). (Thus the extension L/K must be totally ramified in this case.)
Then the functor from torsion crystalline Zp-representations of GK with Hodge-
Tate weights in [0, p] to torsion Zp-representations of G1, obtained by restricting
the action of GK to G1, is not full.

Proof. Let s be the largest integer n such that µpn ⊂ K. Then we can write ε1−p =
1+pψ with some map ψ : GK → Zp. Putting ψ̄ = ψ mod p : GK → Fp, we see that
ψ̄ is non-trivial homomorphism with kernel Gal(K/L). Let δ0 : H0(GK ,Qp/Zp(1−
p)) → H1(GK ,Fp)) be the connection map arising from the exact sequence 0 →
Fp → Qp/Zp(1 − p)

p→ Qp/Zp(1 − p) → 0. Under the isomorphism K×/(K×)p ≃
H1(GK ,Fp(1)) via Kummer theory, π mod (K×)p corresponds to the 1-cocycle [π]

defined by σ 7→ σ(π1)
π1

for σ ∈ GK , which is clearly trivial on G1. By Tate local

duality and the fact that the image of δ0 is generated by ψ̄ (cf. Lemma 14), it
suffices to show that ([π], ψ̄) maps to zero under the Tate pairing H1(GK ,Fp(1))×
H1(GK ,Fp) → Q/Z (in fact, this implies that [π] lifts to H1(GK ,Zp(p)) and we

obtain the desired result). Let ϕL/K : K×/NormL/K(L×)
∼→ Gal(L/K) be the

isomorphism of local class field theory. It is enough to show that ψ̄(ϕL/K(π)) = 0.
Our assumption of π implies that this equality certainly holds. □

Now we give an example for the non-fullness of our restriction functor without
any assumption on the choice of the uniformizer π.

Proposition 16. The functor from torsion crystalline Zp-representations of GQp

with Hodge-Tate weights in [0, p] to torsion Zp-representations of G1, obtained by
restricting the action of GQp to G1, is not full.

Lemma 17. Let F be a finite extension of Qp or Fp. Then any 2-dimensional ir-
reducible F -representation of GQ whose determinant is the p-adic cyclotomic char-
acter is absolutely irreducible.

Proof. Let ρ : GQ → GL2(F ) be as in the statement and denote by V the underlying
F -vector space. Suppose that, for some finite extension F ′ over F , there exists aGQ-
stable F ′-subvector spaceW of F ′⊗F V of dimension 1. If we denote by c ∈ GQ the
complex conjugation, then ρ(c)2 is the identity matrix and det(ρ)(c) = −1. Hence

it follows that ρ(c) is conjugate (over F ) with

(
1 0
0 −1

)
(note that p is odd). By

this fact and the fact that ρ(c) preserves W , we see that W is defined over F . This
is a contradiction. □
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Lemma 18. Let K be a finite extension of Qp and q ∈ Q×
p (K

×)p. Let Eq[p] be the
Tate curve over K associated with q. If p ∤ vK(q), then Eq[p] is torsion crystalline
with Hodge-Tate weights in [0, p].

Proof. We have a decomposition q = q′q′′, where q′ ∈ Q×
p , vK(q′) > 0 and q′′ ∈

(K×)p. Let Eq′ be the Tate curve over Qp associated with q′. Then Eq′ [p] is a
representation of GQp and we have an isomorphism Eq[p] ≃ (Eq′ [p])|GK

. Hence we
can reduce the case where K = Qp. Let ℓ > 3 be a prime number different from
p such that −ℓ is not a square in F×

p (recall that p is odd). Choose an elliptic
curve E(ℓ) over Qℓ which has good supersingular reduction. Since ℓ > 3, we have
#E(ℓ)(Fℓ) = 1+ ℓ. Thus the characteristic polynomial of E(ℓ)[p] for the arithmetic

Frobenius of ℓ is X2 + ℓ ∈ Fp[X], which does not have a root in Fp. Hence E(ℓ)[p]
is an irreducible representation of GQℓ

where GQℓ
is the absolute Galois group of

Qℓ. We define S to be the set of Q-isomorphism classes of elliptic curves E defined
over Q which satisfy the following conditions:

(a) E has multiplicative reduction at p and vp(j(E)) = vp(j(Eq))(= −vp(q))
where j(E) is the j-invariant of E;

(b) E[p] ≃ Eq[p] as Fp-representations of GQp ;
(c) E[p] ≃ E(ℓ)[p] as Fp-representations of GQℓ

.

The set S is infinite since elliptic curves over Q, whose coefficients of their defining
equations are p-adically close enough to that of Eπ and also ℓ-adically close enough
to that of E(ℓ), are contained in S. Now we take any elliptic curve E over Q whose
Q-isomorphism class is in the set S. By the condition (c), E[p] is irreducible as a
representation of GQ. It is moreover absolutely irreducible by Lemma 17. By the
classical Serre’s modularity conjecture (proved by Khare and Wintenberger) and
the well-known fact that p-adic representations arising from Hecke eigencusp forms
of level prime to p are crystalline, we know that (E[p]⊗Fp Fp)|GQp

is the reduction

of a lattice in some crystalline Qp-representation. Furthermore, by the condition
(a) and Proposition 5 (2) of [Se], we know that (E[p])|GQp

is torsion crystalline with

Hodge-Tate weights in [0, p]. Therefore, so is Eq[p] by (b). □

Proof of Proposition 16. Put T = Eπ[p] and T
′ = Fp⊕Fp(1). We know that T and

T ′ are in Repptor(GQp) by Lemma 18. They are not isomorphic as representations
of GQp but isomorphic as representations of G1. This gives the desired result. □

Here we suggest the following question.

Question 19. What is the necessary and sufficient condition for that the functor

Reprtor(GK)
res−→ Reptor(G∞), T 7→ T |G∞

is fully faithful? Furthermore, does this condition depend only on e and r?

Remark 20. (1) We do not know whether the full faithfulness of the functor in
Question 19 depends on the choice of the system (πn)n≥0 or not (see Proposition
15). However, it is not difficult to see the following: Take two systems (πn)n≥0 and
(π′
n)n≥0 of pn-th roots of a fixed uniformizer π of K (thus we have π0 = π′

0 = π).

Put K∞ =
∪
n≥0K(πn) (resp. K

′
∞ =

∪
n≥0K(π′

n)) and G∞ = Gal(K/K∞) (resp.

G′
∞ = Gal(K/K ′

∞)). Then, the restriction functor Reprtor(GK)
res−→ Reptor(G∞) is

fully faithful if and only if the restriction functor Reprtor(GK)
res−→ Reptor(G

′
∞) is.
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In fact, we can check this from the fact that G∞ and G′
∞ are conjugate with each

other by some element of GK .
(2) A torsion Zp-representation of GK is called finite flat if it is isomorphic to G(K)
as Zp-representations of GK for some p-power order finite flat commutative group
scheme G over the integer ring of K. If r = 1, then the category Reprtor(GK) =
Rep1tor(GK) coincides with the category of finite flat representations of GK (this can
be checked by, for example, Theorem 3.1.1 of [BBM]). Breuil proved in Theorem

3.4.3 of [Br3] that the restriction functor Rep1tor(GK)
res−→ Reptor(G∞) is fully

faithful for any K without any restriction on e. In fact, this assertion is true even
if p = 2 (cf. [Kim], [La], [Li4], proved independently. Explicitly, see Corollary 4.4
of [Kim]).

(3) If e = 1 and r < p−1, then the fact that the restriction functor Reprtor(GK)
res−→

Reptor(G∞) is fully faithful has been already known ([Br2], the proof of Théorèm
5.2).
(4) Observing known results as above and results shown in this paper, it seems that
the answer of Question 19 should be “e(r − 1) < p− 1”.

Appendix A. (φ, Ĝ)-modules associated with crystalline
representations

In Proposition 5.9 of [GLS], a necessary condition for representations arising

from free (φ, Ĝ)-modules to be crystalline is given. In this appendix, we show that
the converse holds. The result here justifies the subscript “cris” of the category

Modr,Ĝ,cris/S∞
defined in Section 3.

We continue to use the same notation as in Section 2. For any integer n ≥ 0, we
define ideals of W (R) as below:

I [n]W (R) := {a ∈W (R);φm(a) ∈ FilnAcris for everym ≥ 0}, I [n
+]W (R) := I [n]W (R)I+W (R)

(see Section 5 of [Fo2] for more precise information). The proof of Lemma 3.2.2
of [Li2] shows that I [n]W (R) is a principal ideal of W (R) generated by φ(t)n. In

particular we see that upφ(t) is contained in I [1
+]W (R) = φ(t)I+W (R). Recall

that T̂ (M̂) ⊗Zp Qp is a semi-stable Qp-representation of GK (Theorem 3 (2)) and
τ(x)− x ∈ I+W (R)⊗φ,S M for any x ∈M. The main purpose of this appendix is
to prove the following:

Theorem 21. Let M̂ ∈ Modr,Ĝ/S be a (φ, Ĝ)-module. The followings are equivalent:

(1) T̂ (M̂)⊗Zp Qp is crystalline.

(2) For any x ∈M, we have τ(x)− x ∈ I [1+]W (R)⊗φ,S M.
(3) For any x ∈M, we have τ(x)− x ∈ upφ(t)(W (R)⊗φ,S M).

Before giving a proof of this theorem, we shall recall some known facts about

(φ, Ĝ)-modules. Let M̂ ∈ Modr,Ĝ/S be a (φ, Ĝ)-module, and put D = SK0 ⊗φ,S
M. Then D has a structure as a Breuil module which corresponds to the semi-
stable representation T̂ (M̂) ⊗Zp Qp of GK . (Breuil modules here are objects of
“MFS(φ,N)” defined in Section 6.1 of [Br1]. It is useful for the reader to refer
also Section 5 of [Li1].) Denote by ND the monodromy operator of D and define a
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GK-action on B+
cris ⊗S D = B+

cris ⊗φ,S M by

g(a⊗ x) =
∞∑
i=0

g(a)γi(−log([ε]))⊗ND(x)

for g ∈ GK , a ∈ B+
cris, x ∈ D. By the construction of the quasi-inverse of the functor

T̂ of Theorem 3 (2) ([Li2], Section 3.2), this GK-action is stable on R̂ ⊗φ,S M ⊂
B+

cris ⊗φ,S M and it factors through Ĝ, which gives the original Ĝ-action of the

(φ, Ĝ)-module M̂. For any n ≥ 0 and any x ∈ D, an induction on n shows that

(τ − 1)n(x) =

∞∑
m=n

 ∑
i1+···in=m,ij≥0

m!

i1! · · · in!

 γm(t)⊗Nm
D (x) ∈ B+

cris ⊗S D

and in particular (τ−1)n

n (x)→ 0 p-adically as n→∞. Hence we can define

log(τ)(x) =
∞∑
n=1

(−1)n−1 (τ − 1)n

n
(x) ∈ B+

cris ⊗S D.

It is not difficult to check the equation log(τ)(x) = t ⊗ ND(x). Consequently

the monodromy operator ND can be reconstructed from the τ -action of M̂ by the
relation 1

t log(τ)(x) = ND(x). Put D = D/I+SK0D. Then D has a structure

as a filtered (φ,N)-module over K0 which corresponds to T̂ (M̂) ⊗Zp Qp and the
monodromy operator ND of D is given by ND mod I+SK0

D ([Br1], Section 6).

Hence T̂ (M̂)⊗Zp Qp is crystalline if and only if ND mod I+SK0D is zero.

Proof of Theorem 21. The implication (1) ⇒ (3) follows from Proposition 5.9 of
[GLS]. It is clear that (3) implies (2). Thus it suffices to show the implication
(2) ⇒ (1). Assume the condition (2). We use the same notation D, ND, D,ND as
the above. We often regard M as a φ(S)-submodule of D. Let x ∈ M. For any
integer n > 0, it is shown in the proof of Proposition 2.4.1 of [Li3] that

(A) (τ − 1)n(x) ∈ I [n]W (R)⊗φ,S M;

(B) (τ−1)n

nt (x) is well-defined in Acris ⊗φ,S M and (τ−1)n

nt (x) → 0 p-adically as

n→∞. Therefore, we have 1
t log(τ)(x) ∈ Acris ⊗φ,S M ⊂ B+

cris ⊗φ,S M.

By (A), we can take yn ∈ W (R) ⊗φ,S M such that (τ − 1)n(x) = φ(t)nyn. Then
we have the equation

(∗) : cND(x) = c · 1
t
log(τ)(x) =

τ − 1

φ(t)
(x) +

∞∑
n=2

(−1)n−1φ(t)
n−1

n
yn.

Here c = t
φ(t) , which is a unit of Acris ([Li2], Example 3.2.3). Note that τ−1

φ(t) (x) is

contained in I+W (R)⊗φ,S M by the assumption (2).

Now we claim that there exists an integer n0 > 1 such that (n−2)!
n is in Zp for

any n > n0. Admitting this claim, we proceed a proof of Theorem 21. Consider
the decomposition
∞∑
n=2

(−1)n−1φ(t)
n−1

n
yn = φ(t)

n0∑
n=2

(−1)n−1φ(t)
n−2

n
yn+φ(t)

∞∑
n=n0+1

(−1)n−1φ(t)
n−2

n
yn.

By the claim, we see that φ(t)n−2

n = φ(t)n−2

(n−2)! ·
(n−2)!
n = c−(n−2)γn−2(t)

(n−2)!
n is

contained in Acris for any n > n0 and it goes to zero p-adically as n → ∞. In
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particular, (the first term and) the second term of the above decomposition are
contained in φ(t)(B+

cris ⊗φ,S M), which is contained in I+B
+
cris ⊗φ,S M. Hence∑∞

n=2(−1)n−1 φ(t)
n−1

n yn is also contained in I+B
+
cris ⊗φ,S M. Note that ν(c) = 1

since c = t
φ(t) =

∏∞
n=0 φ

n(
c−1
0 E(u)
p ) and ν(u) = 0, and furthermore ν(t) = 0.

Therefore, by (∗) modulo I+B
+
cris ⊗φ,S M, we obtain the relation ND(x̄) = 0 in

D = D/I+SK0D ⊂ (B+
cris⊗φ,SM)/(I+B

+
cris⊗φ,SM) where x̄ is the residue class of

x. Since the image of M in D = D/I+SK0D generates D as a K0-vector space, we
obtain that ND = 0. This implies (1). Hence it suffices to show the claim. Let vp
be the p-adic valuation with vp(p) = 1. For any positive integer n, write n = psm

with p ̸ |m. If s = 0, it is clear that (n−2)!
n ∈ Zp. Suppose s ≥ 1. If m ≥ 2, we have

vp((n − 2)!) ≥ vp((2p
s − 2)!) ≥ vp(p

s!) ≥ s = vp(n). If m = 1 and s ≥ 3, we have
vp((n− 2)!) ≥ vp(ps−1!) = 1

2s(s− 1) ≥ s = vp(n). This finishes the proof. □

theorie dieudonne cristalline II
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p = 2, appear at Journal de Théroie des Nombres de Bordeaux.



FULL FAITHFULNESS THEOREM FOR TORSION CRYSTALLINE REPRESENTATIONS 15

[Oz] Ozeki, Yoshiyasu. Torsion representations arising from (φ, Ĝ)-modules, J. Number The-
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