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Non-existence of certain Galois representations with a

uniform tame inertia weight

Yoshiyasu Ozeki∗

Abstract

In this paper, we prove the non-existence of certain semistable Galois representations of a

number field. Our consequence can be applied to some geometric problems. For example, we

prove a special case of a Conjecture of Rasmussen and Tamagawa, related with the finiteness

of the set of isomorphism classes of abelian varieties with constrained prime power torsion.

0 Introduction

Let ℓ be a prime number and K a number field. In this paper, we show the non-existence of certain
semistable ℓ-adic Galois representations of the absolute Galois group GK of K by using remarkable
results on the tame inertia weights due to Caruso. Fix non-negative integers n, r and w, and a prime
number ℓ0 6= ℓ. Put • := (n, ℓ0, r, w). We consider the set RepQℓ

(GK)• of isomorphism classes of
ℓ-adic representations of GK (Definition 2.4 (2)). This set is related with the dual of Hw

ét(XK̄ ,Qℓ),
where X is a proper smooth scheme over K which has everywhere semistable reduction and has
good reduction at a place of K above ℓ0. Our main result in this paper is

Theorem 0.1 (= Theorem 2.11). Suppose that w is odd or w > 2r. Then there exists an explicit

constant C depending only on K,n, ℓ0, r and w such that RepQℓ
(GK)• is empty for any prime

number ℓ > C which does not split in K.

Theorem 0.1 comes from a relation between the tame inertia weights and eigenvalues of Frobenius
action (Proposition 2.8). As a by-product of the above theorem, we obtain some approaches to
algebraic geometry. For example, our result gives an application to a special case of the Rasmussen-
Tamagawa conjecture ([RT]) related with the finiteness of the set of isomorphism classes of abelian
varieties with constrained prime power torsion.

Now we describe an organization of this paper. In Section 1, we recall some results on integral
p-adic Hodge theory given by Caruso [Ca]. In Section 2, we give explicit values of the tame inertia
weights for certain semistable Galois representations and prove our non-existence theorem. In
Section 3, we apply our consequence for some geometric problems.

Acknowledgements. The author wish to thank Shin Hattori for bringing the work of Xavier
Caruso. The author would like to express his sincere gratitude to Akio Tamagawa and Seidai
Yasuda who pointed out the mistake of the previous version of the proof for the main theorem and
gave him useful advise.

Notation:

For a prime number ℓ and a topological groupG, an ℓ-adic representation of G (resp. Fℓ-representation)
is a finite-dimensional Qℓ-vector space V (resp. Fℓ-vector space V ) equipped with a continuous
and linear G-action. For such a representation V , we denote by V ∨ the dual of V , that is,
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V ∨ := HomQℓ
(V,Qℓ) (resp. V

∨ := HomFℓ
(V,Fℓ)) with the G-action defined by g.f(v) := f(g−1.v)

for f ∈ V ∨, g ∈ G and v ∈ V . For any scheme X over a commutative ring R and an R-algebra R′,
we denote the fiber product X ×Spec(R) Spec(R

′) by XR′ .

1 Tame inertia weights of semistable representations

In this section, we recall the definition of the tame inertia weights (cf. [Se], Section 1) and Caruso’s
work for the tame inertia weights of a residual representation of semistable Galois representations
(cf. [Ca]). Let Kλ be a complete discrete valuation field of characteristic zero with perfect residue
field k of positive characteristic ℓ and GKλ

its absolute Galois groups. Let e be the absolute
ramification index of Kλ. The tame inertia weights of an ℓ-adic semistable Galois representation
of GKλ

with Hodge-Tate weights in [0, r] have remarkable properties if er < ℓ − 1. For example,
Serre conjectured in [Se] that the tame inertia weights on the Jordan-Hölder quotients of a residual
representation of the r-th ℓ-adic étale cohomology group Hr

ét(XK̄λ
,Qℓ) of a proper smooth scheme

X overKλ are between 0 and er. Caruso proved this Serre’s conjecture in [Ca] by using the integral
p-adic Hodge theory. As an another example, in [CS], Caruso and Savitt proposed the tame inertia
polygon of an ℓ-adic semistable Galois representation of GKλ

, and they showed that this polygon
has good relations with the Hodge polygon and the Newton polygon introduced in [Fo].

1.1 Tame inertia weights

We denote by Iλ the inertia subgroup of GKλ
, Iw its wild inertia subgroup and It := Iλ/Iw the tame

inertia group. Let V be an h-dimensional irreducible Fℓ-representation of Iλ and fix a separable
closure F̄ℓ of Fℓ. By the irreducibility, the action of Iλ on V factors through It and thus we can
regard V as a representation of It. Applying Schur’s lemma, we see that E := EndIt(V ) is the
finite field of order ℓh. Moreover, the representation V inherits a structure of a 1-dimensional E-
representation of It by the natural manner. This representation is given by a character ρ : It → E×.

Choose any isomorphism f : E → Fℓh and consider the composition ρf : It
ρ
→ E× f

→ F×

ℓh
:

It ρ
//

))S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

ρf

++
E×

_�

��

f

≃
// F×

ℓh
.

GL(V ) = EndFℓ
(V )×

Denote by µℓh−1(K̄λ) the set of (ℓh − 1)-st roots of unity in a separable closure K̄λ of Kλ.
Consider an isomorphism µℓh−1(K̄λ) ≃ F×

ℓh
coming from a surjection OK̄λ

→ F̄ℓ, where OK̄λ
is the

integer ring of K̄λ, and take the following fundamental character of level h:

θh : It → µq−1(K̄λ) ≃ F×

ℓh
.

σ 7→
ησ

η

Here η is a (ℓh − 1)-st root of a uniformizer of Kλ. It is easy to check that θ1+ℓ+···+ℓh−1

h = θ1,

θℓ
h−1

h = 1 and, with respect to h embeddings Fℓh →֒ F̄ℓ, all the fundamental characters are given
by θh,0(:= θh), θh,1, θh,2, . . . , θh,h−1, where θh,i = θℓh,i−1 for 0 ≤ i ≤ h − 1 and θh,0 = θℓh,h−1. It
is known that θe1 coincides with the mod ℓ cyclotomic character ([Se], Section 1.8, Proposition 8).
Since It is pro-cyclic and Im(θh) = F×

ℓh
, there exists an integer nf ∈ {0, 1, . . . , ℓh − 2} such that

ρf = θ
nf

h . If we decompose nf = n0 + n1ℓ+ n2ℓ
2 + · · ·+ nh−1ℓ

h−1 with integers 0 ≤ ni ≤ ℓ− 1 for
any i, then we can see that the set {n0, n1, n2, . . . , nh−1} is independent of the choice of f .

Definition 1.1. We call these numbers n0, n1, n2, . . . , nh−1 the tame inertia weights of V . In
general, for any Fℓ-representation V of Iλ, the tame inertia weights of V are the numbers of the
tame inertia weights of all the Jordan-Hölder quotients of V .
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Example 1.2. Suppose that k is algebraically closed. Let E be an elliptic curve over Kλ with
semistable reduction. If E has supersingular reduction, assume e = 1. Then the tame inertia
weights of E[ℓ] are 0 and e (cf. [Se], Section 1, Proposition 11 and 12).

Definition 1.3. Let V be an ℓ-adic representation of GKλ
. The tame inertia weights of V is the

tame inertia weights of a residual representation of V |Iλ .

The above definition is independent of the choice of a residual representation of V by the
Brauer-Nesbitt theorem.

Definition 1.4. Let w be an integer with 0 ≤ w < ℓ − 1 and V be an n-dimensional ℓ-adic
representation of GKλ

. Denote by w1 ≤ w2 ≤ · · · ≤ wn all the tame inertia weights of V . We say
that V is of uniform tame inertia weight w if w1 = w2 = · · · = wn = w.

1.2 Caruso’s Result

Fix an integer r ≥ 0 such that er < ℓ − 1. We use the ring S and the category Modr,Φ,N
/S∞

of

finite torsion S-modules equipped with some additional structures as in Section 1 of [Ca] without

giving the precise definitions. The category Modr,Φ,N
/S∞

is just the category Mr given in op.cit. The

category Modr,Φ,N
/S∞

is an abelian category (cf. [Ca], Section 3.5). We denote by RepstZℓ
(GKλ

)r (resp.

RepZℓ
(GKλ

)tors) the category of GKλ
-stable Zℓ-lattices of semistable ℓ-adic representations of GKλ

with Hodge-Tate weights in [0, r] (resp. the category of finite torsion Zℓ-modules with a continuous

GKλ
-action). Denote by Modr,Φ,N

/S the category of strongly divisible modules over S of weight r

(cf. [Ca], Section 7.1). There exist the following two contravariant functors

Tst : Modr,Φ,N
/S → RepstZℓ

(GKλ
)r

and
Tst : Modr,Φ,N

/S∞

→ RepZℓ
(GKλ

)tors

satisfying good properties. For example,

(1) (cf. [Ca], Theorem 1.0.5) The 1st Tst is an isomorphism,

(2) (cf. [Ca], Theorem 1.0.4) The 2nd Tst is exact and fully faithful, and its essential image is stable
under taking sub-objects and quotient objects.

If M ∈ Modr,Φ,N
/S∞

is isomorphic to S/ℓn1S ⊕ S/ℓn2S ⊕ · · · ⊕ S/ℓndS as S-modules, then Tst(M) is

isomorphic to Zℓ/ℓ
n1Zℓ ⊕ Zℓ/ℓ

n2Zℓ ⊕ · · · ⊕ Zℓ/ℓ
ndZℓ as Zℓ-modules ([Ca], Proposition 6.4.5). By

the definition of strongly divisible modules, we see that, for any strongly divisible module M̃ and
n ≥ 0, the quotient M̃/ℓnM̃ is an object of Modr,Φ,N

/S∞

and the following diagram is commutative:

Modr,Φ,N
/S

Tst
//

mod ℓn

��

Repst
Zℓ
(GKλ

)r

mod ℓn

��

Modr,Φ,N
/S∞

Tst
// RepZℓ

(GKλ
)tors.

If k is algebraically closed and M ∈ Modr,Φ,N
/S∞

is a simple object, then Tst(M) is an irreducible

Fℓ-representation of GKλ
and its tame inertia weights are between 0 and er ([Ca], Theorem 1.0.3).

By using the above facts, we can show the following important theorem:

Theorem 1.5 ([Ca]). Let Tℓ ∈ RepstZℓ
(GKλ

)r and T̄ℓ = Tℓ/ℓTℓ its residual representation. Then

the tame inertia weights of T̄ℓ|Iλ are between 0 and er.
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Proof. We may assume that k is algebraically closed. Choose the strongly divisible module M̃
corresponding to Tℓ via Tst. ThenM := M̃/ℓM̃ is contained in Modr,Φ,N

/S∞

and Tst(M) is isomorphic

to T̄ℓ. We identify Tst(M) with T̄ℓ. Since the essential image of Tst : Modr,Φ,N
/S∞

→ RepZℓ
(GKλ

)tors

is stable under sub-quotient, any Jordan-Hölder quotient of T̄ℓ is isomorphic to the representation
of the form Tst(M

′) for some M′ ∈ Modr,Φ,N
/S∞

. The object M′ is simple because the functor Tst is

exact and fully faithful. Therefore, we obtain the desired result.

Remark 1.6. In fact, we do not need the assumption er < ℓ − 1 for Theorem 1.5 (the case
er ≥ ℓ− 1 is trivial).

2 Non-existence theorems

In this section, we calculate the tame inertia weights of ℓ-adic representations with certain geometric
and filtration conditions for a prime number ℓ large enough. As a result, we show the non-existence
theorems of certain Galois representations.

Let K be a finite extension over Q and fix an algebraic closure K̄ of K. We put GK :=
Gal(K̄/K), the absolute Galois group of K. Let ℓ be a prime number. For any finite place v of
K, we denote by Gv and Iv the decomposition group and its inertia subgroup at v, respectively.
Furthermore, we denote by ev the absolute ramification index at v, qv the order of the residue field
of v and Frv the arithmetic Frobenius at v. For a place λ of K above ℓ, we identify Gλ with the
absolute Galois group GKλ

of a λ-adic completion Kλ of K via a fixed embedding K̄ →֒ K̄λ, where
K̄λ is an algebraic closure of Kλ.

Definition 2.1. Let λ be a place of K above ℓ and V an ℓ-adic representation of GK . The tame

inertia weights of V at λ is the tame inertia weights of V |Gλ
(cf. Definition 1.3). For an integer

0 ≤ w < ℓ− 1, we say that V is of uniform tame inertia weight w at λ if V |Gλ
is of uniform tame

inertia weight w (cf. Definition 1.4).

2.1 Geometric and filtration conditions

We define the set of representations we mainly consider throughout this section. We fix non-
negative integers n, r, w and w̄, and a prime number ℓ0 different from ℓ. Let χℓ be the mod ℓ
cyclotomic character. Take an n-dimensional ℓ-adic representation V of GK and denote by V̄ its
residual representation. Now we consider the following geometric conditions (G-1), (G-2), (G-2)′

and (G-3), and filtration conditions (F-1) and (F-2):

(G-1) For any place λ of K above ℓ, the representation V |Gλ
is semistable and has Hodge-Tate

weights in [0, r].

(G-2) For some places λ0 of K above ℓ0, the representation V is unramified at λ0 and the charac-
teristic polynomial det(T −Frλ0

|V ) has rational integer coefficients. Furthermore, there exists non-
negative integersw1(V ), w2(V ), . . . , wn(V ) such that w1(V )+w2(V )+· · ·+wn(V ) ≤ w̄ and the roots

of the above characteristic polynomial have complex absolute values q
w1(V )/2
λ0

, q
w2(V )/2
λ0

, . . . , q
wn(V )/2
λ0

for every embedding Q̄ℓ into C.

(G-2)′ The condition (G-2) holds and w1(V ) = w2(V ) = · · · = wn(V ) = w.

(G-3) For any finite place λ of K not above ℓ, the action of Iλ on V̄ is unipotent.

(F-1) The representation V̄ has a filtration of GK-modules

{0} = V̄0 ⊂ V̄1 ⊂ · · · ⊂ V̄n−1 ⊂ V̄n = V̄

such that V̄k has dimension k for each 1 ≤ k ≤ n.
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(F-2) The condition (F-1) holds. Moreover, for each 1 ≤ k ≤ n, the GK-action on the quotient
V̄k/V̄k−1 is given by g.v̄ = χak

ℓ (g)v̄ for some 0 ≤ ak ≤ ℓ− 2.

If an ℓ-adic representation V satisfies the condition (F-1), then we say that V is of residually

Borel. We note that it is independent of the choice of a residual representation V̄ of V whether the
filtration conditions (F-1) and (F-2) hold or not. If n = 2, then (F-1) is equivalent to the condition
that V̄ is reducible.

Example 2.2. Suppose w ≤ r. Let X be a proper smooth scheme over K which has every-
where semistable reduction and has good reduction at some places of K above ℓ0. Then the dual
Hw

ét(XK̄ ,Qℓ)
∨ of the w-th ℓ-adic étale cohomology group of X satisfies the geometric conditions

(G-1), (G-2)′ and (G-3).

Proposition 2.3. Let X be a proper smooth scheme over K and w an odd integer. Denote by

SX the finite set of prime numbers p such that X has bad reduction at some place of K above p.
Then, there exists a finite extension L of K such that, for any ℓ /∈ SX , the ℓ-adic representation

Hw
ét(XL̄,Qℓ) of GL is semistable at all finite places.

In particular, we have the following: Let X and L be as above. Fix a prime number ℓ0 /∈ SX and
take a prime number ℓ such that ℓ 6= ℓ0 and ℓ /∈ SX . Then Hw

ét(XL̄,Qℓ)
∨ satisfies (G-1), (G-2)

′

and (G-3) as a representation of GL.

Proof of Proposition 2.3. If we admit the semistable conjecture for X , then we can prove this
proposition easily. However, we can obtain the desired result without using the semistable con-
jecture as below: For any algebraic extension K ′ of K, denote by SX,K′ the set of places of K ′

which is above one of the prime numbers in SX . Take any place v ∈ SX,K . By de Jong’s alteration
theorem ([dJ], Theorem 6.5), there exist a finite extension K ′

v of Kv, a proper strictly semistable
scheme Yv over OK′

v
and a morphism Yv → X compatible with Spec(OK′

v
) → Spec(OKv

) such
that the morphism f : Yv → XOK′

v
induced by the above morphism is an étale alteration (see also

[Ts], Theorem A3). Here X is a proper flat model of XKv
over OKv

. Such a model always exists
by the compactification theorem of Nagata. Take any prime number ℓ′. If we denote by f∗ and f∗

the induced homomorphisms Hw
ét(Y

v
K̄′

v

,Qℓ′) → Hw
ét(XK̄v

,Qℓ′) and H
w
ét(XK̄v

,Qℓ′) → Hw
ét(Y

v
K̄′

v

,Qℓ′)

respectively, then the map f∗ ◦ f
∗ is the multiplication by deg(f). In particular, the map f∗ is

injective. Thus we may consider that Hw
ét(XK̄′

v
,Qℓ′) is a sub-representation of Hw

ét(Y
v
K̄′

v

,Qℓ′). Now

take a finite extension K(v) of K and a place w(v) of K(v) above v such that K(v)w(v) = K ′
v,

where K(v)w(v) is the w(v)-adic completion of K(v). The existence of K(v) and w(v) is an easy
consequence of [La], Chapter II, Section 2, Proposition 4. We denote by L the Galois closure, over
K, of the field generated by all K(v). Here v runs through all the places of K in SX,K . Now we
take a prime number ℓ /∈ SX . It suffices to show that the ℓ-adic representation Hw

ét(XL̄,Qℓ) of GL

is everywhere semistable. Take any finite place wL of L. If wL /∈ SX,L, then X has good reduction
at wL and in particular Hw

ét(XL̄,Qℓ) is semistable at wL. Suppose wL ∈ SX,L. We denote the
restriction of wL to K by v. Take Yv and the place w(v) of K(v) as above. Furthermore, we take
a place w′

L of L above w(v). Since the action of Iw′

L
is unipotent on Hw

ét(Y
v
L̄
,Qℓ), we have that the

action of Iw′

L
on Hw

ét(XK̄ ,Qℓ) is unipotent, too. Since the inertia subgroup Iw′

L
conjugates with

IwL
by the element of GK , we see that the action of IwL

on Hw
ét(XK̄ ,Qℓ) is also unipotent, that

is, Hw
ét(XL̄,Qℓ) is semistable at wL. This finishes the proof.

Definition 2.4. Put ◦ := (n, ℓ0, r, w̄) and • := (n, ℓ0, r, w).
(1) We denote by RepQℓ

(GK)◦cycl (resp. RepQℓ
(GK)•cycl) the set of isomorphism classes of n-

dimensional ℓ-adic representations V of GK which satisfy (G-1), (G-2) and (F-2) (resp. (G-1),
(G-2)′ and (F-2)).
(2) We denote by RepQℓ

(GK)◦ (resp. RepQℓ
(GK)• ) the set of isomorphism classes of n-dimensional

ℓ-adic representations V of GK which satisfy (G-1), (G-2), (G-3) and (F-1) (resp. (G-1), (G-2)′,
(G-3) and (F-1)).
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Clearly, we have

RepQℓ
(GK)◦cycl ⊂ RepQℓ

(GK)◦

∪ ∪

RepQℓ
(GK)•cycl ⊂ RepQℓ

(GK)•,

where • = (n, ℓ0, r, w) and ◦ = (n, ℓ0, r, w̄) for any nw ≤ w̄.
Our main concern in this section is the following question:

Question 2.5. Does there exist a constant C which depends on K and • (or ◦ ) such that the sets

defined in Definition 2.4 are empty for ℓ > C? If the answer is positive, how can we evaluate such

a constant C?

Remark 2.6 (Trivial case). Take a representation V ∈ RepQℓ
(GK)•. By (G-2), the complex

absolute value of the determinant of Frv0 acting on V is q
nw/2
v0 and this must be an integer. From

this fact, if n and w are odd and the extension K/Q is Galois of an odd degree, then RepQℓ
(GK)•

is empty for any prime ℓ 6= ℓ0. As this example, there exist lots of pairs of (K, •) (resp. (K, ◦))
such that RepQℓ

(GK)• (resp. RepQℓ
(GK)◦) is empty for a prime ℓ (large enough). We hope to

know “non-trivial cases” of the emptiness of the sets given in Definition 2.4.

2.2 Main results

We denote by d, dK and h+K the extension degree of K over Q, the discriminant of K and the
narrow class number of K, respectively. Put M := max{nr, w̄/2} and

cn :=

{ ( n
n/2

)

if n is even,
( n
(n−1)/2

)

if n is odd.

Clearly this is equal to max{( n
m ) | 0 ≤ m ≤ n}. Now we put

ε1 := dM, ε2 := dε1, ε′1 := dh+KM, ε′2 := dε′1,

C1 := C1(d, •) := 2cnℓ
ε1
0 , C2 := C2(d, •) := 2cnℓ

ε2
0 ,

C′
1 := C′

1(K, •) := 2cnℓ
ε′1
0 , C′

2 := C′
2(K, •) := 2cnℓ

ε′2
0 .

The following two propositions play an essential role for our main results.

Proposition 2.7. Any ℓ-adic representation V in the set RepQℓ
(GK)◦cycl has tame inertia weights

eλw1(V )/2, eλw2(V )/2, . . . , eλwn(V )/2 at any place λ of K above ℓ under any one of the following

situations:

(a) ℓ ∤ dK and ℓ > C1;

(b) ℓ > C2.

Proposition 2.8. Suppose that ℓ is a prime number which does not split in K. Any ℓ-adic repre-

sentation V in the set RepQℓ
(GK)◦ has tame inertia weights eλw1(V )/2, eλw2(V )/2, . . . , eλwn(V )/2

at the unique place λ of K above ℓ under any one of the following situations:

(a) ℓ ∤ dK and ℓ > C′
1;

(b) ℓ > C′
2.

To prove these propositions, we need the following lemma:

Lemma 2.9. Let s, t1, t2, . . . , tn and u be non-negative integers such that 0 ≤ s ≤ u and 0 ≤
tk ≤ ru for all k. Let V be an n-dimensional ℓ-adic representation of GK which satisfies (G-

2). Decompose det(T − Frλ0
|V ) =

∏

1≤k≤n(T − αk). If the set {αs
1, α

s
2, . . . , α

s
n} coincides with

the set {qt1λ0
, qt2λ0

, . . . , qtnλ0
} in F̄ℓ and ℓ > 2cnℓ

dMu
0 , then {αs

1, α
s
2, . . . , α

s
n} = {qt1λ0

, qt2λ0
, . . . , qtnλ0

}. In

particular, we obtain {sw1(V )/2, sw2(V )/2, . . . , swn(V )/2} = {t1, t2, . . . , tn}.
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Proof. We basically follow the proof by the method which has been pointed out by Rasmussen and
Tamagawa. Let us denote by Sm(x1, x2, . . . , xn) the elementary symmetric polynomial of degree
m with n-indeterminates x1, x2, . . . , xn for 0 ≤ m ≤ n, that is,

∏

1≤k≤n

(T − xk) =
∑

0≤m≤n

Sm(x1, x2, . . . , xn)T
n−m.

For any 0 ≤ m ≤ n, the condition (G-2) implies that Sm(α1, α2, . . . , αn) is a rational integer for
all m and hence Sm(αs

1, α
s
2, . . . , α

s
n), which is a symmetric polynomial of α1, α2, . . . , αn, is also a

rational integer. On the other hand, we have

|Sm(αs
1, α

s
2, . . . , α

s
n)| ≤

∑

1≤s1<···<sm≤n

(q
(ws1

(V )+···+wsm (V ))/2

λ0
)s

≤
∑

1≤s1<···<sm≤n

(q
w̄/2
λ0

)s = ( n
m ) (q

w̄/2
λ0

)s ≤ cnℓ
dMu
0

and

|Sm(qt1λ0
, qt2λ0

, . . . , qtnλ0
)| ≤

∑

1≤s1<···<sm≤n

q
ts1+···+tsm
λ0

≤
∑

1≤s1<···<sm≤n

qnruλ0
= ( n

m ) qnruλ0
≤ cnℓ

dMu
0

by (G-2), where |·| is the complex absolute value. Since we have Sm(αs
1, α

s
2, . . . , α

s
n) ≡ Sm(qt1λ0

, qt2λ0
, . . . , qtnλ0

)

mod ℓ and ℓ > 2cnℓ
dMu
0 , we obtain

Sm(αs
1, α

s
2, . . . , α

s
n) = Sm(qt1λ0

, qt2λ0
, . . . , qtnλ0

)

for all m. This implies

∏

1≤k≤n

(T − αs
k) =

∑

0≤m≤n

Sm(αs
1, α

s
2, . . . , α

s
n)T

n−m

=
∑

0≤m≤n

Sm(qt1λ0
, qt2λ0

, . . . , qtnλ0
)T n−m

=
∏

1≤k≤n

(T − qtkλ0
)

and thus we finish the proof.

Now we start the proofs of Proposition 2.7 and 2.8. Take any representation V which is an ele-
ment of the set RepQℓ

(GK)◦ and denote its residual representation by V̄ . Then the representation
V̄ has a filtration of GK-modules

{0} = V̄0 ⊂ V̄1 ⊂ · · · ⊂ V̄n−1 ⊂ V̄n = V̄

such that V̄k has dimension k for each 1 ≤ k ≤ n. We denote by ψk : GK → F×
ℓ the character

corresponding to the action of GK on the quotient V̄k/V̄k−1 for each 1 ≤ k ≤ n. Take any place λ

of K above ℓ. By Theorem 1.5, we obtain ψk = θ
bk,λ

1,λ on Iλ for some integer 0 ≤ bk,λ ≤ eλr, where

θ1,λ : Iλ → F×
ℓ is the fundamental character of level one at λ. Take a place λ0 of K above ℓ0 as in

(G-2) and decompose det(T − Frλ0
|V ) =

∏

k(T − αk). Then, we see

{α1, α2, . . . , αn} = {ψ1(Frλ0
), ψ2(Frλ0

), . . . , ψn(Frλ0
)} (∗)

in F̄ℓ.
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Proof of Proposition 2.7. Assume that V is an element of the set RepQℓ
(GK)◦cycl. Then we may

suppose ψk = χak

ℓ for any k by (F-2). The relation χak

ℓ = θ
bk,λ

1,λ on Iλ implies θeλak

1,λ = θ
bk,λ

1,λ and thus

eλak ≡ bk,λ mod ℓ − 1. Hence we have χeλak

ℓ = χ
bk,λ

ℓ on GK and thus the set {αeλ
1 , α

eλ
2 , . . . , αeλ

n }

coincides with the set {q
b1,λ
λ0

, q
b2,λ
λ0

, . . . , q
bn,λ

λ0
} in F̄ℓ by (∗). By Lemma 2.9, we have

{eλw1(V )/2, . . . , eλwn(V )/2} = {b1,λ, . . . , bn,λ}

if ℓ > 2Bnℓ
dMeλ
0 . Since eλ ≤ d and eλ = 1 if ℓ ∤ dK , we have the desired result.

Proof of Proposition 2.8. We note that each ψk is unramified away from ℓ by (G-3). Now we
assume that any one of the following conditions (A) or (B) holds:

(A) ℓ ∤ dK ;

(B) No additional assumptions.

Setting b′k := bk,λ/eλ ∈ Q, we have 0 ≤ b′k ≤ r. We note that, if we put

D :=

{

1 under (A),
d under (B),

then we see D/eλ ∈ Z. Since ψk = θ
bk,λ

1,λ on Iλ, we see that ψeλ
k χ

−bk,λ

ℓ is trivial on Iλ and thus

(ψeλ
k χ

−bk,λ

ℓ )D/eλ = ψD
k χ

−b′kD
ℓ is also trivial on Iλ. Since the characters ψk and χℓ are unramified

away from ℓ, this implies that ψD
k χ

−b′kD
ℓ is unramified at all finite places of K (recall that ℓ does

not split in K). By class field theory, it follows

ψ
Dh+

K

k = χ
b′kDh+

K

ℓ

onGK . Recall that h+K is the narrow class number ofK. Thus we have that the set {α
Dh+

K

1 , α
Dh+

K

2 , . . . , α
Dh+

K
n }

coincides with the set {q
b′1Dh+

K

λ0
, q

b′2Dh+

K

λ0
, . . . , q

b′nDh+

K

λ0
} in F̄ℓ by (∗). Now we assume ℓ > 2cnℓ

dDh+

K
M

0 .
Then we have

{Dh+Kw1(V )/2, . . . , Dh+Kwn(V )/2} = {b′1Dh
+
K , . . . , b

′
nDh

+
K}

by Lemma 2.9. Our result comes from this equation.

Now we can obtain our main results.

Theorem 2.10. Suppose that w is odd or w > 2r. Then the set RepQℓ
(GK)•cycl is empty under

any one of the following situations:

(a) w is odd, ℓ ∤ dK and ℓ > C1;

(b) w is odd, the extension K/Q has odd degree and ℓ > C2;

(c) w > 2r, ℓ ∤ dK and ℓ > C1;

(d) w > 2r and ℓ > C2;

(e) w and n are odd, and ℓ > C2.

Theorem 2.11. Suppose that w is odd or w > 2r. If ℓ does not split in K, then the set RepQℓ
(GK)•

is empty under any one of the following situations:

(a) w is odd, ℓ ∤ dK and ℓ > C′
1;

(b) w is odd, the extension K/Q has odd degree and ℓ > C′
2;

(c) w > 2r, ℓ ∤ dK and ℓ > C′
1;

(d) w > 2r and ℓ > C′
2;

(e) w and n are odd, and ℓ > C′
2.
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Proofs of Theorem 2.10 and 2.11. We only prove Theorem 2.10 because we can prove Theorem
2.11 by the same way. Suppose that there exists an ℓ-adic Galois representation V which is
contained in RepQℓ

(GK)•cycl and take its residual representation V̄ . If we assume one of the

situations (a) and (b) given in Proposition 2.7, then V̄ is of uniform tame inertia weight eλw/2 at
any place λ of K above ℓ, and thus eλw/2 must be a rational integer. Moreover, by Theorem 1.5,
it follows that the tame inertia weight eλw/2 is between 0 and eλr. However, if we assume any
one of the conditions (a), (b), (c) and (d), then eλw is odd for some λ or eλw/2 > eλr. This is a
contradiction. The rest of the assertion related with (e) follows from the fact ([CS], Theorem 1)
that the sum of all the tame inertia weights of V at λ must be divisible by eλ.

Remark 2.12. To remove the special assumption “ℓ does not split in K” in Theorem 2.11 is
impossible in general because there exists such an example, which is pointed out by Akio Tamagawa:
Let E be an elliptic curves over K with complex multiplication over K by an imaginary quadratic
field F := Q⊗Z EndK(E) ⊂ K. Then E is potential everywhere good reduction and thus we may
suppose E has everywhere good reduction over K. Put Fℓ := Qℓ ⊗Q F , which is a semisimple
Qℓ-algebra. It is well-known that Fℓ acts faithfully on the Tate-module Vℓ(E) of E and thus
Vℓ(E) has a natural structure of 1-dimensional Fℓ-vector space. If ℓ splits in F , the decomposition
Fℓ ≃ Qℓ × Qℓ induces a decomposition of Vℓ(E) as a sum of 1-dimensional GK-stable ℓ-adic
representations. For such odd prime ℓ, it is easy to check that Vℓ(E) is an element of the set
RepQℓ

(GK)•, where • = (2, 2, 1, 1).

3 Applications

We give some applications of our results. We use same notation as in the previous section.

3.1 Rasmussen-Tamagawa Conjecture

As a first application, we show a special case of a Conjecture of Rasmussen and Tamagawa. We
denote by K̃ℓ the maximal pro-ℓ extension of K(µℓ) which is unramified away from ℓ.

Definition 3.1. Let g ≥ 0 be an integer. We denote by A(K, g, ℓ) the set ofK-isomorphism classes
of abelian varieties A over K, of dimension g, which satisfy the following equivalent conditions:
(1) K(A[ℓ∞]) ⊂ K̃ℓ;
(2) The abelian variety A has good reduction outside ℓ and the extension K(A[ℓ])/K(µℓ) is an
ℓ-extension;
(3) The abelian variety A has good reduction outside ℓ and A[ℓ] admits a filtration of GK-modules

{0} = V̄0 ⊂ V̄1 ⊂ · · · ⊂ V̄2g−1 ⊂ V̄2g = A[ℓ]

such that V̄k has dimension k for each 1 ≤ k ≤ 2g. Furthermore, for each 1 ≤ k ≤ 2g, the
GK-action on the space V̄k/V̄k−1 is given by g.v̄ = χℓ(g)

ak · v̄ for some ak ∈ Z.

The equivalently of the above three conditions follows from the criterion of Néron-Ogg-Shafarevich
and Lemma 3.4 below (put G = Gal(K(A[ℓ∞])/K), N = Gal(K(A[ℓ∞])/K(µℓ)) and apply Lemma
3.4 to the group A[ℓ]). The set A(K, g, ℓ) is a finite set because of Faltings’ proof of Shafarevich
Conjecture. Rasmussen and Tamagawa conjectured that for any ℓ large enough, this set is empty:

Conjecture 3.2 ([RT], Conjecture 1). The set A(K, g) := {(A, ℓ) | [A] ∈ A(K, g, ℓ), ℓ : prime number}
is finite, that is, the set A(K, g, ℓ) is empty for any prime ℓ large enough.

We call this conjecture the Rasmussen-Tamagawa conjecture. It is known that the Rasmussen-
Tamagawa conjecture holds under the following conditions:

(i) K = Q and g = 1 ([RT], Theorem 2);
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(ii) K is a quadratic number field other than the imaginary quadratic fields of class number one
and g = 1 ([RT], Theorem 4).

We consider the semistable reduction case of Conjecture 3.2.

Definition 3.3. (1) We denote by A(K, g, ℓ)st the set ofK-isomorphism classes of abelian varieties
in A(K, g, ℓ) with everywhere semistable reduction.
(2) We denote by A(K, g, ℓ0, ℓ)st the set of K-isomorphism classes of abelian varieties A over K
with everywhere semistable reduction, of dimension g, which satisfy the following condition: The
abelian variety A has good reduction at some places of K above ℓ0 and A[ℓ] admits a filtration of
GK-modules

{0} = V̄0 ⊂ V̄1 ⊂ · · · ⊂ V̄2g−1 ⊂ V̄2g = A[ℓ]

such that V̄k has dimension k for each 1 ≤ k ≤ 2g.

Clearly, we see A(K, g, ℓ)st ⊂ A(K, g, ℓ0, ℓ)st since ℓ 6= ℓ0. The set A(K, g, ℓ)st is finite, however, the
set A(K, g, ℓ0, ℓ)st may be infinite. The Rasmussen-Tamagawa conjecture implies that A(K, g, ℓ)st
will be empty for a prime ℓ large enough. We will prove that A(K, g, ℓ0, ℓ)st is in fact empty for
a prime ℓ large enough which does not split in K. Recall the lemma proved by Rasmussen and
Tamagawa (cf. [RT], Lemma 3). Let G be a topological group with a normal pro-ℓ open subgroup
N , such that the quotient ∆ = G/N is isomorphic to a subgroup of F×

ℓ . Because N is pro-ℓ, we see
that N has trivial image under any character ψ : G → F×

ℓ . Hence, there always exists an induced
character ψ̄ : ∆ → F×

ℓ . Let χ : G → F×
ℓ be a character such that the induced character χ̄ is an

injection ∆ →֒ F×
ℓ . Finally, let V̄ be a finite dimensional Fℓ-vector space of dimension n on which

G acts continuously.

Lemma 3.4. The vector space V admits a filtration of GK-modules

{0} = V̄0 ⊂ V̄1 ⊂ · · · ⊂ V̄n−1 ⊂ V̄n = V̄

such that V̄k has dimension k for each 1 ≤ k ≤ n. Furthermore, for each 1 ≤ k ≤ n, the G-action
on the space V̄k/V̄k−1 is given by g.v̄ = χ(g)ak · v̄ for some ak ∈ Z, 0 ≤ ak < #∆.

Proof. The proof will proceed by the same method as the proof of Lemma 3 of [RT], thus we omit
it.

Take an abelian variety A which is in the set A(K, g, ℓ)st (resp. A(K, g, ℓ0, ℓ)st). Then Vℓ(A) is an
element of the set RepQℓ

(GK)•cycl (resp. RepQℓ
(GK)• ) with • = (2g, 2, 1, 1) (resp. • = (2g, ℓ0, 1, 1))

for any ℓ > 2 (resp. ℓ > ℓ0). Consequently, we obtain the following results as corollaries of Theorem
2.10 and 2.11:

Corollary 3.5. The set A(K, g, ℓ)st is empty under any one of the following situations:

(a) ℓ ∤ dK and ℓ > 2δ1
(

2g
g

)

, where δ1 := 2dg + 1;

(b) The extension K/Q has odd degree and ℓ > 2δ2
(

2g
g

)

, where δ2 := 2d2g + 1.

Corollary 3.6. Suppose that ℓ does not split in K. The set A(K, g, ℓ0, ℓ)st is empty under any

one of the following situations:

(a) ℓ ∤ dK and ℓ > 2ℓ
δ′1
0

(

2g
g

)

, where δ′1 := 2dgh+K;

(b) The extension K/Q has odd degree and ℓ > 2ℓ
δ′2
0

(

2g
g

)

, where δ′2 := 2d2gh+K .

Remark 3.7. Rasmussen and Tamagawa have shown the finiteness of the set A(K, g)st by using
the result of [Ra] instead of Theorem 1.5 (unpublished). Our main results in this paper are
motivated by their work.
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3.2 Irreducibility of ℓ-torsion points of elliptic curves

We consider the following classical question:

Question 3.8. Does there exist a constant cK , which depends only on K, such that for any

semistable elliptic curve E defined over K without complex multiplication over K, the represen-

tation in its ℓ-torsion points E[ℓ] is irreducible whenever ℓ > cK? Furthermore, if the answer is

positive, how can we evaluate such a constant cK?

By Mazur’s results on a moduli of rational points of modular curve X0(N) ([Ma]), it is known that
cQ = 7. If K is a quadratic field, then the existence of cK is known and moreover, if the class
number of K is 1, then the explicit calculation of cK is given by Kraus [Kr1]. By combining results
on Merel ([Me]) and Momose ([Mo]), Kraus showed the existence of cK for a number field K which
does not contain an imaginary quadratic field of class number 1 ([Kr2]). Moreover, Kraus defined
the good condition “(C)” associated with K in op. cit, such that the existence and the explicit
value of cK is known if K satisfies this condition.

The following is easy consequence of Corollary 3.6 under the case g = 1.

Corollary 3.9. Let E be an elliptic curve over K with everywhere semistable reduction. Let ℓE
be the minimal prime number p such that E has good reduction at some finite places of K above p.
Suppose ℓ does not split in K. Then E[ℓ] is irreducible under any one of the following conditions:

(a) ℓ ∤ dK and ℓ > 4ℓ
δ′′1
E , where δ′′1 := 2dh+K;

(b) The extension K/Q has odd degree and ℓ > 4ℓ
δ′′2
E , where δ′′2 := 2d2h+K .

We remark that the above corollary is valid even if E has complex multiplication over K.

3.3 Residual properties of étale cohomology groups

For any semistable elliptic curve E over Q, Serre proved the following ([Se], Section 5.4, Proposition
21, Corollary 1): Let ℓE be the minimal prime number p such that E has good reduction at p.

Then E[ℓ] is irreducible if ℓ > (1 + ℓ
1/2
E )2.

As a corollary of Theorem 2.11, we can slightly generalize this fact to étale cohomology groups
of odd degree.

Corollary 3.10. Let X be a proper smooth scheme over K with everywhere semistable reduction

and w an odd integer. Let bw(X) be a w-th Betti number of X and ℓX the minimal prime number

p such that X has good reduction at some places of K above p. Then there exists a constant C
depending only on bw(X) and ℓX such that for any prime number ℓ > C which does not split in

K, the étale cohomology group Hw
ét(XK̄ ,Qℓ) is not of residually Borel. More precisely, if ℓ does

not split in K, Hw
ét(XK̄ ,Qℓ) is not of residually Borel under any one of the following conditions:

(a) ℓ ∤ dK and ℓ > 2Bbw(X)ℓ
∆1

X , where ∆1 := bw(X)dh+Kw;

(b) The extension K/Q has odd degree and ℓ > 2Bbw(X)ℓ
∆2

X , where ∆2 := bw(X)d2h+Kw.

Proof. Putting • := (bw(X), ℓX , w, w), we see that the dual of Hw
ét(XK̄ ,Qℓ) is contained in the set

RepQℓ
(GK)•. Applying Theorem 2.11, we obtain the desired result.

For any proper smooth scheme X over K, there exists an finite extension L over K such that
Hw

ét(XL̄,Qℓ) is everywhere semistable as a representation of GL for almost all ℓ by Proposition 2.3.
If this is the case, we see that Hw

ét(XL̄,Qℓ)
∨ satisfies (G-1), (G-2) and (G-3) as a representation

of GL. Thus if we can obtain the explicit description of L, we will able to obtain the analogous
result of corollary 3.10 for a prime ℓ large enough which does not split in L. However, it is very
difficult to determine such L in general. We can determine this L if X is an abelian variety. If this
is the case, Raynaud’s criterion of semistable reduction ([Gr], Proposition 4.7) implies that X is
everywhere semistable reduction over L := K(X [3], X [5]).
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