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Abstract

We show that, for an abelian variety defined over a p-adic field K which has potential
good reduction, its torsion subgroup with values in the composite field of K and a certain
Lubin-Tate extension over a p-adic field is finite.

1 Introduction

Let p be a prime number and A an abelian variety over a p-adic field K (here, a p-adic field
is a finite extension of Q,). For an algebraic extension L/K, we denote by A(L) the group of
L-rational points of A and also denote by A(L)io, its torsion subgroup. We are interested in
determining whether A(L)io, is finite or not. The most basic result is given by Mattuck [Mal;
A(L)toy is finite if L is a finite extension of K. Thus our main interest is the case where L is
an infinite algebraic extension of K. For this, Imai’s result [Im] is well known. He showed that
A(K (ppo))tor is finite if A has potential good reduction, where 1y denotes the group of p-power
roots of unity in a fixed separable closure K of K. Since the field K (up) is the composite field of
K and the Lubin-Tate extension over QQ, associated with a uniformizer p of Q,, we naturally have
the following question.

Question. Let A be an abelian variety over a p-adic field K. Let k; be the Lubin-Tate extension
associated with a uniformizer 7 of a p-adic field k. Then, is A(Kky)tor finite?

In the case of Imai’s theorem (k = Q, and m = p), the answer of the question is affirmative for
potential good reduction cases, that is, the case where A has potential good reduction. However,
the question sometimes has a negative answer. For example, if A is a Tate curve over K, k = Q,
and m = p, then A(Kk;)[p>] = A(K(tp=))[p™] is clearly infinite. We also have an example even
for potential good reduction cases as given in Remark 2.10.

The aim of this paper is to give a sufficient condition on k and 7 so that the question has an
affirmative answer for potential good reduction cases. Let k,7m and k, be as above. Let ¢ be the
order of the residue field of k. We denote by kg the Galois closure of k/Q,. We put dg = [k : Q)
and denote by eg the ramification index of the extension kg/k. We fix an embedding Q @p.
Our main result is as follows (see Definitions 2.1 and 2.2 for some undefined notion).

Theorem 1.1. Let A be an abelian variety over a p-adic field K with potential good reduction. If
Nry/q, () is not a q-Weil integer of weight sdg/t for any integers 1 < s <eg and 1 <t < sdg,
then A(Kkx)ior 15 finite.

Applying Theorem 1.1 to the case where k = QQ, and m = p, we can recover Imai’s theorem. We
should note that there is another generalization of Imai’s theorem which is given by Kubo and
Taguchi [KT]. The main result of loc. cit. states that the torsion subgroup of A(K(K'/?™)) is
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finite, where A is an abelian variety over K with potential good reduction and K (K 1/ poc) is the
extension field of K by adjoining all p-power roots of all elements of K.

For the proof of the above theorem, the essential difficulty appears in the finiteness of the p-
power torsion part A(Kk;)[p™] of A(Kky)tors- For this, we proceed our arguments in more general
settings. We study not only abelian varieties but also (general) proper smooth varieties.

Theorem 1.2. Let X be a proper smooth variety over a p-adic field K with potential good reduction.
Let V be a Gal(K / K)-stable subquotient of HE (X7, Qp(r)) with i # 2r. Assume that VGIK/L) o
0 for some finite extension L/Kky. Then Nry g, (7) is a q-Weil number of weight —(i —2r)/h for

h

some non-zero h € [—i+r,r][) (UseZ 1<S<€G(1/5d@)Z>. Moreover, ¢"Nry, q, (m)™" is an algebraic

integer.

Applying Theorem 1.2 to the case where k = Q,, m = p and 7 is odd, we obtain [CSW, Corollary
1.6]. (Note that loc. cit. studies the vanishing of not only H°(Gal(K/L),V) (as our result) but
also H’(Gal(K/L),V) for all j.) The assumption i # 2r in Theorem 1.2 is essential as explained
in the Introduction of [KT]. The key ingredients for our proof are the theory of locally algebraic
representations (cf. [Se2]) and some “weight arguments” of eigenvalues of Frobenius on various
objects. For weight arguments, we use p-adic Hodge theory related with Lubin-Tate characters
and results on weights of a Frobenius operator on crystalline cohomologies (cf. [CLS], [KM], [Na]).

We hope our results can be useful for future studies in Iwasawa theory, for example, control
theorems of Selmer groups for abelian varieties over certain p-adic extensions of number fields. In
fact, arguments of [KT, Section 6] seem to be familiar with our results.

Notation : In this paper, we fix algebraic closures Q and @p of Q and Q,, respectively, and we fix
an embedding Q — @p If F' is a p-adic field, we denote by G and Up the absolute Galois group
Gal(Q,/F) of F and the unit group of the integer ring of F', respectively. We also denote by F
and [ the maximal unramified extension of F in Q,, and the inertia subgroup Gal(Q,/F"") of G,
respectively. We set I'r := Homg, (F, @p). If F'/F is a finite extension, we denote by fr/p the
residual extension degree of F’/F, that is, the extension degree of the residue fields corresponding
to F'/F. We put fr = fr/q,. Finally, any p-adic representation of G in this paper is of finite
dimension.
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2 Proofs of main theorems

Our goal is to prove results in the Introduction. We often use p-adic Hodge theory. For the basic
notion of this theory, it is helpful for the reader to refer [Fol] and [Fo2]. In this paper, we normalize
the Hodge-Tate weight so that the Hodge-Tate weight of Q,(1) is one.

Definition 2.1. Let gy > 1 be an integer. A qo-Weil number (resp. qo-Weil integer) of weight
w is an algebraic number (resp. algebraic integer) a such that [c(a)] = g /2 for all embeddings

t: Qo) — C.

Definition 2.2. Let F' be a p-adic field with residual extension degree f = fr and Fy/Q, the
maximal unramified subextension of F'/Q,. We denote by ¢g,: Fy — Fp the arithmetic Frobenius
of Fy, that is, the (unique) lift of p-th power map on the residue field of Fjp.

(1) Let D be a ¢-module over Fp, that is, a finite dimensional Fy-vector space with ¢ p,-semilinear
map ¢: D — D. Then ¢f: D — D is a Fy-linear map. We call det(T — of | D) the characteristic
polynomial of D.



(2) For a Q,-representation U of G, we set DI (U) := (Beris ®q, U)®F and DE(U) := (By ®q,
U )GF , which are filtered p-modules over F'. Here, Be,is and By are usual p-adic period rings. Note
that we have DE. (U) = DL (U) if U is crystalline.

(3) Let S be a set of rational numbers. Let U be a potentially semi-stable Q,-representation of
Gr. Suppose that Ulg,, is semi-stable for a finite extension I of I’ with residue field F,/. We say
that U has Weil weights in S if any root of the characteristic polynomial of Df;/(U ) is a ¢’-Weil
number of weight w for some w € S. (Note that this definition does not depend on the choice of

F)

Let K and k be finite extensions of Q,. Let g be the order of the residue field of k, 7 a
uniformizer of k and k. the Lubin-Tate extension of k£ associated with 7. The following theorem
is a key to the proof of our main results.

Theorem 2.3. Let S be a subset of Q~{0}. Let V be a semi-stable Q,-representation of Gy with
Hodge-Tate weights in [hy, hy]. Assume that V has Weil weights in S and VS E/L) £ 0 for some
finite extension L/Kky. Then

(1) Nry/q,(7) is a g-Weil number of weight —w/h for some w € S and some non-zero h €

11, 12) () (s e (1/366)2).

(2) If the coefficients of the characteristic polynomial of DE (V (—r)) are algebraic integers for some
integer r, then we can choose h in (1) so that ¢"Nry g, (7)~" is an algebraic integer.

2.1 Proof of Theorem 2.3
In this section, we prove Theorem 2.3. We begin with some lemmas.

Lemma 2.4. Let (ny)oery be a family of integers. If there exists an open subgroup U of Uk with
the property that [, o(z)" =1 for any x € U, then we have n, =0 for any o € I'.

Proof. Replacing U by a finite index subgroup, we may assume that the p-adic logarithm map is
defined on U. Then we have ) . ns0(logz) = 0 for any z € U by assumption. Since logU is
an open ideal of the ring of integers of K, we obtain ) . n,0(y) =0 for any y € K. Although
the desired fact n, = 0 for any o € I'k follows from Dedekind’s theorem [Bo, §6, no. 2, Corollaire
2] immediately, we also give a direct proof for this. Take any o € K such that K = Qp(«) and let
I'x = {01 =id,09,...,0.} where ¢ := [K : Qp]. Then we have (g, Moy, - -, N, )X = 0 where X
is the ¢ X ¢ matrix with (i, j)-th component o;(a)?~!. Since det X = [1;s:(0j(a) —oi(a)) # 0, we
obtain ny, =ng, =+ =ny, =0.

We denote by x,: Gr — k* the Lubin-Tate character associated with 7. If we regard y, as a
continuous character k* — k* by the local Artin map with arithmetic normalization, then y, is
characterized by the property that x,(7) = 1 and x,(u) = u~! for any u € Uy.

Lemma 2.5. Let E be a p-adic field and V' an E-representation of Gx. Assume that k/Q, is
Galois, V is Hodge-Tate and the Gy, -action on V' factors through a finite quotient. Then, there
exist finite extensions K'/K and E'/E with K', E' D k such that any Jordan-Hdlder factor of
(Ver E)la,, is of the form E'([1,er, o~ ox4) for some 1, € Z. Moreover, 74 is a Hodge-Tate
weight of V.

Proof. Replacing K by a finite extension, we may assume that Gg, acts trivially on V' and K
is a finite Galois extension of k. Since the Gi-action on V factors through the abelian group
Gal(Kk,/K), it follows from Schur’s lemma that, for a finite extension E’/FE of sufficiently large
degree, any Jordan-Holder factor W of V ®g E’ is of dimension 1. Our goal is to show that W is
of the required form. We may assume E' = F D K.

Let p: Gk — GLg(W) ~ E* be the continuous homomorphism given by the G-action on
W. Let E be the Galois closure of E/Q, and take any finite extension K”/K which contains
E. Since W is Hodge-Tate, it follows from [Se2, Chapter III, A.5, Theorem 2] that there exists



an open subgroup I of Ix~ such that p = HaerE o' oxl% on I for some integer n,. Here,
XoE: Gor — U, g is the Lubin-Tate character associated with ¢ F (it depends on the choice of a
uniformizer of o E, but its restriction to the inertia subgroup does not). Put p = HaeFE o toxls,
considered as a character of G . Replacing K by a finite extension, we may assume the following:

- K"/Q, is Galois, Gal(k,/(kr N K")) is torsion free and p = p on .

Since plgy, . is trivial, we have that § is trivial on I NGk, = G(gryury, . Hence, putting N' =
Gal((K")"kx/(K")"), we may regard p|r,.,, as a representation of N'. Put N = Gal(k" k,/E"™).
Then N’ is canonically isomorphic to a torsion free finite index subgroup of N ~ Uy, and thus we
regard N’ as a subgroup of V.

Now we claim that g|7,,, , regarded as a continuous character N — E X, extends to a continuous

character p: N — @; . It follows from the theory of elementary divisors that we may regard
N = Nior @ (&4,Z,) D {0} @ (&% ,p™Z,) = N’ with some integer m; > 0. Here, Ny, is the
torsion subgroup of N and d := [k : Q,]. Hence it suffices to show that any continuous character
" Ly — @; with m > 0 extends to Z, — @;, but this is clear.

By local class field theory, we may regard fp|s,,, and p as characters of U and Uy, respectively.
It follows from the construction of p that we have p(x) = p(Nrg/,(x)) for x € Ugr. In particular,
we have

5(x) = p(ra) (2.1)
for x € Ug» and 7 € Gal(K"”/k). On the other hand, by definition of 5 and the condition that
K" /Q, is Galois, we have

)= [ o Newojoule™ye = [ 6@ (2.2)

oel'g g€l gn

for x € Uk where ng :=n, if 5| = 0.
We claim that ng = ng if 6| = 6’|, By (2.1) and (2.2), we have

II '@ = I ¢ '@ (2.3)

el en el gn

for + € Ug» and 7 € Gal(K"”/k). Choosing a lift & € T'x» for each element of Gal(k/Q,), we
have a decomposition I'x» = |, 6Gal(K" /k). Since k/Q, is Galois, we see that Gal(K" /k) acts
on 6Gal(K"/k) stably and this action is transitive. By Lemma 2.4, we know that the family
(ns)ser,., is determined uniquely by the restriction of HaerK” (671" to any open subgroup of
Uk Hence the equation (2.3) gives ng = ng if &|p = &'|; as desired.

For any o € I'y, we define r, := ng for a lift 6 € 'k of o, which is independent of the choice of
& by the claim just above. Then we see p(z) = [[5¢r @) =[lyer, 0 'Nrgojp(@™t)"
for x € Uk. This implies

p= ] o oxir

oely

on Ign. Now we define ¢: G — E* by ¢ :=p - (Hoerk o lo ng)fl. Then ¢ is trivial on ITgn
since p = p = Haerk o lo Xre on Ign. Furthermore, 9 is trivial on Ggp, since x. and p are
trivial on Gk . Therefore, putting K’ = (K" )" N Kk, then K'/K is a finite extension and 1) is
trivial on G- .

Finally, we note that r, is a Hodge-Tate weight of V' by [Se2, Chapter III, A.5, Theorem 2].
This is the end of the proof. O

Lemma 2.6. Let E be a p-adic field and V' an E-representation of Gx. Assume that k/Q, is
Galois, V is potentially semi-stable with Hodge-Tate weights in [h1, ha] and the G ky._-action on V
factors through a finite quotient. Then, there exists a finite extension K'/Kk which satisfies the



Jollowing property: Vg, is semi-stable and, for any root o of the characteristic polynomial of
DX'(V), we have
a=alxm o= H T(m)~ "
7€l
for some integers (n;)rer, such that dhy < ZTEFk ny < dhy. Here, d = [k : Q,)].

Proof. By Lemma 2.5, there exist finite extensions K'/K and E’/E with E’, K’ D k which satisfy
the following:

— Vl|g,, is semi-stable and any Jordan-Holder factor W of (V ®g E')|q,., is of the form
E'(Il,er, 07" o x}7) for some 7, € [y, ho]. In particular, W is crystalline.

Replacing FE by a finite extension, we may assume £’ = E. Now we take a root a of the character-
istic polynomlal of DX /(V), and choose W so that « is a root of the the characteristic polynomial
Of Dglb(W)

To study «, we first consider the characterlstlc polynomial of DC“S(E(U*1 o xre)) for o € T'k.
We note that we have an isomorphism k(o' o x7o)* ~ k(xLe)* of Q,[Gk-]-modules (here, “ss”

stands for the semi-simplification of Q,[Gk]-modules). In fact, for any g € Gk, we have

Trg, (g | k(o™" o X)) = Trryq, (Tra(g [ k(o™ o X)) = Trgyq, (0~ X (9))
= Triyq, (X7 (9)) = Triyq, (Tre(g | k(x77)) = Trg, (9 | K(x77))-

(Here, for a representation U of a group G over a field F and g € G, we denote by Trg(g | U) the
trace of the g-action on the F-vector space U.) Therefore, we have

det(T — o/ | DX (E(0™" 0 x;7))) = det(T — /" | DI (k(x5 )P, (2.4)

cris (

To study the roots of (2.4), we recall the explicit description of D¥. (k(xz1)) (cf. [Con, Proposition
B.4]. See also [Col, Proposition 9.10]). Let ko be the maximal unramified subextension of k/Q,.
By definition, we have fi, = [ko : Q] and ¢ = p/*. Then D, (k(x;')) is a free (ko ®q, k)-module
of rank one, and we can take a basis e of D¥. (k(x;!)) such that gafk( ) = (1®m)e. We claim

cris

det(T — o | DEL (kO = [ E*(T) (2.5)
0<i<fr—1

where E(T) =T°¢+ Zj —oa;T7 € ko[T] is the minimal polynomial of 7 over ky and E¢(T) =
Te + 5T i 0 ¢'(a;)T7. To show this, it suffices to show that the characteristic polynomial of the
homomorphism 1 ® 7: kg ®q, k — ko ®q, k of kp-modules coincides with the right hand side of
(2.5). (Here, the kqp-action on ko ®q, k is given by a.(x ® y) := ax ® y for a,z € ko and y € k.)
We consider a natural isomorphism

ko ®q, ko ~ ®jez/fzk05, a @b (ap’ (b));

where kg ; = ko for all j. For 0 < s < f,—1, let e € kg®q, ko be the element which corresponds to
(0sj)j € Bjez)fozko,; where dg; is the Kronecker delta. Then {e;(1®@7") [0 <j < fr—1, 0<i <
e—1} is a ko-basis of ko®q, k. We see that the matrix of 1®&m: ko ®q, k — ko®q, k associated with
the ordered basis (eq,...,ef—1,e0(1®7),...,ef1(1®7),...,e0(l@7), ... ep1(1@7TET))
is

O O - —A

Iy, O - —A

O - I —A.,
where Iy, is the fi X f identity matrix and A; is the fi x fi diagonal matrix with diagonal entries
ai, 0(a;), .., 1(a;). Now it is an easy exercise to check that the characteristic polynomial of

this matrix is [[o<;<f, 4 E#'(T) as desired.



Now we note that roots of the characteristic polynomial of Dcns(k(x,,)) are the fg/,-th power
of those of D¥._(k(x,)) since the latter describes the action of ¢+ but the former describes that of
@lx’ = oI /edk  Furthermore, we also note that all the roots of the right hand side of (2.5) is a con-
jugate of ™ over Q. Hence, it follows from the claim (2.5) that any root of the characteristic poly-
nomial of DX (k(xx)) is of the form 7(m) ~fx’/% for some 7 € T'. On the other hand, for crystalline

Cris

characters 1,102 : G — k>, we have a surjection DX, (k (V1))@ DE (k(1h2)) — Dglls( (112))
induced from the natural map k(¢1) ®q, k(¥2) — k(¢1) @i k(’l/)g) = k(¢112). Here, K| is the
maximal unramified subextension of K’/Q,. In particular, roots of the characteristic polynomial
of DX (k(y112)) is a product of those of DE; (k (1[11)) and DX (k(12)). By this fact, we know

that any root of the characteristic polynomial of DX, (k(x%=)) is of the form [ er, 7(m)~fwrnz
with > cp n? = r,. By (2.4), the same holds for the roots of the characteristic polyno-

mial of Dgls(E(O'_l o xro)). Therefore, since « is a root of the characteristic polynomial of

DE (W) = DE (E(ITyer, o' 0 X5)), we have

cris cris
o= T e
7€l

with > e, nr = > cr, 7o = R. (Here, n, = > . n?.) We note that R is an integer such
that dh; < R < dhy since we have r, € [hy, ha]. This completes the proof. O

We need the following two standard lemmas which describe inclusion properties of two Lubin-
Tate extensions.

Lemma 2.7. Let ko /k1 be a finite extension of p-adic fields with residual extension degree f. For
i=1,2, let m; be a uniformizer of k; and k; r,/k; the Lubin-Tate extension associated with ;.

(1) We have Nry, i, (72) = w! if and only if kim0 Ckor,-

(2) Wl_fNrkz/kl (m2) is a root of unity if and only if there exists a finite extension M /ks r, such that
k1x, C M. If this is the case, we can take M to be the degree fjio (k1) subextension in k3" /ko r,.
Here, poo (k1) is the set of roots of unity in k.

Proof. For i = 1,2, we denote by ki and k" the maximal unramified extension of k; and the max-
imal abelian extension of k;, respectively. We recall that the Artin map Arty, : k — Gal(k2P/k;)
associated with k; satisfies Arty, (m;)] ki, = id and Artg, (mi)|ker = Frobg,, where Froby, is the
geometric Frobenius of k;.

(1) Suppose Nry, i, (m2) = w{. For any lift o € Gy, of Arty,(m2), we have

Oy ry = (At (m2) o) ks o, = Artie, (Nrgym, (2)) |k, ., = Arty, (1) |5, = id.

Since the intersection of the fixed fields (in @p) of such o’s is kg ,, we obtain the desired result.
Conversely, suppose ki, C ka2,,. Then we have

Artr, (NTg, /5y (72))|ky 7y = ATbi, (T2) [k, o, = (Arbiy (72) ko 0y )k, = id
and

Artkl (Nrk2/k1 (7‘(2))‘]@? = Al”tk2 (7T2)|ki‘r = (Artk2 (7T2)|k51r) kyr = Frobk2|kl1u = FI‘Obil.

Thus we have Arty, (Nry, /k, (T2)) = Arty, (7r{c)7 which shows Nry, /i, (m2) = 7r{.
(2) A very similar proof to that of (1) proceeds. Suppose that w;fNer/kl (m2) is a root of unity
If we denote by & the order of the set of roots of unity in ki, then we have Nry, /5, (7}) = 771 . We
see that any lift o € Gy, of Arty, () fixes k1 ,. This implies that k; ., is contained in a degree
h subextension in k5" /kg .

Suppose that there exists a finite extension M/ks r, such that ki, C M. Then M’ :=
K1,z k2, is a finite subextension in k3P /ko r,. Put h = [M’ : ko ,]. Since Arty,(75)|p is the



identity map, we have Arty, (Nry, /5, (75))|r, ., = id and Arty, (Nrg, jp, (75)) o = Frobif. Thus

we have Arty, (Nry, /i, (15)) = Arty, (w{h), which shows Nry, i, (7}) = w{h.

O
We recall that kg is the Galois closure of k/Q, and dg := [kg : Q).

Lemma 2.8. There exist a finite unramified extension k'/kg and a uniformizer © of k' which
satisfy the following.

[ ] Nrk//k(w’) = ﬂ'fk//k,

o kr C kI, where kI, is the Lubin-Tate extension of k' associated with 7',

7wl
e the extension k'/Q, is Galois, and
o [k':Qp] = sdg for some integer 1 < s <egq.

Proof. Let kg o/k be the maximal unramified subextension in kg/k. By [Sel, Chapter V, §6,
Proposition 10], there exists an unramified extension ko over ka o of degree at most [k : kg ol(=
ec) such that m = Nr;, 7 (7') for some 7’ € (K')*, where k' := kgko. Since kg /Q, is Galois and
k' /kq is unramified, we see that k'/Q, is Galois. We also see that 7’ is a uniformizer of k’. Since
ke Nko = kg, we have [k : kq] = [ko : kgo] < eq. Thus we obtain [k : Q,] = [K : kel[ke :
Qp] = sdg for some integer 1 < s < eq. Furthermore, we have Nry/ /,(7') = Nr,;o/k(Nrk,/,;O (7)) =
Nrj () = mfw/k. By Lemma 2.7, we have k, C k. O

Now we are ready to prove Theorem 2.3.

Proof of Theorem 2.5. First we consider the case where k/Q, is Galois. Replacing L by a finite
extension, we may assume that L/K is Galois. Then V&= is a G -stable submodule of V. By
Lemma 2.6, there exists a finite extension K'/Kk such that any root « of the characteristic
polynomial of DX’ (VEr) is of the form

a=alx', q= H (7)™ "
Tl

with some integers (n;)rer, such that dh; < Zrerk ny < dhy. Here, d :== [k : Q,]. Put R :=
> rer, Nr- Then we have

H o(a) = H H or(m)™ " = H Nry/q, (7)™ = Nry /g, (7)F. (2.6)

oely, 7€, o€l Tl

Since V& has Weil weights in S, we see that o(a) is a ¢-Weil number of weight w € S for any
o € T'k. Thus it follows from the condition w # 0 and the equation (2.6) that we have R # 0.
Therefore, we obtain that Nry/q,(7) is a g-Weil number of weight —w/h where h := R/d €
[h1,h2] N (1/d)Z. This shows Theorem 2.3 (1). Now Theorem 2.3 (2) follows from the fact that
we have (¢"Nry /g, (7)) = Nry/q,(¢"a) and (q"a)<'/v = gh, is a root of the characteristic
polynomial of DX (V(=r)) (here, g is the order of the residue field of K’). Thus we obtained a
proof of Theorem 2.3 in the case where k/Q, is Galois.

Next we consider the case where k/Q, is not necessarily Galois. Take a finite extension k'/k¢q
and a uniformizer 7’ of k¥’ as in Lemma 2.8. Put d’ = [k’ : Q,]. We have d’ = sdg for some
1 < s <eg. Let ¢ be the order of the residue field of &¥’. Let L’ be the composite field of L and
k.., which is a finite extension of Kk!,. Assume that V¢ is not zero. Since V2’ is also not zero

il

and the extension £'/Q,, is Galois, we know that Nry g, (7') is a ¢’-Weil number of weight —w/h for
some w € S and h € [h1, ho]N(1/d’)Z. By the equation Nrys i (') = 7/v'/% | we have Nry /g, (7') =
(N1y/q, (m))/% /% and hence N1y q, () is a g-Weil number of weight —w/h. Furthermore, we have
q""Nry q, (n)~h = (¢"Nry/q, (ﬂ')_h)fk’/k. This completes the proof of Theorem 2.3. O



2.2 Proofs of Theorems 1.1 and 1.2
We prove Theorems 1.1 and 1.2 in the Introduction. We start with a proof of Theorem 1.2.

Proof of Theorem 1.2. Let the notation be as in the theorem. Replacing K by a finite extension,
we may assume that X has good reduction over K. Then we know that V is crystalline with Hodge-
Tate weights in [—i+7, ] (cf. [Fal], [Fa2]). We claim that V" has Weil weight ¢ —2r. Let Ky be the
maximal unramified subextension of K/Q,. Put ¢x = p’% | the order of the residue field of K. Let
Y be the special fiber of a proper smooth model of X over the integer ring of K. By the crystalline
conjecture shown by Faltings [Fa2] (cf. [Ni], [Tsu]), we have an isomorphism DX, (H}, (X7, Q,)) ~
K, QW (Fyy) Hi . (Y/W(F,.)) of g-modules over Ky. It follows from Corollary 1.3 of [CLS] (cf.
[KM, Theorem 1] and [Na, Remark 2.2.4 (4)]) that the characteristic polynomial of Ky OW (Fy, )
Hli(Y/W(Fy,)) coincides with charx (T) := det(T —Frobg, | Hf (X%, Qy)) for any prime £ # p.
Hence we obtain the fact that the characteristic polynomial chary _,)(T) of D (V(—r)) divides
charx (7). Thus it follows from the Weil Conjecture (cf. [Del], [De2]) that chary_,)(T) has
algebraic integer coefficients and its roots are gx-Weil numbers of weight ¢. In particular, V has
Weil weight ¢ — 27 as desired. Now the result follows by Theorem 2.3. O

Finally, we prove Theorem 1.1. Let A be an abelian variety over a p-adic field K and let £ be any
prime number. We denote by T;(A) the ¢-adic Tate module of A and set Vy(A) := Ty(A)®z,Qe. Tt is
well known that we have G g-equivariant isomorphisms V;(A) ~ HJ (A7, Q¢)" and V,(A)/Ty(A) ~
A(K)[¢>°]. Here, A(K)[€>] is the ¢-power torsion subgroup of A(K). Furthermore, for an algebraic
extension L/K, the (-power torsion subgroup A(L)[¢*] of A(L) is finite if and only if V,(A)“t = 0.
Below we denote by L any finite extension of Kk,. Assume that A has potential good reduction
and Ny, (7) satisfies the condition in the statement of Theorem 1.1. For the proof of Theorem
1.1, it is enough to show that both the p-part and the prime-to-p part of A(L)t,, are finite.

Finiteness of the p-part of A(L)y,, : If we put W = V,(A)%L, then it is enough to show
W = 0. Replacing L by a finite extension, we may suppose that the extension L/K is Galois.
Then the Gg-action on V,(A) preserves W, and thus the dual representation WY of W is a
quotient representation of H}, (A%, Q,). By Theorem 1.2, we have WY = (WV)%% = 0, which
implies W = 0 as desired.

Finiteness of the prime-to-p part of A(L);o, : The finiteness of the prime-to-p part of A(L)¢or
follows from the following general property.

Proposition 2.9. Let A be an abelian variety over K with potential good reduction. Let M be an
algebraic extension of K with finite residue field. Then the prime-to-p part of A(M)ior is finite.

Proof. Replacing K and M by finite extensions, we may assume that A has good reduction over
K. Tt follows from the criterion of Néron-Ogg-Shafarevich [ST, Theorem 1] that the prime-to-p
part of A(M)ior has values in the maximal unramified subextension of M/K, which is a finite
extension of K by assumption on M. Then the result follows from the main theorem of [Ma]. [

Therefore, we obtained the proof of Theorem 1.1.

Remark 2.10. (This is pointed out by Yuichiro Taguchi.) We can construct an example which
gives a negative answer to the question given in the Introduction for potential good reduction case.
Let E be an elliptic curve over Q with complex multiplication by the full ring of integers O of an
imaginary quadratic field F. Let ¢ = ¢, be the Grossencharacter associated with E. Let p be
a prime number such that E has good ordinary reduction and p a prime ideal of O above p. If
we set 7 := ¥ (p), then 7 is a generator of p and we have p = 7. Here, 7 is the complex conjugate
of m. Note that 7 is a p-Weil number of weight 1. Let K = k be the completion of F' at p. By
definition, we have K = k = Q, and 7 is a uniformizer of them. If we identify a decomposition
group of G at p with G, then the action of G on the set of m-power torsion points of E(K) is



given by the Lubin-Tate character y, associated with 7. In particular, we see that E(Kk,)[p™] is
infinite.
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