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Abstract

Let K be a complete discrete valuation field of mixed characteristic (0, p) with per-
fect residue field. Let (πn)n≥0 be a system of p-power roots of a uniformizer π = π0 of
K with πp

n+1 = πn, and define Gs (resp. G∞) the absolute Galois group of K(πs) (resp.
K∞ :=

∪
n≥0 K(πn)). In this paper, we study Gs-equivariantness properties of G∞-equivariant

homomorphisms between torsion crystalline representations.
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1 Introduction

Let p be a prime number and r ≥ 0 an integer. Let K be a complete discrete valuation field of
mixed characteristic (0, p) with perfect residue field and absolute ramification index e. Let π = π0

be a uniformizer of K and πn a pn-th root of π such that πp
n+1 = πn for all n ≥ 0. For any

integer s ≥ 0, we put K(s) = K(πs). We also put K∞ =
∪

n≥0 K(n). We denote by GK , Gs and
G∞ absolute Galois groups of K, K(s) and K∞, respectively. By definition we have the following
decreasing sequence of Galois groups:

GK = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ G∞.

Since K∞ is a strict APF extension of K, the theory of fields of norm implies that G∞ is isomorphic
to the absolute Galois group of some field of characteristic p. Therefore, representations of G∞ have
easy interpretations via Fontaine’s étale φ-modules. Hence it seems natural to pose the following
question:

Question 1.1. Let T be a Zp- or Qp-representation of GK . How small can we choose s ≥ 0 to
recover “enough” information of T |Gs from that of T |G∞?

Nowadays there is an interesting insight of Breuil for this question; he showed that representations
of GK arising from finite flat group schemes or p-divisible groups over the integer ring of K is
“determined” by their restriction to G∞. Furthermore, for Qp-representations, Kisin proved the
following theorem in [Kis] (which was a conjecture of Breuil): the restriction functor from the
category of crystalline Qp-representations of GK into the category of Qp-representations of G∞ is
fully faithful.

In this paper, we give some partial answers to Question 1.1 for torsion crystalline representa-
tions. A torsion Zp-representation T of GK is torsion crystalline with Hodge-Tate weights in [0, r]
if it can be written as the quotient of lattices in some crystalline Qp-representation of GK with

Hodge-Tate weights in [0, r]. Let Repr,cristor (GK) be the category of them. In the case r = 1, such
representations are equivalent to finite flat representations. (Here, a torsion Zp-representation of
GK is finite flat if it arises from the generic fiber of some p-power order finite flat commutative
group scheme over the integer ring of K.) We denote by Reptor(G∞) the category of torsion
Zp-representations of G∞. The first main result in this paper is as follows.

Theorem 1.2 (Full Faithfulness Theorem). Suppose e(r−1) < p−1. Then the restriction functor

Repr,cristor (GK)→ Reptor(G∞) is fully faithful.

Before this work, some results were already known. First, the full faithfulness theorem was proved
by Breuil for e = 1 and r < p − 1 via the Fontaine-Laffaille theory ([Br2], the proof of Théorèm
5.2). He also proved the theorem under the assumptions p > 2 and r ≤ 1 as a consequence of
a study of the category of finite flat group schemes ([Br3, Theorem 3.4.3]). Later, his result was
extended to the case p = 2 in [Kim], [La], [Li4] (proved independently). In particular, the case
p = 2 of the full faithfulness theorem is a consequence of their works. On the other hand, Abrashkin
proved the full faithfulness in the case where p > 2, r < p and K is a finite unramified extension
of Qp ([Ab2, Section 8.3.3]). His proof is based on calculations of ramification bounds for torsion
crystalline representations. In [Oz2], a proof of Theorem 1.2 under the assumption er < p − 1
is given via (φ, Ĝ)-modules (which was introduced by Tong Liu [Li2] to classify lattices in semi-
stable representations). We should remark that Abrashkin’s approach implies that calculations of
ramification bounds induces full faithfulness results on restriction functors such as our theorems.
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However, known results on ramification bounds for torsion crystalline representations are not
sufficient to obtain our results. Conversely, our results possibly help us to study ramification
bounds for them.

Our proof of Theorem 1.2 is similar to the proof for the main result of [Oz2], but we need more
careful considerations for (φ, Ĝ)-modules. In fact, we prove a full faithfulness theorem for torsion
representations arising from certain classes of (φ, Ĝ)-modules (cf. Theorem 4.9), which immediately
gives our main theorem. In addition, our study gives a result as below which is the second main
result of this paper (here, we define logp(x) := −∞ for any real number x ≤ 0).

Theorem 1.3. Suppose that p is odd and s > n − 1 + logp(r − (p − 1)/e). Let T and T ′ be

objects of Repr,cristor (GK) which are killed by pn. Then any G∞-equivariant homomorphism T → T ′

is Gs-equivariant.

For torsion semi-stable representations, a similar result was shown in Theorem 3 of [CL2], which
was a consequence of a study of ramification bounds. The bound appearing in their theorem was
n−1+ logp(nr). By applying our arguments given in this paper, we can obtain a generalization of
their result; our refined condition is n− 1+ logpr (see Theorem 4.17). Some other consequences of
our study are described in subsection 4.7. Motivated by the full faithfulness theorem (= Theorem
1.2) and Theorem 1.3, we raise the following question.

Question 1.4. Does there exist a constant c depending on e, r and p so that any G∞-equivariant
homomorphism in the category Repr,cristor (GK) is Gs-equivariant for s > c? Moreover, can we choose
c to be logp(r − (p− 1)/e)?

On the other hand, there exist counter examples of the full faithfulness theorem when we ignore
the condition e(r−1) < p−1. Let Reptor(G1) be the category of torsion Zp-representations of G1.

Theorem 1.5 (= Special case of Corollary 5.15). Suppose that K is a finite extension of Qp, and

also suppose e | (p− 1) or (p− 1) | e. If e(r − 1) ≥ p− 1, the restriction functor Repr,cristor (GK)→
Reptor(G1) is not full (in particular, the restriction functor Repr,cristor (GK) → Reptor(G∞) is not
full).

In particular, if p = 2, then the full faithfulness never hold for any finite extension K of Q2 and
any r ≥ 2. Theorem 1.5 implies that the condition “e(r − 1) < p − 1” in Theorem 1.2 is optimal
for many finite extensions K of Qp.

Now we describe the organization of this paper. In Section 2, we setup notations and summarize
facts we need later. In Section 3, we define variant notions of (φ, Ĝ)-modules and give some basic
properties. They are needed to study certain classes of potentially crystalline representations and
restrictions of semi-stable representations. In Section 4, we study technical torsion (φ, Ĝ)-modules
which are related with torsion (potentially) crystalline representations. The key result in this
section is the full faithfulness result Theorem 4.9 on them, which allows us to prove our main
results immediately. Finally, in Section 5, we calculate the smallest integer r for a given torsion
representation T such that T admits a crystalline lift with Hodge-Tate weights in [0, r]. We mainly
study the rank two case. We use our full faithfulness theorem to assure the non-existence of
crystalline lifts with small Hodge-Tate weights. Theorem 1.5 is a consequence of studies of this
section.

Acknowledgements. The author would like to thank Shin Hattori, Naoki Imai and Yuichiro
Taguchi who gave him many valuable advice. The author is grateful to the anonymous referee for
his/her comments. This work was supported by JSPS KAKENHI Grant Number 25·173.

Notation and convention: Throughout this paper, we fix a prime number p. Except in Section
5, we always assume that p is odd.

For any topological group H, we denote by Reptor(H) (resp. RepZp
(H), resp. RepQp

(H)) the
category of torsion Zp-representations of H (resp. the category of free Zp-representations of H,
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resp. the category of Qp-representations of H). All Zp-representations (resp. Qp-representations)
in this paper are always assumed to be finitely generated over Zp (resp. Qp) and continuous.

For any field F , we denote by GF the absolute Galois group of F (for a fixed separable closure
of F ).

2 Preliminaries

In this section, we recall definitions and basic properties for Kisin modules and (φ, Ĝ)-modules.
Throughout Section 2, 3 and 4, we always assume that p is an odd prime.

2.1 Basic notations

Let k be a perfect field of characteristic p, W (k) the ring of Witt vectors with coefficients in k,
K0 = W (k)[1/p], K a finite totally ramified extension of K0 of degree e, K a fixed algebraic closure
of K. Throughout this paper, we fix a uniformizer π of K. Let E(u) be the minimal polynomial of
π over K0. Then E(u) is an Eisenstein polynomial. For any integer n ≥ 0, we fix a system (πn)n≥0

of pn-th roots of π in K such that πp
n+1 = πn. Let R = lim←−OK/p, where OK is the integer ring

of K and the transition maps are given by the p-th power map. For any integer s ≥ 0, we write
πs := (πs+n)n≥0 ∈ R and π := π0 ∈ R. Note that we have πs

ps

= π.
Let L be the completion of an unramified algebraic extension of K with residue field kL.

Then πs is a uniformizer of L(s) := L(πs) and L(s) is a totally ramified degree eps extension of

L0 := W (kL)[1/p]. We set L∞ :=
∪

n≥0 L(n). We put GL,s := GL(s)
= Gal(L/L(s)) and GL,∞ :=

GL∞ = Gal(L/L∞). By definitions, we have L = L(0) and GL,0 = GL. Put SL,s = W (kL)[[us]]
(resp. SL = W (kL)[[u]]) with an indeterminate us (resp. u). We equip a Frobenius endomorphism
φ of SL,s (resp. SL) by us 7→ up

s (resp. u 7→ up) and the Frobenius on W (kL). We embed the
W (kL)-algebra W (kL)[us] (resp. W (kL)[u]) into W (R) via the map us 7→ [πs] (resp. u 7→ [π]),
where [∗] stands for the Teichmüller representative. This embedding extends to an embedding
SL,s ↪→ W (R) (resp. SL ↪→ W (R)). By identifying u with ups

s , we regard SL as a subalgebra of
SL,s. It is readily seen that the embedding SL ↪→ SL,s ↪→W (R) is compatible with the Frobenius
endomorphisms. If we denote by Es(us) the minimal polynomial of πs over K0, with indeterminate
us, then we have Es(us) = E(ups

s ). Therefore, we have Es(us) = E(u) in SL,s. We note that the
minimal polynomial of πs over L0 is Es(us).

Let Sint
L0,s

(resp. Sint
L0

)) be the p-adic completion of the divided power envelope of W (kL)[us]
(resp. W (kL)[u]) with respect to the ideal generated by Es(us) (resp. E(u)). There exists a unique
Frobenius map φ : Sint

L0,s
→ Sint

L0,s
(resp. φ : Sint

L0
→ Sint

L0
) and monodromy N : Sint

L0,s
→ Sint

L0,s
defined

by φ(us) = up
s (resp. φ(u) = up) and N(us) = −us (resp. N(u) = −u). Put SL0,s = Sint

L0,s
[1/p] =

L0 ⊗W (kL) S
int
L0,s

(resp. SL0 = Sint
L0

[1/p] = L0 ⊗W (kL) S
int
L0

). We equip Sint
L0,s

and SL0,s (resp. Sint
L0

and SL0) with decreasing filtrations FiliSint
L0,s

and FiliSL0,s (resp. FiliSint
L0,s

and FiliSL0,s) by the

p-adic completion of the ideal generated by Ej
s(us)/j! (resp. E

j(u)/j!) for all j ≥ 0. The inclusion
W (kL)[us] ↪→ W (R) (resp. W (kL)[u] ↪→ W (R)) via the map us 7→ [πs] (resp. u 7→ [π]) induces

φ-compatible inclusions SL,s ↪→ Sint
L0,s

↪→ Acris and SL0,s ↪→ B+
cris (resp. SL ↪→ Sint

L0
↪→ Acris and

SL0 ↪→ B+
cris). By these inclusions, we often regard these rings as subrings of B+

cris. By identifying
u with ups

s as before, we regard Sint
L0

(resp. SL0) as a φ-stable (but not N -stable) subalgebra of

Sint
L0,s

(resp. SL0,s). By definitions, we have SL = SL,0, Sint
L0,0

= Sint
L0

and SL0,0 = SL0 .

Convention: For simplicity, if L = K, then we often omit the subscript “L” from various notations
(e.g. GKs = Gs, GK∞ = G∞, SK = S,SK,s = Ss).
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W (R) Acris B+
cris

SL,s Sint
L0,s

SL0,s

SL

zzzzzzzzz
Sint
L0

zzzzzzzz
SL0

zzzzzzzzz

Ss Sint
K0,s

SK0,s

S

zzzzzzzzzz
Sint
K0

zzzzzzzz
SK0

zzzzzzzzz

Figure 1: Ring extensions

2.2 Kisin modules

Let r, s ≥ 0 be integers. A φ-module over SL,s is an SL,s-module M equipped with a φ-semilinear
map φ : M → M. A morphism between two φ-modules (M1, φ1) and (M2, φ2) over SL,s is an
SL,s-linear map M1 → M2 compatible with φ1 and φ2. Denote by ′Modr/SL,s

the category of
φ-modules (M, φ) over SL,s of height ≤ r in the sense that M is of finite type over SL,s and the
cokernel of 1⊗ φ : SL,s ⊗φ,SL,s

M→M is killed by Es(us)
r.

Let Modr/SL,s
be the full subcategory of ′Modr/SL,s

consisting of finite free SL,s-modules. We
call an object of Modr/SL,s

a free Kisin module of height ≤ r (over SL,s).
Let Modr/SL,s,∞

be the full subcategory of ′Modr/SL,s
consisting of finite SL,s-modules which

are killed by some power of p and have projective dimension 1 in the sense that M has a two term
resolution by finite free SL,s-modules. We call an object of Modr/SL,s,∞

a torsion Kisin module of
height ≤ r (over SL,s).

For any free or torsion Kisin module M over SL,s, we define a Zp[GL,∞]-module TSL,s
(M) by

TSL,s
(M) :=

{
HomSL,s,φ(M,W (R)) if M is free,
HomSL,s,φ(M,Qp/Zp ⊗Zp W (R)) if M is torsion.

Here a GL,∞-action on TSL,s(M) is given by (σ.g)(x) = σ(g(x)) for σ ∈ GL,∞, g ∈ TS(M), x ∈M.

Convention: For simplicity, if L = K, then we often omit the subscript “L” from various notations
(e.g. Modr/SK,s,∞

= Modr/Ss,∞
, TSK,s

= TSs ). Also, if s = 0, we often omit the subscript “s”
from various notations (e.g. Modr/SL,0,∞

= Modr/SL,∞
, TSL,0 = TSL , Modr/SK,0,∞

= Modr/S∞
,

TSK,0
= TS ).

Proposition 2.1. (1) ([Kis, Corollary 2.1.4 and Proposition 2.1.12]) The functor TSL,s : Modr/SL,s
→

RepZp
(G∞) is exact and fully faithful.

(2) ([CL1, Corollary 2.1.6, 3.3.10 and 3.3.15]) The functor TSL,s : Modr/SL,s,∞
→ Reptor(G∞) is

exact and faithful. Furthermore, it is full if er < p− 1.

2.3 (φ, Ĝ)-modules

The notion of (φ, Ĝ)-modules are introduced by Tong Liu in [Li2] to classify lattices in semi-stable
representations. We recall definitions and properties of them. We continue to use same notations
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as above.
Let Lp∞ be the field obtained by adjoining all p-power roots of unity to L. We denote by L̂

the composite field of L∞ and Lp∞ . We define HL := Gal(L̂/L∞), HL,∞ := Gal(K/L̂) GL,p∞ :=

Gal(L̂/Lp∞) and ĜL := Gal(L̂/L). Furthermore, putting L(s),p∞ = L(s)Lp∞ , we define ĜL,s =

Gal(L̂/L(s)) and GL,s,p∞ := Gal(L̂/L(s),p∞).

K̄

L̂

HL,∞

Lp∞

GL,p∞ oooooooooooooo

L∞

HL

GL,∞

L

oooooooooooooo

ĜL




























GL

Figure 2: Galois groups of field extensions

Since p > 2, it is known that L(s),p∞ ∩ L∞ = L(s) and thus ĜL,s = GL,s,p∞ ⋊HL,s (cf. [Li1,
Lemma 5.1.2]). Furthermore, GL,s,p∞ is topologically isomorphic to Zp.

Lemma 2.2. The natural map GL,s,p∞ → GK,s,p∞ defined by g 7→ g|K̂ is bijective.

Proof. By replacing Ls with L, we may assume s = 0. It suffices to prove K̂ ∩ Lp∞ = Kp∞ . Since

GK,p∞ is isomorphic to Zp, we know that any finite subextension of K̂/Kp∞ is of the form K(s),p∞

for some s ≥ 0. Assume that we have K̂ ∩ Lp∞ ̸= Kp∞ . Then we have K(1) ⊂ K̂ ∩ Lp∞ ⊂ Lp∞ .
Thus π1 is contained in Lp∞ ∩ L∞ = L. However, since L is unramified over K, this contradicts
the fact that π is a uniformizer of L.

We fix a topological generator τ of GK,p∞ . We also denote by τ the pre-image of τ ∈ GK,p∞

under the bijection GL,p∞ ≃ GK,p∞ of the above lemma. Note that τp
s

is a topological generator
of GL,s,p∞ .

For any g ∈ GK , we put ε(g) = g(π)/π ∈ R, and define ε := ε(τ̃). Here, τ̃ ∈ GK is any lift
of τ ∈ ĜK and then ε(τ̃) is independent of the choice of the lift of τ . With these notation, we
also note that we have g(u) = [ε(g)]u (recall that S is embedded in W (R)). An easy computation
shows that τ(π)/π = τp

s

(πs)/πs = ε. Therefore, we have τ(u)/u = τp
s

(us)/us = [ε].

We put t = −log([ε]) ∈ Acris. Denote by ν : W (R) → W (k) the unique lift of the projection
R→ k, which extends to a map ν : B+

cris → W (k)[1/p]. For any subring A ⊂ B+
cris, we put I+A =

Ker(ν on B+
cris)∩A. For any integer n ≥ 0, let t{n} := tr(n)γq̃(n)(

tp−1

p ) where n = (p−1)q̃(n)+r(n)

with q̃(n) ≥ 0, 0 ≤ r(n) < p−1 and γi(x) =
xi

i! is the standard divided power. We define a subring

RL0,s (resp. RL0) of B
+
cris as below:

RL0,s := {
∞∑
i=0

fit
{i} | fi ∈ SL0,s and fi → 0 as i→∞}

(resp. RL0
:= {

∞∑
i=0

fit
{i} | fi ∈ SL0

and fi → 0 as i→∞}).
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Put R̂L,s = RL0,s ∩W (R) (resp. R̂L = RL0 ∩W (R)) and I+,L,s = I+R̂L,s (resp. I+,L = I+R̂L).

By definitions, we have RL0,0 = RL0 , R̂L,0 = R̂L and I+,L,0 = I+,L. Lemma 2.2.1 in [Li2]

shows that R̂L,s (resp. RL0,s) is a φ-stable SL,s-subalgebra of W (R) (resp. B+
cris), and ν induces

RL0,s/I+RL0,s ≃ L0 and R̂L,s/I+,L,s ≃ Sint
L0,s

/I+S
int
L0,s
≃ SL,s/I+SL,s ≃ W (kL). Furthermore,

R̂L,s, I+,L,s,RL0,s and I+RL0,s are GL,s-stable, and GL,s-actions on them factors through ĜL,s.

For any torsion Kisin module M over SL,s, we equip R̂L,s⊗φ,SL,s M with a Frobenius by φR̂L,s
⊗

φM. It is known that the natural map M → R̂L,s ⊗φ,SL,s
M given by x 7→ 1 ⊗ x is an injection

(cf. [Oz1, Corollary 2.12]). By this injection, we regard M as a φ(SL,s)-stable submodule of

R̂L,s ⊗φ,SL,s
M.

Definition 2.3. A free (resp. torsion) (φ, ĜL,s)-module of height ≤ r over SL,s is a triple M̂ =

(M, φM, ĜL,s) where

(1) (M, φM) is a free (resp. torsion) Kisin module of height ≤ r over SL,s,

(2) ĜL,s is an R̂L,s-semilinear ĜL,s-action on R̂L,s ⊗φ,SL,s M which induces a continuous GL,s-
action on W (FrR)⊗φ,SL,s

M.

(3) the ĜL,s-action commutes with φR̂L,s
⊗ φM,

(4) M ⊂ (R̂L,s ⊗φ,SL,s
M)HL ,

(5) ĜL,s acts on the W (kL)-module (R̂L,s ⊗φ,SL,s M)/I+,L,s(R̂L,s ⊗φ,SL,s M) trivially.

A morphism between two (φ, ĜL,s)-modules M̂1 = (M1, φ1, Ĝ) and M̂2 = (M2, φ2, Ĝ) is

a morphism f : M1 → M2 of φ-modules over SL,s such that R̂L,s ⊗ f : R̂L,s ⊗φ,SL,s
M1 →

R̂L,s ⊗φ,SL,s
M2 is ĜL,s-equivariant. We denote by Mod

r,ĜL,s

/SL,s
(resp. Mod

r,ĜL,s

/SL,s,∞
) the category of

free (resp. torsion) (φ, ĜL,s)-modules of height ≤ r over SL,s. We often regard R̂L,s⊗φ,SL,s M as

a GL,s-module via the projection GL,s ↠ ĜL,s.

For any free or torsion (φ, ĜL,s)-module M̂ over SL,s, we define a Zp[GL,s]-module T̂L,s(M̂)
by

T̂L,s(M̂) =

{
HomR̂L,s,φ

(R̂L,s ⊗φ,SL,s
M,W (R)) if M is free,

HomR̂L,s,φ
(R̂L,s ⊗φ,SL,s

M,Qp/Zp ⊗Zp
W (R)) if M is torsion.

Here, GL,s acts on T̂L,s(M̂) by (σ.f)(x) = σ(f(σ−1(x))) for σ ∈ GL,s, f ∈ T̂L,s(M̂), x ∈
R̂L,s ⊗φ,SL,s

M.
Then, there exists a natural GL,∞-equivariant map

θL,s : TSL,s
(M)→ T̂L,s(M̂)

defined by θ(f)(a⊗ x) = aφ(f(x)) for f ∈ TSL,s(M), a ∈ R̂L,s, x ∈M. We have

Theorem 2.4 ([Li2, Theorem 2.3.1 (1)], [CL2, Theorem 3.1.3 (1)]). The map θL,s is an isomor-
phism of Zp[GL,∞]-modules.

Convention: For simplicity, if L = K, then we often omit the subscript “L” from various no-

tations (e.g. “a (φ, ĜK,s)-module” = “a (φ, Ĝs)-module”, Mod
r,ĜK,s

/SK,s
= Modr,Ĝs

/Ss
, Mod

r,ĜK,s

/SK,s,∞
=

Modr,Ĝs

/Ss,∞
, T̂K,s = T̂s, θK,s = θs). Furthermore, if s = 0, we often omit the subscript “s”

from various notations (e.g. Mod
r,ĜL,0

/SL,0
= Modr,ĜL

/SL
, Mod

r,ĜL,0

/SL,0,∞
= Modr,ĜL

/SL,∞
, T̂L,0 = T̂L,

Mod
r,ĜK,0

/SK,0
= Modr,Ĝ/S , “a (φ, ĜK,0)-module” = “a (φ, Ĝ)-module”, T̂K,0 = T̂ , θK,0 = θ).
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Let Repr,stQp
(GL,s) (resp. Rep

r,cris
Qp

(GL,s), resp. Rep
r,st
Zp

(GL,s), resp. Rep
r,cris
Zp

(GL,s)) be the cate-

gories of semi-stable Qp-representations of GL,s with Hodge-Tate weights in [0, r] (resp. the cat-
egories of crystalline Qp-representations of GL,s with Hodge-Tate weights in [0, r], resp. the cate-
gories of lattices in semi-stable Qp-representations of GL,s with Hodge-Tate weights in [0, r], resp.
the categories of lattices in crystalline Qp-representations of GL,s with Hodge-Tate weights in
[0, r]).

There exists t ∈W (R)∖pW (R) such that φ(t) = pE(0)−1E(u)t. Such t is unique up to units of

Zp (cf. [Li2, Example 2.3.5]). Now we define the full subcategory Modr,Ĝ,cris
/S (resp. Modr,Ĝ,cris

/S∞
) of

Modr,Ĝ/S (resp. Modr,Ĝ/S∞
) consisting of objects M̂ which satisfy the following condition; τ(x)− x ∈

upφ(t)(W (R)⊗φ,S M) for any x ∈M.

The following results are important properties for the functor T̂L,s.

Theorem 2.5. (1) ([Li2, Theorem 2.3.1 (2)]) The functor T̂ induces an anti-equivalence of cate-

gories between Modr,Ĝ/S and Repr,stZp
(GK).

(2) ([GLS, Proposition 5.9], [Oz2, Theorem 19]) The functor T̂ induces an anti-equivalence of

categories between Modr,Ĝ,cris
/S and Repr,crisZp

(GK).

(3) ([Oz1, Corollary 2.8 and 5.34]) The functor T̂L,s : Mod
r,ĜL,s

/SL,s,∞
→ Reptor(GL,s) is exact and

faithful. Furthermore, it is full if er < p− 1.

2.4 (φ, Ĝ)-modules, Breuil modules and filtered (φ,N)-modules

We recall some relations between Breuil modules and (φ, Ĝ)-modules. Here we give a rough sketch
only. For more precise information, see [Br1, Section 6], [Li1, Section 5] and the proof of [Li2,
Theorem 2.3.1 (2)].

Let M̂ be a free (φ, ĜL,s)-module over SL,s. If we put D := SL0,s ⊗φ,SL,s
M, then D has

a structure of a Breuil module over SL0,s which corresponds to the semi-stable representation

Qp ⊗Zp T̂L,s(M̂) of GL,s (for the definition and properties of Breuil modules, see [Br1]). Thus

D is equipped with a Frobenius φD(= φSL0,s ⊗ φM), a decreasing filtration (FiliD)i≥0 of SL0,s-
submodules of D and a L0-linear monodromy operator N : D → D which satisfy certain properties
(for example, Griffiths transversality).

Putting D = D/I+SL0,sD, we can associate a filtered (φ,N)-module over L(s) as following:

φD := φD mod I+SL0,sD, ND := ND mod I+SL0,sD and FiliDL(s)
:= fπs(Fili(D)). Here,

fπs : D → DL(s)
is the projection defined by D ↠ D/Fil1SL0,sD ≃ DL(s)

. Proposition 6.2.1.1
of [Br1] implies that there exists a unique φ-compatible section s : D ↪→ D of D ↠ D. By
this embedding, we regard D as a submodule of D. Then we have ND|D = ND and ND =
NSL0,s ⊗ IdD + IdSL0,s ⊗ND under the identification D = SL0,s ⊗L(s)

D.

The GL,s-action on R̂L,s ⊗φ,SL,s
M extends to B+

cris ⊗R̂L,s
(R̂L,s ⊗φ,SL,s

M) ≃ B+
cris ⊗SL0,s

D.
This action is in fact explicitly written as follows:

g(a⊗ x) =
∞∑
i=0

g(a)γi(−log(
g[πs]

[πs]
))⊗N i

D(x) for g ∈ GL,s, a ∈ B+
cris, x ∈ D. (2.4.1)

By this explicit formula, we can obtain an easy relation between ND and τp
s

-action on M̂ as
follows: first we recall that t = −log(τ([π])/[π]) = −log(τps

([πs])/[πs]). By the formula, for any
n ≥ 0 and x ∈ D, an induction on n shows that we have

(τp
s

− 1)n(x) =

∞∑
m=n

(
∑

i1+···in=m,ij≥0

m!

i1! · · · in!
)γm(t)⊗Nm

D (x) ∈ B+
cris ⊗SL0,s D

8
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and in particular we see (τps−1)n

n (x)→ 0 p-adically as n→∞. Hence we can define

log(τp
s

)(x) :=
∞∑

n=1

(−1)n−1 (τ
ps − 1)n

n
(x) ∈ B+

cris ⊗SL0,s
D.

It is not difficult to check the equation

log(τp
s

)(x) = t⊗ND(x). (2.4.2)

2.5 Base changes for Kisin modules

Let M be a free or torsion Kisin module of height ≤ r over SL (resp. over S). We put ML,s =
SL,s⊗SL

M (resp.SL = SL⊗SM) and equipML,s (resp.ML) with a Frobenius by φ = φSL,s
⊗φM

(resp. φ = φSL
⊗ φM). Then it is not difficult to check that ML,s (resp. ML) is a free or torsion

Kisin module of height ≤ r overSL,s (resp. overSL) (here we recall that Es(us) = E(ups

s ) = E(u)).
Hence we obtained natural functors

Modr/SL
→ Modr/SL,s

and Modr/SL,∞
→ Modr/SL,s,∞

(resp. Modr/S → Modr/SL
and Modr/S∞

→ Modr/SL,∞
).

By definition, we immediately see that we have TSL(M) ≃ TSL,s(ML,s) (resp. TS(M)|GL∞
≃

TSL
(ML)). In particular, it follows from Proposition 2.1 (1) that the following holds:

Proposition 2.6. The functor Modr/SL
→ Modr/SL,s

is fully faithful.

2.6 Base changes for (φ, Ĝ)-modules

Let M̂ be a free or torsion (φ, ĜL)-module (resp. (φ, Ĝ)-module) of height ≤ r over SL (resp. over

S). The GL,s action on R̂L ⊗φ,SL M (resp. the GL action on R̂ ⊗φ,S M) extends to R̂L,s ⊗R̂L

(R̂L ⊗φ,SL
M) ≃ R̂L,s ⊗φ,SL,s

ML,s (resp. R̂L ⊗R̂ (R̂ ⊗φ,S M) ≃ R̂L ⊗φ,SL
ML), which factors

through ĜL,s (resp. ĜL). Then it is not difficult to check that ML,s (resp. ML) has a structure of

a (φ, ĜL,s)-module (resp. (φ, ĜL)-module). Hence we obtained natural functors

Modr,ĜL

/SL
→ Mod

r,ĜL,s

/SL,s
and Modr,ĜL

/SL,∞
→ Mod

r,ĜL,s

/SL,s,∞

(resp. Modr,Ĝ/S → Modr,ĜL

/SL
and Modr,Ĝ/S∞

→ Modr,ĜL

/SL,∞
).

By definition, we immediately see that we have T̂L(M̂)|GL,s ≃ T̂L,s(M̂L,s) (resp. T̂ (M̂)|GL ≃
T̂L(M̂L)). Similar to Proposition 2.6, we can prove the following.

Proposition 2.7. The functor Modr,ĜL

/SL
→ Mod

r,ĜL,s

/SL,s
is fully faithful.

The proposition immediately follows from the full faithfulness property of Theorem 2.5 (1) and
the lemma below.

Lemma 2.8. Let K ′ is a finite totally ramified extension of K. Then the restriction functor
from the category of semi-stable Qp-representations of GK into the category of semi-stable Qp-
representations of GK′ is fully faithful.

Proof. Let V and V ′ be semi-stable Qp-representations of GK and let f : V → V ′ be a GK′-
equivariant homomorphism. Considering the morphism of filtered (φ,N)-modules over K ′ corre-
sponding to f , we can check without difficulty that f is in fact a morphism of filtered (φ,N)-
modules over K. This is because K ′ is totally ramified over K0 as same as K. This gives the
desired result.

9
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3 Variants of free (φ, Ĝ)-modules

In this section, we define some variant notions of (φ, Ĝ)-modules. We continue to use same notation
as in the previous section. In particular, p is odd.

3.1 Definitions

We start with some definitions which are our main concern in this and the next section.

Definition 3.1. We define the category Mod
r,ĜL,s

/SL
(resp. M̃od

r,ĜL,s

/SL
) as follows. An object is a

triple M̂ = (M, φM, ĜL,s) where

(1) (M, φM) is a free Kisin module of height ≤ r over SL,

(2) ĜL,s is an R̂L-semilinear ĜL,s-action on R̂L ⊗φ,SL
M (resp. an R̂L,s-semilinear ĜL,s-action

on R̂L,s ⊗φ,SL
M) which induces a continuous GL,s-action on W (FrR)⊗φ,SL

M,

(3) the ĜL,s-action commutes with φR̂L
⊗ φM (resp. φR̂L,s

⊗ φM),

(4) M ⊂ (R̂L ⊗φ,SL
M)HL (resp. M ⊂ (R̂L,s ⊗φ,SL

M)HL),

(5) ĜL,s acts on the W (kL)-module (R̂L ⊗φ,SL M)/I+,L(R̂L ⊗φ,SL M) (resp. (R̂L,s ⊗φ,SL

M)/I+,L,s(R̂L,s ⊗φ,SL M)) trivially.

Morphisms are defined by the obvious way. By replacing “free” of (1) with “torsion”, we define

the category Mod
r,ĜL,s

/SL,∞
(resp. M̃od

r,ĜL,s

/SL,∞
).

Remark 3.2. The category Mod
r,ĜL,s

/SL
is very similar to the category Mod

r,ĜL,s

/SL,s
from Definition

2.3, and so it may give the reader a little confusion. The differences between these categories are
as follows.

Mod
r,ĜL,s

/SL,s
Mod

r,ĜL,s

/SL

the base ring SL,s SL

coefficients of GL,s-actions R̂L,s R̂L

For any object M̂ of Mod
r,ĜL,s

/SL
or Mod

r,ĜL,s

/SL,∞
, we define a Zp[GL,s]-module T̂L,s(M̂) by

T̂L,s(M̂) =

{
HomR̂L,φ(R̂L ⊗φ,SL

M,W (R)) if M is free,

HomR̂L,φ(R̂L ⊗φ,SL M,Qp/Zp ⊗Zp W (R)) if M is torsion.

Here, GL,s acts on T̂L,s(M̂) by (σ.f)(x) = σ(f(σ−1(x))) for σ ∈ GL,s, f ∈ T̂L,s(M̂), x ∈ R̂L⊗φ,SL

M. Similar to the above, for any object M̂ of M̃od
r,ĜL,s

/SL
or M̃od

r,ĜL,s

/SL,∞
, we define a Zp[GL,s]-module

T̂L,s(M̂) by

T̂L,s(M̂) =

{
HomR̂L,s,φ

(R̂L,s ⊗φ,SL M,W (R)) if M is free,

HomR̂L,s,φ
(R̂L,s ⊗φ,SL M,Qp/Zp ⊗Zp W (R)) if M is torsion.

On the other hand, we obtain functors Modr,ĜL

/SL
→ Mod

r,ĜL,s

/SL
→ M̃od

r,ĜL,s

/SL
→ Mod

r,ĜL,s

/SL,s

and Modr,ĜL

/SL,∞
→ Mod

r,ĜL,s

/SL,∞
→ M̃od

r,ĜL,s

/SL,∞
→ Mod

r,ĜL,s

/SL,s,∞
by natural manners and it is read-

ily seen that these functors are compatible with T̂L and T̂L,s. In particular, the functors T̂L,s

10
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on Mod
r,ĜL,s

/SL
and M̃od

r,ĜL,s

/SL
take their values in Repr,stZp

(GL,s) since we have an equivalence of

categories T̂L,s : Mod
r,ĜL,s

/SL,s

∼→ Repr,stZp
(GL,s) by Theorem 2.5.

In the rest of this section, we study free cases. We leave studies for torsion cases to the next
section.

Convention: For simplicity, if L = K, then we often omit the subscript “L” from various notations

(e.g. Mod
r,ĜK,s

/SK
= Modr,Ĝs

/S , M̃od
r,ĜK,s

/SK
= M̃od

r,Ĝs

/S ). Furthermore, if s = 0, we often omit the

subscript “s” from various notations (e.g. Mod
r,ĜL,0

/SL
= Modr,ĜL

/SL
, M̃od

r,ĜL,0

/SL,0
= M̃od

r,ĜL

/SL
).

3.2 The functors Modr,Ĝ
/S → Modr,Ĝs

/S → M̃od
r,Ĝs

/S → Modr,Ĝs

/Ss

Now we consider the functors Modr,Ĝ/S → Modr,Ĝs

/S → M̃od
r,Ĝs

/S → Modr,Ĝs

/Ss
. At first, by Proposition

2.6, we see that the functor M̃od
r,Ĝs

/S → Modr,Ĝs

/Ss
is fully faithful. It follows from this fact and

Theorem 2.5 (1) that the functor T̂s : M̃od
r,Ĝs

/S → Repr,stZp
(Gs) is fully faithful. It is clear that the

functor Modr,Ĝs

/S → M̃od
r,Ĝs

/S is fully faithful and thus so is T̂s : Modr,Ĝs

/S → Repr,stZp
(Gs). Combining

this with Theorem 2.5 (1) and Lemma 2.8, we obtain that the functor Modr,Ĝ/S → Modr,Ĝs

/S is also

fully faithful. Furthermore, we prove the following.

Proposition 3.3. The functor Modr,Ĝs

/S → M̃od
r,Ĝs

/S is an equivalence of categories.

Summary, we obtained the following commutative diagram.

Modr,Ĝ/S
� � //

≀

��
T̂

��

Modr,Ĝs

/S

∼ //
� w

**TTT
TTTT

TTTT
TTTT

TTTT
T

T̂s

**TTT
TTTT

TTTT
TTTT

TTTT
T M̃od

r,Ĝs

/S
� � //
� s

%%KK
KKK

KKK
KKK

T̂s

%%KK
KKK

KKK
KKK

Modr,Ĝs

/Ss

≀

��
T̂s

��
Repr,stZp

(GK) �
� //restriction // Repr,stZp

(Gs).

Remark 3.4. The functor M̃od
r,Ĝs

/S ↪→ Modr,Ĝs

/Ss
may not be possibly essentially surjective. In

fact, under some conditions, there exists a representation of GK which is crystalline over Ks but
not of finite height. For more precise information, see [Li2, Example 4.2.3].

Before starting the proof of Proposition 3.3, we give an explicit formula such as ( 2.4.1) for

an object of M̃od
r,Ĝs

/S . The argument below follows the method of [Li2]. Let M̂ be an object of

M̃od
r,Ĝs

/S . Let M̂s be the image of M̂ for the functor M̃od
r,Ĝs

/S → Modr,Ĝs

/Ss
. Put D = SK0 ⊗φ,S M

and also put Ds = SK0,s⊗φ,SsMs = SK0,s⊗SK0
D. Then Ds has a structure of a Breuil module and

alsoD = Ds/I+SK0,sDs has a structure of a filtered (φ,N)-module corresponding to Qp⊗Zp T̂s(M̂s)
(see subsection 2.4), which is isomorphic to D/I+SK0D as a φ-module over K0. By [Li1, Lemma
7.3.1], we have a unique φ-compatible section D ↪→ D and we regard D as a submodule of D ⊂ Ds

by this section. Then we have D = SK0 ⊗K0 D and Ds = SK0,s ⊗K0 D. By the explicit formula (

2.4.1) for M̂s, we know that

Ĝs(D) ⊂ (K0[[t]] ∩RK0,s)⊗K0 D.

(Note that RK0,s can be regarded as a subring of K0[[t, us]] via Lemma 7.1.2 in [Li1].) Hence,
taking any K0-basis e1, . . . , ed of D, there exist As(t) ∈ Md×d(K0[[t]]) such that τp

s

(e1, · · · , ed) =

11
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(e1, . . . , ed)As(t). Since As(0) = Id, we see that log(As(t)) ∈Md×d(K0[[t]]) is well-defined. On the
other hand, choose g0 ∈ Gs such that χp(g0) ̸= 1, where χp is the p-adic cyclotomic character. Since
g0τ

ps

= (τp
s

)χp(g0)g0, we have As(χp(g0)t) = As(t)
χp(g0) and thus we also have log(As(χp(g0)t)) =

χp(g0)log(As(t)). Since log(As(0)) = log(Id) = 0, we can write log(As(t)) as tB(t) for some
B(t) ∈Md×d(K0[[t]]). Then we have χp(g0)tB(χp(g0)t) = χp(g0)tB(t), that is, B(χp(g0)t) = B(t).
Hence the assumption χp(g0) ̸= 1 implies that B(t) is a constant. Putting Ns = B(t) ∈Md×d(K0),
we obtain

τp
s

(e1, · · · , ed) = (e1, · · · , ed)(
∑
i≥0

N i
sγi(t)).

Now we define ND : D → D by N(e1, · · · , ed) = (e1, · · · , ed)p−sNs and also define ND := NSK0
⊗

IdD+IdSK0
⊗ND. (Note that we have NDφD = pφDND and thus ND is nilpotent.) It is a routine

work to check the following:

g(a⊗ x) =

∞∑
i=0

g(a)γi(−log([ε(g)]))⊗N i
D(x) for g ∈ Gs, a ∈ B+

cris, x ∈ D. (3.2.1)

Since we have
g(f) =

∑
i≥0

γi(−log([ε(g)]))N i
SK0

(f) (3.2.2)

for any g ∈ GK and f ∈ SK0 , we obtain the following explicit formula:

g(a⊗ x) =

∞∑
i=0

g(a)γi(−log([ε(g)]))⊗N i
D(x) for g ∈ Gs, a ∈ B+

cris, x ∈ D. (3.2.3)

In particular, as in subsection 2.4, we can show that

log(τp
s

)(x) = pst⊗ND(x) (3.2.4)

for any x ∈ D.

Proof of Proposition 3.3. We continue to use the above notation. It suffices to prove that the
Gs-action on R̂s ⊗φ,S M preserves R̂ ⊗φ,S M. Note that we have R̂ ⊗φ,S M = (RK0

⊗K0
D) ∩

(W (R)⊗φ,S M), Gs(M) ⊂ R̂s ⊗φ,S M ⊂W (R)⊗φ,S M and Gs(RK0) ⊂ RK0 . Thus it is enough
to show Gs(D) ⊂ RK0 ⊗K0 D. This quickly follows from ( 3.2.1). In fact, we have

g(x) =
∞∑
i=0

γi(−log([ε(g)]))⊗N i
D(x) ∈ RK0 ⊗K0 D for x ∈ D, g ∈ Gs.

3.3 Relations with crystalline representations

We know that Qp ⊗Zp
T̂s(M̂) is semi-stable over Ks for any object M̂ of Modr,Ĝs

/S or M̃od
r,Ĝs

/S .

This subsection is devoted to prove a criterion, for M̂, that describes when Qp⊗Zp
T̂s(M̂) becomes

crystalline.
Following [Fo2, Section 5] we set I [m]B+

cris := {x ∈ B+
cris | φn(x) ∈ FilmB+

cris for all n ≥ 0}. For
any subring A ⊂ B+

cris, we put I
[m]A = A∩I [m]B+

cris. Furthermore, we also put I [m+]A = I [m]A.I+A
(here, I+A is defined in Subsection 2.3). By [Fo2, Proposition 5.1.3] and the proof of [Li2, Lemma
3.2.2], we know that I [m]W (R) is a principal ideal which is generated by φ(t)m.

Now we recall Theorem 2.5 (2): if M is an object of Modr,Ĝs

/Ss
, then Qp⊗Zp T̂s(M̂) is crystalline

if and only if τp
s

(x)− x ∈ up
s(I

[1]W (R)⊗φ,Ss M) for any x ∈M. However, if such M descends to
a Kisin module over S, then we can show the following.

12
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Theorem 3.5. Let M̂ be an object of Modr,Ĝs

/S or M̃od
r,Ĝs

/S . Then the following is equivalent:

(1) Qp ⊗Zp T̂s(M̂) is crystalline,

(2) τp
s

(x)− x ∈ up(I [1]W (R)⊗φ,S M) for any x ∈M,

(3) τp
s

(x)− x ∈ I [1+]W (R)⊗φ,S M for any x ∈M.

Proof. (1)⇒ (2): The proof here mainly follows that of [GLS, Proposition 4.7]. We may suppose M̂

is an object of M̃od
r,Ĝs

/S . Put D = SK0 ⊗φ,S M and D = D/I+SK0D as in the previous subsection.
We fix a φ(S)-basis (ê1, . . . , êd) of M ⊂ D and denote by (e1, . . . , ed) the image of (ê1, . . . , êd)
for the projection D → D. Then (e1, . . . , ed) is a K0-basis of D. As described before the proof
of Proposition 3.3, we regard D as a φ-stable submodule of D, and we have ND : D → D and
ND : DD → DD.

Now we consider a matrix X ∈ GLd×d(SK0) such that (ê1, . . . , êd) = (e1, . . . , ed)X. We define
S̃ = W (k)[[up, uep/p]] as in Section 4 of [GLS], which is a sub W (k)-algebra of Sint

K0
with the

property NSK0
(S̃) ⊂ upS̃. By an easy computation we have U = X−1BX + X−1NSK0

(X).
Here, B ∈ Md×d(K0) and U ∈ Md×d(SK0) are defined by ND(e1, . . . , ed) = (e1, . . . , ed)B and
ND(ê1, . . . , êd) = (ê1, . . . , êd)U . By the same proof as in the former half part of the proof of [GLS,

Proposition 4.7], we obtain X,X−1 ∈ Md×d(S̃[1/p]). On the other hand, let M̂s be the image of

M̂ for the functor M̃od
r,Ĝs

/S → Modr,Ĝs

Ss
. Now we recall that Ds = SK0,s ⊗φ,Ss Ms has a structure

of the Breuil module corresponding to Qp ⊗Zp T̂s(M̂s) Denote by NDs its monodromy operator.

By the formula ( 2.4.2) for M̂s and the formula ( 3.2.4) for M̂, we see that psND = NDs on

D. Therefore, Qp ⊗Zp T̂s(M̂) is crystalline if and only if NDs mod I+SK0,sDs is zero, which is
equivalent to say that ND = (ND mod I+SK0D) is zero, that is, B = 0. Therefore, the latter half
part of the proof [GLS, Proposition 4.7] gives the assertion (2).
(2) ⇒ (3): This is clear.

(3) ⇒ (1): Suppose that (3) holds. We denote by M̂s the image of M̂ for the functor M̃od
r,Ĝs

/S →
Modr,Ĝs

Ss
as above. We claim that, for any x ∈Ms, we have τp

s

(x)− x ∈ I [1+]W (R)⊗φs
Ms. Let

x = a⊗ y ∈Ms = Ss ⊗S M where a ∈ Ss and y ∈M. Then

τp
s

(x)− x = τp
s

(φ(a))(τp
s

(y)− y) + (τp
s

(φ(a))− φ(a))y

and thus it suffices to show τp
s

(φ(a))−φ(a) ∈ I [1+]W (R). This follows from the lemma below and

thus we obtained the claim. By the claim and [Oz2, Theorem 21], we know that Qp⊗Zp T̂s(M̂s) ≃
Qp ⊗Zp T̂s(M̂) is crystalline.

Lemma 3.6. (1) We have I [1]W (R) ∩ uℓB+
cris = uℓI [1]W (R) for ℓ ≥ 0.

(2) We have g(a)− a ∈ uI [1]W (R) for g ∈ G and a ∈ S.

Proof. This is due to [GLS, the proof of Proposition 7] but we write a proof here.
(1) Take x = uℓy ∈ I [1]W (R) with y ∈ B+

cris. By Lemma 3.2.2 of [Li4] we have y ∈W (R). Now we
remark that uz ∈ FilnW (R) with z ∈W (R) implies z ∈ FilnW (R) since u is a unit of B+

dR. Hence
uℓy ∈ I [1]W (R) implies y ∈ I [1]W (R).
(2) By the relation ( 3.2.2), we see that g(a) − a ∈ I [1]W (R). On the other hand, if i > 0,
we can write N i

SK0
(a) = ubi for some bi ∈ S. Thus by the relation ( 3.2.2) again we obtain

g(a)− a ∈ uB+
cris. Then the result follows from (1).

4 Variants of torsion (φ, Ĝ)-modules

In this section, we mainly study full subcategories of M̃od
r,Ĝs

/S∞
defined below and also study rep-

resentations associated with them. As a consequence, we prove theorems in Introduction. We use

13
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same notation as in Section 2 and 3. In particular, p is odd. In below, let vR be the valuation of
R normalized such that vR(π) = 1/e and, for any real number x ≥ 0, we denote by m≥x

R the ideal
of R consisting of elements a with vR(a) ≥ x.

Let J be an ideal of W (R) which satisfies the following conditions:

• J ̸⊂ pW (R),

• J is a principal ideal,

• J is φ-stable and Gs-stable in W (R).

By the above first and second assumptions for J , the image of J under the projection W (R) ↠ R

is of the form m≥cJ
R for some real number cJ ≥ 0.

Definition 4.1. We denote by M̃od
r,Ĝs,J

/S∞
the full subcategory of M̃od

r,Ĝs

/S∞
consisting of objects

M̂ which satisfy the following condition:

τp
s

(x)− x ∈ JW (R)⊗φ,S M for any x ∈M.

Also, we denote by R̃ep
r,Ĝs,J

tor (Gs) the essential image of the functor T̂s : M̃od
r,Ĝs

/S∞
→ Reptor(Gs)

restricted to M̃od
r,Ĝs,J

/S∞
.

By definition, we have M̃od
r,Ĝs,J

/S∞
⊂ M̃od

r,Ĝs,J
′

/S∞
and R̃ep

r,Ĝs,J

tor (Gs) ⊂ R̃ep
r,Ĝs,J

′

tor (Gs) for J ⊂ J ′.

4.1 Full faithfulness for M̃od
r,Ĝs,J

/S∞

For the beginning of a study of M̃od
r,Ĝs,J

/S∞
, we prove the following full faithfulness result.

Proposition 4.2. Let r and r′ be non-negative integers with cJ > pr/(p − 1). Let M̂ and N̂

be objects of M̃od
r,Ĝs,J

/S∞
and M̃od

r′,Ĝs,J

/S∞
, respectively. Then we have Hom(M̂, N̂) = Hom(M,N).

(Here, two “Hom”s are defined by obvious manners.)

In particular, if cJ > pr/(p − 1), then the forgetful functor M̃od
r,Ĝs,J

/S∞
→ Modr/S∞

is fully
faithful.

Proof. A very similar proof of [Oz2, Lemma 7] proceeds, and hence we only give a sketch here. Let

M̂ and N̂ be objects of M̃od
r,Ĝs,J

/S∞
and M̃od

r′,Ĝs,J

/S∞
, respectively. Let f : M→ N be a morphism of

Kisin modules over S. Put f̂ = W (R) ⊗ f : W (R) ⊗φ,S M → W (R) ⊗φ,S M. Choose any lift of

τ ∈ Ĝ to GK ; we denote it also by τ . Since the Ĝs-action for M̂ is continuous, it suffices to prove
that ∆(1⊗ x) = 0 for any x ∈M where ∆ := τp

s ◦ f̂ − f̂ ◦ τps

. We use induction on n such that
pnN = 0.

Suppose n = 1. Since ∆ = (τp
s − 1) ◦ f̂ − f̂ ◦ (τps − 1), we obtain the following:

(0): For any x ∈M, ∆(1⊗ x) ∈ m
≥c(0)
R (R⊗φ,S N)

where c(0) = cJ . Since M is of height ≤ r, we further obtain the following for any i ≥ 1 inductively:

(i): For any x ∈M, ∆(1⊗ x) ∈ m
≥c(i)
R (R⊗φ,S N)

where c(i) = pc(i − 1) − pr = (cJ − pr/(p − 1))pi + pr/(p − 1). The condition cJ > pr/(p − 1)
implies that c(i)→∞ as i→∞ and thus ∆(1⊗ x) = 0.

Suppose n > 1. Consider the exact sequence 0→ Ker(p)→ N
p→ pN→ 0 of φ-modules over S.

It is not difficult to check that N′ := Ker(p) and N′′ := pN are torsion Kisin modules of height ≤ r′

14
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over S (cf. [Li1, Lemma 2.3.1]). Moreover, we can check that N′ and N′′ have natural structures

of objects of M̃od
r′,Ĝs

/S∞
(which are denoted by N̂′ and N̂′′, respectively) such that the sequence

0 → N′ → N
p→ N′′ → 0 induces an exact sequence 0 → N̂′ → N̂ → N̂′′ → 0. By the lemma

below, we know that N̂′ and N̂′′ are in fact contained in M̃od
r′,Ĝs,J

/S∞
. By the induction hypothesis,

we see that ∆(1 ⊗ x) has values in (W (R) ⊗φ,S N′) ∩ (JW (R) ⊗φ,S N). By Lemma 6 of [Oz2]
and the assumption that J ̸⊂ pW (R) is principal, we obtain that ∆(1 ⊗ x) ∈ JW (R) ⊗φ,S N′.
Since pN′ = 0, an analogous argument in the case n = 1 proceeds and we have ∆(1 ⊗ x) = 0 as
desired.

Lemma 4.3. Let 0→ M̂′ → M̂→ M̂′′ → 0 be an exact sequence in M̃od
r,Ĝs

/S∞
. Suppose that M̂ is

an object of M̃od
r,Ĝs,J

/S∞
. Then M̂′ and M̂′′ are also objects of M̃od

r,Ĝs,J

/S∞
.

Proof. The fact M̂′′ ∈ M̃od
r,Ĝs,J

/S∞
is clear. Take any x ∈ M′. Then we have τp

s

(x) − x ∈
(JW (R)⊗φ,SM)∩ (W (R)⊗φ,SM′). Since J is a principal ideal which is not contained in pW (R),

we obtain τp
s

(x)− x ∈ JW (R)⊗φ,S M′ by Lemma 6 of [Oz2]. This implies M̂′ ∈ M̃od
r,Ĝs,J

/S∞
.

4.2 The category R̃ep
r,Ĝs,J

tor (Gs)

In this subsection, we study some categorical properties of R̃ep
r,Ĝs,J

tor (Gs).

Let M̂ be an object of M̃od
r,Ĝs

/S∞
. Following Section 3.2 of [Li2] (note that arguments in [Li2]

is the “free case”), we construct a map ι̂s which connects M̂ and T̂s(M̂) as follows. Observe that
there exists a natural isomorphism of Zp[Gs]-modules

T̂s(M̂) ≃ HomW (R),φ(W (R)⊗φ,S M,Qp/Zp ⊗Zp W (R))

where Gs acts on HomW (R),φ(W (R)⊗φ,SM,Qp/Zp⊗ZpW (R)) by (σ.f)(x) = σ(f(σ−1(x))) for σ ∈
Gs, f ∈ HomW (R),φ(W (R)⊗φ,SM,Qp/Zp⊗ZpW (R)), x ∈W (R)⊗φ,SM = W (R)⊗R̂s

(R̂s⊗φ,SM).

Thus we can define a morphism ι̂′s : W (R)⊗φ,S M→ HomZp(T̂s(M̂),Qp/Zp ⊗Zp W (R)) by

x 7→ (f 7→ f(x)), x ∈W (R)⊗φ,S M, f ∈ T̂s(M̂).

Since T̂s(M̂) ≃ ⊕i∈IZp/p
niZp as Zp-modules, we have a natural isomorphism HomZp(T̂s(M̂),Qp/Zp⊗Zp

W (R)) ≃ W (R)⊗Zp T̂∨
s (M̂) where T̂∨

s (M̂) = HomZp(T̂s(M̂),Qp/Zp) is the dual representation of

T̂s(M̂). Composing this isomorphism with ι̂′s, we obtain the desired map

ι̂s : W (R)⊗φ,S M→W (R)⊗Zp T̂∨
s (M̂).

It follows from a direct calculation that ι̂s is φ-equivariant and Gs-equivariant. If we denote by

M̂s the image of M̂ for the functor M̃od
r,Ĝs

/S∞
→ Modr,Ĝs

/Ss,∞
(cf. Section 3.1), then the above ι̂s is

isomorphic to “ι̂ for M̂s in Section 4.1 of [Oz1]”. Hence Lemma 4.2 (4) in loc. cit. implies that

W (Fr R)⊗ ι̂s : W (Fr R)⊗W (R) (W (R)⊗φ,S M)→W (Fr R)⊗W (R) (W (R)⊗Zp T̂∨
s (M̂))

is bijective.

Proposition 4.4. Let (R) : 0→ T ′ → T → T ′′ → 0 be an exact sequence in Reptor(Gs). Assume

that there exists M̂ ∈ M̃od
r,Ĝs,J

/S∞
such that T̂s(M̂) ≃ T . Then there exists an exact sequence

(M) : 0→ M̂′′ → M̂→ M̂′ → 0 in M̃od
r,Ĝs,J

/S∞
such that T̂s((M)) ≃ (R).

15
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Proof. The same proof as [Oz1, Theorem 4.5], except using not ι̂ in the proof of loc. cit. but

ι̂s as above, gives an exact sequence (M) : 0 → M̂′′ → M̂ → M̂′ → 0 in M̃od
r,Ĝs

/S∞
such that

T̂s((M)) ≃ (R). Therefore, Lemma 4.3, gives the desired result.

Corollary 4.5. The full subcategory R̃ep
r,Ĝs,J

tor (Gs) of Reptor(Gs) is stable under subquotients.

Let L be as in Section 2, that is, the completion of an unramified algebraic extension of K with
residue field kL. We prove the following base change lemma.

Lemma 4.6. Assume that J ⊃ upI [1]W (R) or L is a finite unramified extension of K. If T is an

object of R̃ep
r,Ĝs,J

tor (Gs), then T |GL,s
is an object of R̃ep

r,ĜL,s,J

tor (GL,s).

By an obvious way, we define a functor M̃od
r,Ĝs

/S∞
→ M̃od

r,ĜL,s

/SL,∞
. The underlying Kisin module of

the image of M̂ ∈ M̃od
r,Ĝs

/S∞
for this functor is ML = SL ⊗S M. Lemma 4.6 immediately follows

from the lemma below.

Lemma 4.7. Assume that J ⊃ upI [1]W (R) or L is a finite unramified extension of K. Then the

functor M̃od
r,Ĝs

/S∞
→ M̃od

r,ĜL,s

/SL,∞
induces a functor M̃od

r,Ĝs,J

/S∞
→ M̃od

r,ĜL,s,J

/SL,∞
.

Proof. Let M̂ be an object of M̃od
r,Ĝs

/S∞
and let M̂L be the image of M̂ for the functor M̃od

r,Ĝs

/S∞
→

M̃od
r,ĜL,s

/SL,∞
. In the rest of this proof, to avoid confusions, we denote the image of x ∈ ML in

W (R) ⊗φ,SL
ML by 1 ⊗ x. Recall that we abuse notations by writing τ for the pre-image of

τ ∈ GK,p∞ under the bijection GL,p∞ ≃ GK,p∞ of lemma 2.2. Then τp
s

is a topological generator

of GL,s,p∞ . It suffices to show the following: if M̂ is an object of M̃od
r,Ĝs,J

/S∞
, then we have

τp
s

(1 ⊗ x) − (1 ⊗ x) ∈ JW (R) ⊗φ,SL ML for any x ∈ ML. Now we suppose M̂ ∈ M̃od
r,Ĝs,J

/S∞
.

Take any a ∈ SL and x ∈ M. Note that we have τp
s

(1 ⊗ ax) − (1 ⊗ ax) = τp
s

(φ(a))(τp
s

(1 ⊗

x)− (1⊗ x)) + (τp
s

(φ(a))− φ(a))(1⊗ x) in W (R)⊗φ,SL
ML. Since M̂ is an object of M̃od

r,Ĝs,J

/S∞
,

we have τp
s

(φ(a))(τp
s

(1 ⊗ x) − (1 ⊗ x)) ∈ JW (R) ⊗φ,SL
ML. Therefore, it is enough to show

(τp
s

(φ(a))− φ(a))(1⊗ x) ∈ JW (R)⊗φ,SL
ML. This follows from Lemma 3.6 immediately in the

case where J ⊃ upI [1]W (R). Next we consider the case where L is a finite unramified extension
of K. Let c1, . . . , cℓ ∈ W (kL) be generators of W (kL) as a W (k)-module. Then we have SL =∑ℓ

j=1 cjS and thus we can write a =
∑ℓ

j=1 ajcj for some aj ∈ S. Hence it suffices to show

(τp
s

(φ(aj)) − φ(aj))(1 ⊗ x) ∈ JW (R) ⊗φ,SL
ML but this in fact immediately follows from the

equation (τp
s

(φ(aj))− φ(aj))(1⊗ x) = (τp
s

(1⊗ ajx)− (1⊗ ajx))− (τp
s

(φ(aj))(τ
ps

(1⊗ x)− (1⊗
x))).

Remark 4.8. For a general L, the author does not know whether the statement of the above
lemma is true or not.

4.3 Full faithfulness theorem for R̃ep
r,Ĝs,J

tor (Gs)

Our goal in this subsection is to prove the following full faithfulness theorem, which plays an
important role in our proofs of main theorems.

Theorem 4.9. Assume that J ⊃ upI [1]W (R) or k is algebraically closed. If ps+2/(p− 1) ≥ cJ >

pr/(p− 1), then the restriction functor R̃ep
r,Ĝs,J

tor (Gs)→ Reptor(G∞) is fully faithful.
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First we give a very rough sketch of the theory of maximal models for Kisin modules (cf. [CL1]).
For any M ∈ Modr/S∞

, put M[1/u] = S[1/u] ⊗S M and denote by F r
S(M[1/u]) the (partially)

ordered set (by inclusion) of torsion Kisin modules N of height ≤ r which are contained in M[1/u]
and N[1/u] = M[1/u] as φ-modules. The set F r

S(M[1/u]) has a greatest element (cf. loc. cit.,
Corollary 3.2.6). We denote this element by Maxr(M). We say thatM ismaximal of height ≤ r (or,
maximal for simplicity) if it is the greatest element of F r

S(M[1/u]). The associationM 7→ Maxr(M)
defines a functor “Maxr” from the category Modr/S∞

of torsion Kisin modules of height ≤ r into
the category Maxr/S∞

of maximal Kisin modules of height ≤ r. The category Maxr/S∞
is abelian

(cf. loc. cit., Theorem 3.3.8). Furthermore, the functor TS : Maxr/S∞
→ Reptor(G∞), defined by

TS(M) = HomS,φ(M,Qp/Zp⊗Zp W (R)), is exact and fully faithful (cf. loc. cit., Corollary 3.3.10).
It is not difficult to check that TS(Maxr(M)) is canonically isomorphic to TS(M) as representations
of G∞ for any torsion Kisin module M of height ≤ r.

Definition 4.10 ([CL1, Section 3.6.1]). Let d be a positive integer. Let n = (ni)i∈Z/dZ be a
sequence of non-negative integers of smallest period d. We define a torsion Kisin module M(n) as
below:

• as a k[[u]]-module, M(n) =
⊕

i∈Z/dZ k[[u]]ei;

• for all i ∈ Z/dZ, φ(ei) = uniei+1.

We denote by Srmax the set of sequences n = (ni)i∈Z/dZ of integers 0 ≤ ni ≤ min{er, p− 1} with
smallest period d for some integer d except the constant sequence with value p− 1 (if necessary).
By definition, we see that M(n) is of height ≤ r for any n ∈ Srmax. Putting r0 = max{r′ ∈
Z≥0; e(r

′ − 1) < p − 1}, we also see that M(n) is of height ≤ r0 for any n ∈ Srmax. It is known
that M(n) is maximal for any n ∈ Srmax ([CL1, Proposition 3.6.7]). If k is algebraically closed,
then M(n) is simple in Maxr/S∞

for any n ∈ Srmax (cf. loc. cit., Propositions 3.6.7 and 3.6.12)
and furthermore, the converse holds; any simple object in Maxr/S∞

is of the form M(n) for some
n ∈ Srmax (cf. loc. cit., Propositions 3.6.8 and 3.6.12).

Lemma 4.11. Assume that ps+2/(p− 1) ≥ cJ . Let d be a positive integer. Let n = (ni)i∈Z/dZ be
a sequence of non-negative integers of smallest period d. If M(n) is of height ≤ r, then M(n) has

a structure of an object of M̃od
r,Ĝs,J

/S∞
.

Proof. Choose any (pd − 1)-th root η ∈ R of ε. Since [η] · exp(t/(pd − 1)) is a (pd − 1)-th root of
unity, it is of the form [a] for some a ∈ F×

pd . Replacing ηa−1 with η, we obtain [η] = exp(−t/(pd −
1)) ∈ R̂×. Put xi = [η]mi ∈ R̂× and x̄i = ηmi ∈ (R̂/pR̂)× ⊂ R× for any i ∈ Z/dZ, where
mi =

∑d−1
j=0 ni+jp

d−j . We see that xi − 1 is contained in I+R̂. In the rest of this proof, to avoid

confusions, we denote the image of x ∈M(n) in R̂s ⊗φ,S M(n) ⊂ R ⊗φ,k[[u]] M(n) by 1 ⊗ x. Now

we define a Ĝs-action on R̂s ⊗φ,S M(n) by τp
s

(1 ⊗ ei) := x̄ps

i (1 ⊗ ei) for the basis {ei}i∈Z/dZ of

M(n) as in Definition 4.10. We claim that gφ = φg on R̂s ⊗φ,S M(n) for any g ∈ Gs. For this, it
suffices to check that the equality τp

s

φ(1⊗ ei) = φτp
s

(1⊗ ei) holds for any i. Note that we have

τp
s

φ(1⊗ ei) = τp
s

(upni(1⊗ ei+1)) = x̄ps

i+1(ε
ps

u)pni(1⊗ ei+1)

and
φτp

s

(1⊗ ei) = φ(x̄ps

i (1⊗ ei)) = x̄ps+1

i upni(1⊗ ei+1).

Hence it is enough to check xps+1

i = xps

i+1[ε]
ps+1ni but we can show this equality without difficulty.

In fact, we have equivalences

xps+1

i = xps

i+1[ε]
ps+1ni ⇔ exp(−ps+1mi

t

pd − 1
) = exp(−psmi+1

t

pd − 1
− ps+1nit)

⇔ pmi = mi+1 + (pd+1 − p)ni

17
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and the last equality can be checked immediately by definition of mi.

By the claim above, we see that M(n) has a structure of an object of M̃od
r,Ĝs

/S∞
via this Ĝs-

action; we denote it by M̂(n). It suffices to prove that M̂(n) is in fact an object of M̃od
r,Ĝs,J

/S∞
.

Recall that vR is the valuation of R normalized such that vR(π) = 1/e. Define t̃ = t mod pW (R)
an element of R. We denote by vp the usual p-adic valuation normalized by vp(p) = 1. Note that
we have vR(ε − 1) = p/(p − 1) and vR(̃t) = 1/(p − 1) (here, the latter equation follows from the
relation φ(t) = pE(0)−1E(u)t). Moreover, we have vR(ε

m − 1) = vR(η
m − 1) = pvp(m)+1/(p − 1)

for any m ∈ Zp by [GLS, Lemma 6.6 (1)]. Thus we have

vR(x̄
ps

i − 1) = vR(η
psmi − 1) =

ps+vp(mi)+1

p− 1
≥ ps+2

p− 1
.

Since ps+2/(p− 1) ≥ cJ and the image of J in R is m≥cJ
R , we obtain

τp
s

(1⊗ ei)− (1⊗ ei) ∈ m≥cJ
R R⊗φ,k[[u]] M(n) ≃ JW (R)⊗φ,S M(n).

Finally we have to show that τp
s

(1 ⊗ aei) − (1 ⊗ aei) ∈ m≥cJ
R R ⊗φ,k[[u]] M(n) for any a ∈ k[[u]].

Since τp
s

(1 ⊗ aei) − (1 ⊗ aei) = τp
s

(φ(a))(τp
s

(1 ⊗ ei) − (1 ⊗ ei)) + (τp
s

(φ(a)) − φ(a))(1 ⊗ ei), it

suffices to show τp
s

(φ(a))−φ(a) ∈ m≥cJ
R . Write φ(a) =

∑
i≥0 aiu

pi for some ai ∈ k. Then we have

τp
s

(φ(a))− φ(a) =
∑

i≥1 ai(ε
ps+1i − 1)upi. Since we have

vR((ε
ps+1i − 1)upi) = ps+1vR(ε

i − 1) + vR(u
pi) >

ps+2

p− 1
≥ cJ

for any i ≥ 1, we have done.

Recall that r0 = max{r′ ∈ Z≥0; e(r
′ − 1) < p− 1}. Put r1 := min{r, r0}.

Corollary 4.12. Assume that ps+2/(p − 1) ≥ cJ . If n ∈ Srmax, then M(n) has a structure of an

object of M̃od
r′,Ĝs,J

/S∞
for any r′ ≥ r1. Furthermore, if cJ > pr1/(p− 1), it is uniquely determined.

We denote this object by M̂(n).

Proof. We should remark that M(n) is of height ≤ r1 for any n ∈ Srmax. The uniqueness assertion
follows from Proposition 4.2.

Before the lemma below, we remark that any semi-simple Fp-representation of GK is automatically
tame.

Lemma 4.13. (1) The functor from tamely ramified torsion Zp-representations of GK to torsion
Zp-representations of G∞, obtained by restricting the action of GK to G∞, is fully faithful.
(2) The restriction functor in (1) induces an equivalence between the category of semi-simple
(resp. irreducible) Fp-representations of GK and the category of semi-simple (resp. irreducible)
Fp-representations of G∞.

Proof. (1) The result immediately follows from the fact that GK is topologically generated by G∞
and the wild inertia subgroup of GK .
(2) It suffices to show the assertion for irreducible representations. Denote by RepirrFp

(GK) and

RepirrFp
(G∞) the category of irreducible Fp-representations of GK and G∞, respectively. First we

show that the restriction of the action of GK to G∞ induces a functor RepirrFp
(GK)→ RepirrFp

(G∞).

Let T be an irreducible Fp-representation of GK . Take a G∞-stable submodule T ′ of T . Let Kt be
the maximal tamely ramified extension of K and Ip = Gal(K/Kt) the wild inertia subgroup of GK .
Then Ip acts on T trivially. In particular, T ′ is stable under Ip-action. Since GK is topologically
generated by G∞ and Ip, we know that T ′ is a GK-stable submodule of T . Hence T ′ = 0 or T
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and this implies that T |G∞ is irreducible. Thus the restriction functor RepirrFp
(GK)→ RepirrFp

(G∞)
is well-defined. This is fully faithful by (1). It is enough to show that this functor is essentially
surjective. Let T be an irreducible Fp-representation of G∞. Since G∞ ∩ Ip acts on T trivially,
the G∞-action on T factors through G∞/G∞ ∩ Ip. We define a GK-action on T via natural maps
GK ↠ Gal(Kt/K) ≃ Gal(K∞Kt/K∞) ≃ G∞/G∞ ∩ Ip. The restriction of this GK-action on T to
G∞ coincides with the original G∞-action on T and thus we finish a proof.

Lemma 4.14. Assume that J ⊃ upI [1]W (R) or k is algebraically closed. Let T ∈ Reptor(Gs) and

T ′ ∈ R̃ep
r,Ĝs,J

tor (Gs). Suppose that T is tame, pT = 0 and T |G∞ ≃ TS(M) for some M ∈ Modr/S∞
.

Furthermore, we suppose ps+2/(p−1) ≥ cJ > pr/(p−1). Then all G∞-equivariant homomorphisms
T → T ′ are Gs-equivariant.

Proof. Let L be the completion of the maximal unramified extension Kur of K. By identifying GL

with GKur , we may regard GL as a subgroup of GK . Note that L(s) = K(s)L is the completion
of the maximal unramified extension of K(s), and Gs is topologically generated by GL,s and G∞.
Consider the following commutative diagram:

HomGL,s
(T, T ′) �

� // HomGL,∞(T, T ′)

HomGs(T, T
′)

?�

OO

� � // HomG∞(T, T ′).
?�

OO

Since T ′|GL,s
is contained in R̃ep

r,ĜL,s,J

tor (GL,s) if J ⊃ upI [1]W (R) (cf. Lemma 4.6), the above
diagram allows us to reduce a proof to the case where k is algebraically closed. In the rest of this
proof, we assume that k is algebraically closed. Under this assumption, an Fp-representation of
Gs is tame if and only if it is semi-simple by Maschke’s theorem. Thus we may also assume that
T is irreducible (here, we remark that any subquotient of T is tame and, also remark that the
essential image of TS : Modr/S∞

→ Reptor(G∞) is stable under subquotients in Reptor(G∞)). By
the assumption on T , we have T |G∞ ≃ TS(M) ≃ TS(Maxr(M)) for some M ∈ Modr/S∞

. Since
T |G∞ is irreducible (cf. By Lemma 4.13 (2)) and TS : Maxr/S∞

→ Reptor(G∞) is exact and fully
faithful, we know that Maxr(M) is a simple object in the abelian category Maxr/S∞

. Therefore,
since k is algebraically closed, we have Maxr(M) ≃M(n) for some n ∈ Srmax (cf. [CL1, Propositions

3.6.8 and 3.6.12]). Let M̂(n) be the object of M̃od
r,Ĝs,J

/S∞
as in Corollary 4.12. We recall that

TS(M(n)) is isomorphic to T̂s(M̂(n))|G∞ (see Theorem 2.5 (1)), and hence we have an isomorphism

T |G∞ ≃ T̂s(M̂(n))|G∞ . Here, we note that T and T̂s(M̂(n)) are irreducible as representations of Gs

(cf. [CL1, Theorem 3.6.11]). Applying Lemma 4.13 again, we obtain an isomorphism T ≃ T̂s(M̂(n))

as representations of Gs. On the other hand, we can take M̂′ = (M′, φ, Ĝs) ∈ M̃od
r,Ĝs,J

/S∞
such that

T ′ ≃ T̂s(M̂
′). We consider the following commutative diagram:

HomGs(T, T
′) �
� // HomG∞(T, T ′)

Hom(M̂′, M̂(n))

T̂s

OO

forgetful// HomS,φ(M
′,M(n))

Maxr
// HomS,φ(Maxr(M′),M(n))

TS

OO

Here, Hom(M̂′, M̂(n)) is the set of morphisms M̂′ → M̂(n) in the category M̃od
r,Ĝs,J

/S∞
. The first

arrow in the bottom line is bijective by Proposition 4.2 and so is the second (this follows from the
fact that M(n) is maximal by [CL1, Proposition 3.6.7]). Since the right vertical arrow is bijective,
the top horizontal arrow must be bijective.

Now we are ready to prove Theorem 4.9.
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Proof of Theorem 4.9. At first, we note that the category R̃ep
r,Ĝs,J

tor (Gs) is an exact category in the

sense of Quillen ([Qu, Section 2]) by Corollary 4.5. Hence short exact sequences in R̃ep
r,Ĝs,J

tor (Gs)
give rise to exact sequences of Hom’s and Ext1’s in the usual way. (This property holds for any

exact category.) Let T and T ′ be objects of R̃ep
r,Ĝs,J

tor (Gs). Take any Jordan-Hölder sequence
0 = T0 ⊂ T1 ⊂ · · · ⊂ Tn = T of T in Reptor(Gs). By Corollary 4.5 again, we know that Ti

and Ti/Ti−1 are contained in R̃ep
r,Ĝs,J

tor (Gs) for any i. By Lemma 4.14, if an exact sequence

0 → T ′ → V → Ti/Ti−1 → 0 in R̃ep
r,Ĝs,J

tor (Gs) splits as representations of G∞, then it splits as
a sequence of representations of Gs. This shows that the fourth column in the diagram below is
injective:

0 // HomGs(Ti/Ti−1, T
′) //

��

HomGs(Ti, T
′) //

��

HomGs(Ti−1, T
′) //

��

Ext1(Ti/Ti−1, T
′)

��
0 // HomG∞(Ti/Ti−1, T

′) // HomG∞(Ti, T
′) // HomG∞(Ti−1, T

′) // Ext1G∞(Ti/Ti−1, T
′)

Here, the extension Ext1(Ti/Ti−1, T
′) in the above diagram is taken in the category R̃ep

r,Ĝs,J

tor (Gs).
In addition, it follows from Lemma 4.14 that the first column is an isomorphism. Therefore, we
obtain an implication that, if the third column is an isomorphism, then the second one is an
isomorphism. Hence a dévissage argument works and the desired full faithfulness follows.

4.4 Proof of Theorem 1.2

Now we are ready to prove our main theorems. First we prove Theorem 1.2. Recall that a torsion
Zp-representation T of GK is torsion crystalline with Hodge-Tate weights in [0, r] if it can be
written as the quotient of lattices in some crystalline Qp-representation of GK with Hodge-Tate

weights in [0, r]. Let Repr,cristor (GK) be the category of them. We apply our arguments given in
previous subsections with the following J :

J = upI [1]W (R) = upφ(t)W (R).

Then we have cJ = p/e + p/(p − 1) and thus the inequalities ps+2/(p − 1) ≥ cJ > pr/(p − 1)
are satisfied if e(r − 1) < p − 1. Therefore, Theorem 1.2 is an easy consequence of the following
proposition and Theorem 4.9.

Proposition 4.15. The category Repr,cristor (GK) is a subcategory of R̃ep
r,Ĝs,J

tor (Gs) when s = 0.

Proof. In this proof, we put s = 0. So we omit subscript s in various notation (e.g., Ĝs = Ĝ,

M̃od
r,Ĝs

/S∞
= M̃od

r,Ĝ

/S∞
). Let T be an object of Repr,cristor (GK) and let L ⊂ L′ be lattices in a crystalline

Qp-representation with Hodge-Tate weights in [0, r] such that L′/L ≃ T . By Theorem 2.5 (1), there

exists an injection L̂′ ↪→ L̂ of (φ, Ĝ)-modules over S which corresponds to the injection L ↪→ L′.
Now we put M = L/L′. Since L′/L is killed by a power of p, M is an object of Modr/S∞

. We

equip a Ĝ-action with R̂⊗φ,S M by a natural isomorphism R̂⊗φ,S M ≃ (R̂⊗φ,S L)/(R̂⊗φ,S L′).

Then we see that M has a structure of an object of M̃od
r,Ĝ

/S∞
; denote it by M̂. Moreover, Theorem

3.5 implies that M̂ is in fact contained in M̃od
r,Ĝ,J

/S∞
. By a similar argument to the proof of Lemma

3.1.4 of [CL2], we have an exact sequence 0 → T̂ (L̂) → T̂ (L̂′) → T̂ (M̂) → 0 of representations of
GK which is isomorphic to 0→ L→ L′ → T → 0. This finishes a proof.
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4.5 Proof of Theorem 1.3

We give a proof of Theorem 1.3. If s ≥ n− 1, then we put

J = upI [p
s−n+1]W (R) = upφ(t)p

s−n+1

W (R).

Note that we have cJ = p/e+ps−n+2/(p−1) and thus the inequalities ps+2/(p−1) ≥ cJ > pr/(p−1)
are satisfied if s > n− 1 + logp(r − (p− 1)/e).

Proposition 4.16. Suppose s ≥ n − 1. If T is an object of Repr,cristor (GK) which is killed by pn,

then T |Gs is contained in R̃ep
r,Ĝs,J

tor (Gs).

Proof. Let L be an object of Repr,crisZp
(GK). Take a (φ, Ĝ)-module L̂ over S such that L ≃ T̂ (L̂). It

is known that (τ −1)i(x) ∈ upI [i]W (R)⊗φ,SL for any i ≥ 1 and any x ∈ L (cf. the latter half part

of the proof of [GLS, Proposition 4.7]). Take any x ∈ L. Since (τp
s−1)(x) =

∑ps

i=1

(
ps

i

)
(τ −1)i(x),

we obtain that

(τp
s

− 1)(x) ∈
ps∑
i=1

ps−vp(i)upI [i]W (R)⊗φ,S L. (4.5.1)

Now let T be an object of Repr,cristor (GK) which is killed by pn. Take an exact sequence (R) : 0 →
L1 → L2 → T → 0 of Zp-representations of GK with L1, L2 ∈ Repr,crisZp

(GK). By Theorem 3.1.3

and Lemma 3.1.4 of [CL2], there exists an exact sequence (M) : 0 → L̂2 → L̂1 → M̂ → 0 of
(φ, Ĝ)-modules over S such that T̂ ((M)) ≃ (R). By ( 4.5.1), we see that

(τp
s

− 1)(x) ∈
ps∑
i=1

ps−vp(i)upI [i]W (R)⊗φ,S M

for any x ∈M. Since M is killed by pn and s ≥ n− 1, we have

ps∑
i=1

ps−vp(i)upI [i]W (R)⊗φ,S M =
∑

i=1,...,ps,s−vp(i)<n

ps−vp(i)upI [i]W (R)⊗φ,S M

=

n−1∑
ℓ=0

pℓupI [p
s−ℓ]W (R)⊗φ,S M

⊂ upI [p
s−n+1]W (R)⊗φ,S M.

Therefore, we obtained the desired result.

Proof of Theorem 1.3. By Theorem 1.2, we may suppose logp(r−(p−1)/e) ≥ 0, that is, e(r−1) ≥
p− 1 . Suppose s > n− 1+ logp(r− (p− 1)/e). Note that the condition s ≥ n− 1 is now satisfied.
Let T and T ′ be as in the statement of Theorem 1.3. Let f : T → T ′ be a G∞-equivariant
homomorphism. Denote by L the completion of Kur and identify GL with the inertia subgroup of
GK . We note that T |GL

and T ′|GL
are object of Repr,cristor (GL). By Proposition 4.16, T |GL,s

and

T ′|GL,s
are objects of R̃ep

r,ĜL,s,J

tor (GL,s). Hence we have that f is GL,s-equivariant by Theorem
4.9. Since Gs is topologically generated by GL,s and G∞, we see that f is Gs-equivariant.

4.6 Galois equivariance for torsion semi-stable representations

In this subsection, we prove a Galois equivariance theorem for torsion semi-stable representations.
A torsion Zp-representation T of GK is torsion semi-stable with Hodge-Tate weights in [0, r] if it
can be written as the quotient of lattices in some semi-stable Qp-representation of GK with Hodge-

Tate weights in [0, r]. We denote by Repr,sttor (GK) the category of them. Note that Rep0,sttor (GK) =

Rep0,cristor (GK). Similar to Theorem 1.3, we show the following, which is the main result of this
subsection.
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Theorem 4.17. Suppose that s > n − 1 + logpr. Let T and T ′ be objects of Repr,sttor (GK) which
are killed by pn. Then any G∞-equivariant homomorphism T → T ′ is Gs-equivariant.

If s ≥ n− 1, then we put

J = I [p
s−n+1]W (R) = φ(t)p

s−n+1

W (R).

Then we have cJ = ps−n+2/(p− 1). To show Theorem 4.17, we use similar arguments to those in
the proof of Theorem 1.3.

Proposition 4.18. Suppose s ≥ n−1. If T is an object of Repr,sttor (GK) which is killed by pn, then

T |Gs is contained in R̃ep
r,Ĝs,J

tor (Gs).

Proof. Let L be a lattice in a semi-stableQp-representation ofGK with Hodge-Tate weights in [0, r].

Take a (φ, Ĝ)-module L̂ over S such that L ≃ T̂ (L̂). It is known that (τ−1)i(x) ∈ I [i]W (R)⊗φ,SL
for any i ≥ 1 and any x ∈ L (cf. the proof of [Li3, Proposition 2.4.1]). Thus the same proof proceeds
as that of Proposition 4.16.

Proof of Theorem 4.17. We have the equality Rep0,sttor (GK) = Rep0,cristor (GK) and thus Theorem 1.3
for r = 0 is an easy consequence of Theorem 1.2. Hence we may assume r ≥ 1. The rest of a proof
is similar to the proof of Theorem 1.3.

4.7 Some consequences

In this subsection, we generalize some results proved in Section 3.4 of [Br3]. First of all, we show
the following elementary lemma, which should be well-known to experts, but we include a proof
here for the sake of completeness.

Lemma 4.19. The full subcategories Repr,cristor (GK) and Repr,sttor (GK) of Reptor(GK) are sta-
ble under formation of subquotients, direct sums and the association T 7→ T∨(r). Here T∨ =
HomZp(T,Qp/Zp) is the dual representation of T .

Proof. We prove the statement only for Repr,cristor (GK). Let T ∈ Repr,cristor (GK) be killed by pn

for some n > 0. Assertions for quotients and direct sums are clear. We prove that T∨(r) is

contained in Repr,cristor (GK). There exist lattices L1 ⊂ L2 in some crystalline Qp-representation of
GK and an exact sequence 0 → L1 → L2 → T → 0 of Zp[GK ]-modules. This exact sequence
induces an exact sequence 0 → T → L1/p

nL1 → L2/p
nL2 → T → 0 of finite Zp[GK ]-modules.

By duality, we obtain an exact sequence 0 → T∨ → (L2/p
nL2)

∨ → (L1/p
nL1)

∨ → T∨ → 0 of
finite Zp[GK ]-modules. Then we obtain a GK-equivariant surjection L∨

1 ↠ T∨ by the composite

L∨
1 ↠ L∨

1 /p
nL∨

1
∼→ (L1/p

nL1)
∨ ↠ T∨ of natural maps (here, for any free Zp-representation L of

GK , L∨ := HomZp(L,Zp) stands for the dual of L). Therefore, we obtain L∨
1 (r) ↠ T∨(r) and

thus T∨(r) ∈ Repr,cristor (GK). Finally, we prove the stability assertion for subobjects. Let T ′ be a
GK-stable submodule of T . We have a GK-equivariant surjection f : L∨

1 ↠ T∨ ↠ (T ′)∨. Let L′
2

be a free Zp-representation of GK such that its dual is the kernel of f . We have an exact sequence

0 → (L′
2)

∨ → L∨
1

f→ (T ′)∨ → 0 of Zp[GK ]-modules. Repeating the construction of the surjection
L∨
1 ↠ T∨, we obtain a GK-equivariant surjection L′

2 = (L′
2)

∨∨ ↠ (T ′)∨∨ = T ′ and thus we have

T ′ ∈ Repr,cristor (GK).

In the case where r = 1, the assertion (1) of the following corollary was shown in Theorem 3.4.3
of [Br3].

Corollary 4.20. Let T be an object of Repr,cristor (GK) which is killed by pn for some n > 0. Let T ′

be a G∞-stable subquotient of T .
(1) If e(r − 1) < p− 1, then T ′ is GK-stable (with respect to T ).
(2) If s > n− 1 + logp(r − (p− 1)/e), then T ′ is Gs-stable (with respect to T ).
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Proof. By the duality assertion of Lemma 4.19, it is enough to show the case where T ′ is a
G∞-stable submodule of T . Take any sequence T ′ = T0 ⊂ T1 ⊂ · · · ⊂ Tm = T of torsion G∞-
stable submodules of T such that Ti/Ti−1 is irreducible for any i. As explained in the proof of
Proposition 4.14, the G∞-action on Ti/Ti−1 can be (uniquely) extended to GK . By Theorem

5.3 given in the next section, we know that Ti/Ti−1 is an object of Repr0,cristor (GK) where r0 :=
max{r′ ∈ Z≥0; e(r

′ − 1) < p− 1}.
(1) We may suppose r = r0. The G∞-equivariant projection T = Tm ↠ Tm/Tm−1 is GK-
equivariant by the full faithfulness theorem (= Theorem 1.2). Thus we know that Tm−1 is GK-

stable in T , and also know that Tm−1 is contained in Repr,cristor (GK) by Lemma 4.19. By the same
argument for the G∞-equivariant projection Tm−1 ↠ Tm−1/Tm−2, we know that Tm−2 is GK-

stable in T , and also know that Tm−2 is contained in Repr,cristor (GK). Repeating this argument, we
have that T ′ = T0 is GK-stable in T .
(2) Put J = upI [p

s−n+1]W (R). By (1) we may assume e(r− 1) ≥ p− 1. Under this assumption we
have r ≥ r0 and s > n − 1 + logp(r − (p − 1)/e) ≥ n − 1. In particular, T |Gs and (Ti/Ti−1)|Gs ,

for any i, are contained in R̃ep
r,Ĝs,J

tor (Gs) by Proposition 4.16. First we consider the case where
k is algebraically closed. By Theorem 4.9, the G∞-equivariant projection T = Tm ↠ Tm/Tm−1

is Gs-stable. Thus we know that Tm−1 is Gs-stable in T , and also know that Tm−1 is contained

in R̃ep
r,Ĝs,J

tor (Gs) by Corollary 4.5. By the same argument for the G∞-equivariant projection
Tm−1 ↠ Tm−1/Tm−2, we know that Tm−2 is Gs-stable in T , and also know that Tm−2 is contained

in R̃ep
r,Ĝs,J

tor (Gs). Repeating this argument, we have that T ′ = T0 is Gs-stable in T . Next we
consider the case where k is not necessary algebraically closed. Let L be the completion of the
maximal unramified extension Kur of K, and we identify GL with the inertia subgroup of GK .
Clearly T |GL is contained in Repr,cristor (GL) and T ′ is GL∞ -stable submodule of T . We have already
shown that T ′ is GL,s-stable in T . Since Gs is topologically generated by GL,s and G∞, we conclude
that T ′ is Gs-stable in T .

Now let V be a Qp-representation of GK and T a Zp-lattice of V which is stable under G∞.
Then we know that T is automatically Gs-stable for some s ≥ 0. Indeed we can check this as
follows. Take any GK-stable Zp-lattice T ′ of V which contains T , and take an integer n > 0 with
the property that pnT ′ ⊂ T . Furthermore, we take a finite extension K ′ of K such that GK′ acts
trivially on T ′/pnT ′. Then T/pnT ′ is G∞-stable and also GK′-stable in T ′/pnT ′. If we take any
integer s ≥ 0 with the property K ′ ∩K∞ ⊂ K(s), we know that T/pnT ′ is Gs-stable. This implies
that T is Gs-stable in T ′.

The following corollary, which was shown in Corollary 3.4.4 of [Br3] in the case where r = 1, is
related with the above property.

Corollary 4.21. Let V be a crystalline Qp-representation of GK with Hodge-Tate weights in [0, r]
and T a Zp-submodule of V which is stable under G∞. If e(r − 1) < p− 1, then T is stable under
GK .

Proof. We follow the method of the proof of [Br3, Corollary 3.4.4]. First we suppose that T
is finitely generated over Zp. Take any GK-stable Zp-lattice T ′ of V which contains T . Since

T ′/pnT ′ is contained in Repr,cristor (GK) for any n > 0, Corollary 4.20 (1) implies that any G∞-
stable submodule of T ′/pnT ′ is in fact GK-stable. Thus (T + pnT ′)/pnT ′ is GK-stable in T ′/pnT ′.
Therefore, we obtain g(T ) ⊂

∩
n>0 (T + pnT ′) = T for any g ∈ GK . Next we consider general

case; so T is not necessary finitely generated over Zp. We may suppose T ̸= 0. Denote by Tx

the smallest Zp-submodule of T which contains x and is stable under G∞. Since Tx is contained
in some (GK-stable) Zp-lattice of V , we see that Tx is finitely generated over Zp, and hence it is
stable under GK . Then the relation T =

∪
x∈T Tx gives the desired result.
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5 Crystalline lifts and c-weights

We continue to use the same notation except for that we may allow p = 2. We remark that a
torsion Zp-representation of GK is torsion crystalline with Hodge-Tate weights in [0, r] if there
exists a lattice L in some crystalline Qp-representation of GK with Hodge-Tate weights in [0, r]
and a GK-equivariant surjection f : L ↠ T . We call f a crystalline lift (of T ) of weight ≤ r. Our
interest in this section is to determine the minimum integer r (if it exists) such that T admits
crystalline lifts of weight ≤ r. We call this minimum integer the c-weight of T and denote it by
wc(T ). If T does not have crystalline lifts of weight ≤ r for any integer r, then we define the c-
weight wc(T ) of T to be ∞. For the existence of crystalline lifts of various torsion representations,
for example, it is useful for the readers to refer the Muller’s PhD Thesis [Mu]. Motivated by [CL2,
Question 5.5], we pose the following question.

Question 5.1. For a torsion Zp-representation T of GK , is the c-weight wc(T ) of T finite?
Furthermore, can we calculate wc(T )?

This question strongly related to the weight part of Serre’s conjecture. It is dated to Serre, when
raised Serre’s conjecture over Q, he had already considered the question to lift a 2-dimensional
mod p representation of GQp to a 2-dimensional crystalline representation with “optimal” weights
(which is very close to minimum weights considered here). He obtained some partial results that
contained in Proposition 5.6 and Corollary 5.7. We do not go into details here but the recent
developments of the weight part of Serre’s conjecture (e.g., [GLS]) also contribute (explicitly or
implicitly) partial results in this section.

5.1 General properties of c-weights

We study general properties of c-weights. At first, by ramification estimates, it is known that
c-weights may have infinitely large values ([CL2, Theorem 5.4]); for any c > 0, there exists a
torsion Zp-extension T of GK with wc(T ) > c. In this paper, we mainly consider representations
with “small” c-weights. If c-weights are “small”, they are closely related with tame inertia weights.
Now we recall the definition of tame inertia weights. Let IK be the inertia subgroup of GK . Let
T be a d-dimensional irreducible Fp-representation of IK . Then T is isomorphic to

Fpd(θn1

d,1 · · · θ
nd

d,d)

for one sequence of integers between 0 and p− 1, periodic of period d. Here, θd,1, . . . , θd,d are the
fundamental characters of level d. The integers n1/e, . . . , nd/e are called the tame inertia weights
of T . For any Fp-representation T of GK , the tame inertia weights of T are the tame inertia
weights of the Jordan-Hölder quotients of T |IK .

Let χp : GK → Z×
p be the p-adic cyclotomic character and χ̄p : GK → F×

p the mod p cyclotomic
character. It is well-known that χ̄p|IK = θe1 where θ1 : IK ↠ F×

p is the fundamental character of
level 1. In particular, denoting by Kur the maximal unramified extension of K, we have [Kur(µp) :
Kur] = (p− 1)/gcd(e, p− 1).

Proposition 5.2. (1) Minimum c-weights are invariant under finite unramified extensions of the
base field K.
(2) The c-weight of an unramified torsion Zp-representation of GK is 0.
(3) Put ν = (p− 1)/gcd(e, p− 1). Let s be an integer such that ν(s− 1) < wc(T ) ≤ νs. Then we
have ν(s− 1) < wc(T

∨) ≤ νs. In particular, if (p− 1) | e, then we have wc(T ) = wc(T
∨).

(4) Let T be an Fp-representation of GK and i the largest tame inertia weight of T . Then we have
wc(T ) ≥ i.

Proof. (1) Let T be a torsion Zp-representations of GK . Let K ′ be a finite unramified extension
of K. It suffices to prove that T has crystalline lifts of weight ≤ r if and only if T |GK′ has
crystalline lifts of weight ≤ r. The “only if” assertion is clear and thus it is enough to prove
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the “if” assertion. Let f : L ↠ T |GK′ be a crystalline lift of T |GK′ of weight ≤ r. Since K ′/K

is unramified, IndGK

GK′L is a lattice in some crystalline Qp-representation of GK with Hodge-Tate

weights in [0, r]. Furthermore, the map

IndGK

GK′L = Zp[GK ]⊗Zp[GK′ ] L→ T, σ ⊗ x 7→ σ(f(x))

is a GK-equivariant surjection and hence we have done.
(2) The result follows from (1) immediately.
(3) Taking a finite unramified extensionK ′ ofK with the property [Kur(µp) : K

ur] = [K ′(µp) : K
′],

it follows from Lemma 4.19 that we have ν(s − 1) < wc(T |G′
K
) ≤ νs if and only if we have

ν(s− 1) < wc((T
∨)|G′

K
) ≤ νs. Thus the result follows from the assertion (1).

(4) If ewc(T ) ≥ p−1, then there is nothing to prove, and thus we may suppose that ewc(T ) < p−1.
Let L ↠ T be a crystalline lift of T of weight ≤ wc(T ). Since the tame inertia polygon of L lies on
the Hodge polygon of L ([CS, Théorème 1]), the largest slope of the former polygon is less than or
equal to that of the latter polygon. This implies wc(T ) ≥ i.

Theorem 5.3. Let T be a tamely ramified Fp-representation of GK . Let i be the largest tame
inertia weight of T . Then we have wc(T ) = min{h ∈ Z≥0;h ≥ i}.

Proof. The proof below is essentially due to Caruso and Liu [CL2, Theorem 5.7], but we give a
proof here for the sake of completeness. Put i0 = min{h ∈ Z≥0;h ≥ i}. By Proposition 5.2 (4),
we have wc(T ) ≥ i0. Thus it suffices to show wc(T ) ≤ i0. We note that T |IK is semi-simple.
Any irreducible component T0 of T |IK is of the form Fpd(θn1

d,1 · · · θ
nd

d,d) for one sequence of integers
between 0 and p− 1, periodic of period d. We decompose nj = emj + n′

j by integers 0 ≤ mj ≤ i0
and 0 ≤ n′

j < e. Now we define an integer kj,ℓ by

kj,ℓ :=


e if 1 ≤ ℓ ≤ mj ,
n′
j if ℓ = mj + 1,

0 if ℓ > mj + 1.

Note that we have nj =
∑i0

ℓ=1 kj,ℓ, and also have an IK-equivariant surjection

T0 = Fpd(θn1

d,1 . . . θ
nd

d,d) =
⊗

ℓ=1,...i0,Fpd

Fpd(θ
k1,ℓ

d,1 . . . θ
kd,ℓ

d,d ) ↞
⊗

ℓ=1,...i0,Fp

Fpd(θ
k1,ℓ

d,1 . . . θ
kd,ℓ

d,d ).

By a classical result of Raynaud, each Fpd(θ
k1,ℓ

d,1 · · · θ
kd,ℓ

d,d ) comes from a finite flat group scheme
defined over Kur. We should remark that such a finite flat group scheme is in fact defined over a
finite unramified extension ofK. Since any finite flat group scheme can be embedded in a p-divisible
group, the above observation implies the following: there exist a finite unramified extension K ′

over K, a lattice L in some crystalline Qp-representation of GK′ with Hodge-Tate weights in [0, i0]
and an IK-equivariant surjection f : L ↠ T . The map f induces an IK-equivariant surjection
f̃ : L/pL ↠ T . Since L/pL and T is finite, we see that f̃ is in fact GK′′ -equivariant for some finite
unramified extension K ′′ over K ′, and then so is f . Therefore, we obtain wc(T |GK′′ ) ≤ i0. By
Proposition 5.2 (1), we obtain wc(T ) ≤ i0.

5.2 Rank 2 cases

We give some computations of c-weights related with torsion representations of rank 2. We prove
the following lemma by an almost identical method with [GLS, Lemma 9.4].

Lemma 5.4. Let K be a finite extension of Qp. Let E be a finite extension of Qp with residue
field F. Let i and ν be integers such that ν is divisible by [K(µp) : K]. Suppose that T is an
F-representation of GK which sits in an exact sequence (∗) : 0 → F(i) → T → F → 0 of F-
representations of GK . Then there exist a ramified degree at most 2 extension E′ over E, with
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integer ring OE′ , and an unramified continuous character χ : GK → F× with trivial reduction
such that (∗) is the reduction of some exact sequence 0 → OE′(χχi+ν

p ) → Λ → OE′ → 0 of free
OE′-representations of GK . Furthermore, we have the followings:
(1) If i+ ν = 1 or χ̄1−i

p ̸= 1, then we can take E′ = E and χ = 1.
(2) If i+ ν = 0 and T is unramified, then we can take E′ = E, χ = 1 and Λ to be unramified.

Proof. Suppose i + ν = 1 (resp. χ̄1−i
p ̸= 1). Then the map H1(K,OE(i + ν)) → H1(K,F(i))

arising from the exact sequence 0 → OE(i + ν)
ϖ→ OE(i + ν) → F(i) → 0 is surjective since

H2(K,OE(1)) ≃ OE (resp. H2(K,OE(i + ν)) = 0), where ϖ is a uniformizer of E. Hence we
obtained a proof of (1). The assertion (2) follows immediately from the fact that the natural map
H1(GK/IK ,OE)→ H1(GK/IK ,F) is surjective.

In the rest of this proof, we always assume that i+ν ̸= 1 and χ̄1−i
p = 1. Let L ∈ H1(K,F(i)) be

a 1-cocycle corresponding to (∗). We may suppose L ̸= 0. For any unramified continuous character
χ : GK → F× with trivial reduction, we denote by

δ1χ : H
1(K,F(i))→ H2(K,OE(χχ

i+ν
p ))

(resp. δ0χ : H
0(K,E/OE(χ

−1χ1−i−ν
p ))→ H1(K,F))

the connection map arising from the exact sequence 0 → OE(χχ
i+ν
p )

ϖ→ OE(χχ
i+ν
p ) → F(i) → 0

(resp. 0→ F→ E/OE(χ
−1χ1−i−ν

p )
ϖ→ E/OE(χ

−1χ1−i−ν
p )→ 0) of OE [GK ]-modules. Consider the

following commutative diagram:

H1(K,F(i))

δ1χ
��

× H1(K,F) // E/OE

H2(K,OE(χχ
i+ν
p )) × H0(K,E/OE(χ

−1χ1−i−ν
p ))

δ0χ

OO

// E/OE

Since the above two pairings are perfect, we see that L lifts to H1(GK ,OE(χχ
i+ν
p )) if and only if

H is contained in the image of δ0χ. Here, H ⊂ H1(K,F) is the annihilator of L under the local Tate
pairing H1(K,F(i))×H1(K,F)→ E/OE . Let n ≥ 1 be the largest integer with the property that
χ−1χ1−i−ν

p ≡ 1 mod ϖn (such n exists since χ̄1−i
p = 1 and 1− i−ν ̸= 0). We define αχ : GK → OE

by the relation χ−1χ1−i−ν
p = 1+ϖnαχ, and denote (αχ mod ϖ) : GK → F by ᾱχ. By definition, ᾱχ

is a non-zero element of H1(K,F), and it is not difficult to check that the image of δ0χ is generated
by ᾱχ. If ᾱχ is contained in H for some χ, we are done. Suppose this is not the case.

Suppose that H is not contained in the unramified line in H1(K,F). We claim that we
can choose χ such that ᾱχ is ramified. Let m be the largest integer with the property that
(χ−1χ1−i−ν

p )|IK ≡ 1 mod ϖn. Clearly, we have m ≥ n. If m = n, then we are done and thus
we may assume m > n. Fix a lift g ∈ GK of the Frobenius of K. We see that ᾱχ(g) ̸= 0. Let
χ′ be the unramified character sending g to 1 + ϖnαχ(g). Then χ′ has trivial reduction. After
replacing χ with χχ′, we reduce the case where m = n and thus the claim follows. Suppose ᾱχ

is ramified. Then there exists a unique x̄ ∈ F× such that ᾱχ + ux̄ ∈ H where ux̄ : GK → F is
the unramified character sending g to x̄. Denote by χ′′ the unramified character sending g to
1 +ϖnαχ(g). Replacing χ with χχ′′, we have done.

Suppose that H is contained in the unramified line in H1(K,F) (thus H and the unramified
line coincide with each other). By replacing E with E(

√
ϖ), we may assume that n > 1. Let χ0 be

a character defined by χ times the unramified character sending our fixed g to 1+ϖ. Since n > 1,
we see that χ−1

0 χ1−i−ν
p ≡ 1 mod ϖ and χ−1

0 χ1−i−ν
p ̸≡ 1 mod ϖ2. We define αχ0 : GK → OE by

the relation χ−1
0 χ1−i−ν

p = 1+ϖαχ0 , and denote (αχ0 mod ϖ) : GK → F by ᾱχ0 . By definition and
the assumption n > 1, ᾱχ0 is a non-zero unramified element of H1(K,F), hence it is contained in
H. Therefore, we have done.

Lemma 5.5. Let K be a finite extension of Qp, n ≥ 2 an integer and χ : GK → E× an unramified
character. Then any E-representation of GK which is an extension of E by E(χχn

p ) is crystalline.
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Proof. This is well-known; for example, see the argument of [BK, Section 3].

Proposition 5.6. Suppose p > 2. Let K be a finite unramified extension of Qp. Let T ∈
Reptor(GK) be killed by p and sit in an exact sequence 0 → Fp(i) → T → Fp → 0 of Fp-
representations of GK . Then we have the followings:
(1) If i = 0 and T is unramified, then we have wc(T ) = 0.
(2) If i = 0 and T is not unramified, then we have wc(T ) = p− 1.
(3) If i = 2, . . . , p− 2, then we have wc(T ) = i.

Proof. (1) By Lemma 5.4 (2), we know that T has unramified (and thus crystalline) lift, which
implies wc(T ) = 0.
(2) By Lemmas 5.4 and 5.5, it suffices to prove that T is not torsion crystalline with Hodge-Tate
weights in [0, p−2] if T is not unramified. Let KT be the definition field of the representation T of
GK and put G = Gal(KT /K). Let Gj be the upper numbering j-th ramification subgroup of G (in
the sense of [Se]). Since T is not unramified and killed by p, we see that KT is a totally ramified
degree p extension over K. Thus G1 is the wild inertia subgroup of G and G1 = G, which does not
act on T trivial by the definition of G. Thus we obtain the desired result by ramification estimates
of [Fo1] (or [Ab1]) for torsion crystalline representations with Hodge-Tate weights in [0, p − 2]: if
T is torsion crystalline with Hodge-Tate weights in [0, p − 2], then Gj acts on T trivial for any
j > (p− 2)/(p− 1).
(3) The result follows immediately from Proposition 5.2 (4), Lemmas 5.4 and and 5.5.

Corollary 5.7. Let K be a finite unramified extension of Qp. Then any 2-dimensional Fp-
representation of GK is torsion crystalline with Hodge-Tate weights in [0, 2p− 2].

Proof. If T is irreducible, the result follows from Theorem 5.3. Assume that T is reducible. SinceK
is unramified over Qp, any continuous character GK → F×

p is of the form χχ̄i
p for some unramified

character χ and some integer i. Replacing K with its finite unramified extension, we may assume
that T sits in an exact sequence 0→ Fp(i)→ T → Fp(j)→ 0 of Fp-representations of GK , where
i and j are integers in the range [0, p − 2] (we remark that wc(T ) is invariant under unramified
extensions of K by Proposition 5.2 (1)). It follows from Lemmas 5.4 and 5.5 that wc(T (−j)) ≤ p.
Therefore, we obtain wc(T ) = wc(T (−j) ⊗Fp Fp(j)) ≤ wc(T (−j)) + wc(Fp(j)) ≤ p + (p − 2) =
2p− 2.

Remark 5.8. The author does not know whether 2p − 2 in the statement of Corollary 5.7 is
optimal or not.

5.3 Extensions of Fp by Fp(1) and non-fullness theorems

By Lemma 5.4, we know that the c-weight wc(T ) of an Fp-representation T of GK which sits in
an exact sequence 0 → Fp(1) → T → Fp → 0 of Fp-representations of GK , is less than or equal
to p. Let us calculate wc(T ) for such T more precisely. We should remark that such T is written
as p-torsion points of a Tate curve. Hence we consider torsion representations coming from Tate
curves.

Let vK be the valuation of K normalized such that vK(K×) = Z, and take any q ∈ K× with
vK(q) > 0. Let Eq be the Tate curve over K associated with q and Eq[p

n] the module of pn-torsion
points of Eq for any integer n > 0. It is well-known that there exists an exact sequence

(#) 0→ µpn → Eq[p
n]→ Z/pnZ→ 0

of Zp[GK ]-modules. Here, µpn is the group of pn-th roots of unity in K. Let xn : GK → µpn be
the 1-cocycle defined to be the image of 1 for the connection map H0(K,Z/pnZ) → H1(K,µpn)
arising from the exact sequence (#). Then xn corresponds to q mod (K×)p

n

via the isomorphism
K×/(K×)p

n ≃ H1(K,µpn) of Kummer theory. Thus the exact sequence (#) splits if and only if
q ∈ (K×)p

n

.
First we consider the case p | vK(q) (i.e. peu ramifié case).

27



Yoshiyasu Ozeki Galois equivariance of homomorphisms

Lemma 5.9. Let K be a finite extension of Qp. If p | vK(q), then Eq[p] is the reduction modulo p
of a lattice in some 2-dimensional crystalline Qp-representation with Hodge-Tate weights in [0, 1].

Proof. Since p | vK(q), there exists q′ ∈ K× such that vK(q′ − 1) > 0 and q ≡ q′ mod (K×)p.
Consider the exact sequence 0→ Zp(1)→ L→ Zp → 0 of Zp-representations of GK corresponding
to q′ via the isomorphism H1(K,Zp(1)) ≃ lim←−n

K×/(K×)p
n

of Kummer theory. By the condition

q ≡ q′ mod (K×)p, the reduction modulo p of L is Eq[p]. Thus it suffices to show that V :=
Qp ⊗Zp L is crystalline. Take a system (q′n)n≥0 of p-power roots of q′ in OK such that q′0 = q′

and (q′n+1)
p = q′n for any n ≥ 0. We also take a system (ε′n)n≥0 of p-power roots of unity in OK

such that ε′0 = 1, ε′1 ̸= 1 and (ε′n+1)
p = ε′n for any n ≥ 0. We define a map c : GK → Zp by

g(qn) = (ε′n)
c(g)qn for any n ≥ 0. Then we can choose a basis e, f of V such that g(e) = χp(g)e

and g(f) = c(g)e+ f for any g ∈ GK . Put q′ = (q′n mod p)n≥0 ∈ R, ε′ = (ε′n mod p)n≥0 ∈ R and

t′ = − log[ε′] ∈ Acris. By the condition vK(q′ − 1) > 0, we see ([q′] − 1)e ∈ Fil1W (R) + pW (R)

and thus log[q′] converges in B+
cris. With these notations, we see that the W (k)[1/p]-vector space

(Bcris ⊗Qp V )GK is of dimension 2 with basis e1 := t−1e and e2 := log[q′] · t−1e+ f . Therefore, V
is crystalline.

Corollary 5.10. Suppose that K is a finite extension of Qp, (p − 1) ∤ e and p | vK(q). Then we
have wc(Eq[p]) = 1.

Proof. By the assumption (p − 1) ∤ e, we know that the largest tame inertia weight of Eq[p] is
positive. Thus Proposition 5.2 (4) shows wc(Eq[p]) ≥ 1. The inequality wc(Eq[p]) ≤ 1 follows from
Lemma 5.9.

Next we consider the case p ∤ vK(q) (i.e. très ramifié case).

Proposition 5.11. If e(r − 1) < p − 1 and p ∤ vK(q), then Eq[p
n] is not torsion crystalline with

Hodge-Tate weights in [0, r] for any n > 0.

Remark 5.12. If e = 1, the fact that Eπ[p
n] is not torsion crystalline with Hodge-Tate weights

in [0, p− 1] immediately follows from the theory of ramification bound as below. We may suppose
n = 1. Suppose Eπ[p] is torsion crystalline with Hodge-Tate weights in [0, p− 1]. Then the upper
numbering j-th ramification subgroup Gj

K of GK (in the sense of [Se]) acts trivially on Eπ[p] for
any j > 1 ([Ab1, Section 6, Theorem 3.1]). However, this contradicts the fact that the upper
bound of the ramification of Eπ[p] is 1 + 1/(p− 1).

Proof of Proposition 5.11. We may suppose n = 1. We choose any uniformizer π′ of K. Putting
vK(q) = m, we can write q = (π′)mx with some unit x of the integer ring of K. Since m is
prime to p, we have a decomposition x = ζℓy

m in K× for some ℓ > 0 prime to p and y ∈ K
with vK(y − 1) > 0. Here ζℓ is a (not necessary primitive) ℓ-th root of unity. Since ℓ is prime
to p, we have ζℓ = ζpsℓ for some integer s. We put π = π′y. This is a uniformizer of K. Choose
any p-th root π1 of π and put q1 = ζsℓπ

m
1 ∈ K(π1)

×. Then we have q = qp1 ∈ (K(π1)
×)p and in

particular, the exact sequence (#) (for n = 1) splits as representations of Gal(K/K(π1)). Now
assume that Eq[p] is torsion crystalline with Hodge-Tate weights in [0, r]. Then (#) (for n = 1)
splits as representations of GK by Theorem 1.2. This contradicts the assumption p ∤ vK(q) (and
hence q /∈ (K×)p).

Now we put r′0 = min{r ∈ Z≥0; e(r − 1) ≥ p − 1}. Recall that we have [Kur(µp) : Kur] =
(p− 1)/gcd(e, p− 1).

Lemma 5.13. Let K be a finite extension of Qp. Then Eq[p] is torsion crystalline with Hodge-Tate
weights in [0, 1 + (p− 1)/gcd(e, p− 1)].

Proof. Taking a finite unramified extension K ′ of K such that [Kur(µp) : Kur] = [K ′(µp) : K ′],
we obtain wc((Eq[p])|GK′ ) ≤ 1 + (p − 1)/gcd(e, p − 1) by Lemma 5.4. Thus we have wc(Eq[p]) ≤
1 + (p− 1)/gcd(e, p− 1) by Proposition 5.2 (1).
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Corollary 5.14. Suppose that K is a finite extension of Qp, and also suppose e | (p − 1) or
(p− 1) | e. We further suppose that p ∤ vK(q). Then we have wc(Eq[p]) = r′0.

Proof. We have wc(Eq[p]) ≤ r′0 by Lemma 5.13. In addition, we also have wc(Eq[p]) ≥ r′0 by
Proposition 5.11.

Lemma 5.13 gives some non-fullness results on torsion crystalline representations.

Corollary 5.15. Suppose that K is a finite extension of Qp. If r ≥ 1+ (p− 1)/gcd(e, p− 1), then

the restriction functor Repr,cristor (GK)→ Reptor(G1) is not full.

Proof. Two representations Eπ[p] and Fp(1)⊕Fp are objects of Reprtor(GK) by Lemma 5.13. They
are not isomorphic as representations of GK but isomorphic as representations of G1. Thus the
desired non-fullness follows.

Corollary 5.16. Suppose that any one of the following holds:

• p = 2 and K is a finite extension of Q2 (in this case r′0 = 2);

• K is a finite unramified extension of Qp (in this case r′0 = p);

• K is a finite extension of Qp(µp) (in this case r′0 = 2).

Then the restriction functor Repr,cristor (GK)→ Reptor(G1) is not full.
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