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Abstract

In this paper, for every prime p and every 0 ≤ n ≤ ∞, we classify the structure
of the torsion subgroup of the group of Qp(µpn)-rational points of elliptic curves over
Qp with good reduction, where µpn is the set of the pn-th roots of unity.
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1 Introduction

It is well-known as the Mordell-Weil theorem that the group of K-rational points E(K) on
an elliptic curve E over a number field K is finitely generated. In particular, the torsion
subgroup E(K)tor of E(K) is finite. In 1996, Merel [Mer96] proved that there exists an
upper bound on the size of E(K)tor which depends only on the degree of K. Thus, for a
fixed integer d > 0, there exist only finitely many possibilities (up to isomorphism) for the
groups E(K)tor whereK ranges over a number field of degree d and E ranges elliptic curves
over K. To give a classification of such groups for given d is one of the crucial problems
for arithmetic theory of elliptic curves. A landmark theorem concerning this problem is
a theorem of Mazur [Maz78], which studies the case d = 1 (i.e. K = Q); he showed that
if E is an elliptic curve over Q, then its torsion subgroup E(Q)tor is isomorphic to one of
the following 15 groups

Z/nZ (n = 1, 2, . . . , 10, 12),

Z/2Z× Z/2mZ (m = 1, 2, 3, 4).

After Mazur’s paper, Kammieny [Kam92] and Kenku and Momose [KM88] gave an answer
of the classification problem for d = 2, and the classification for d = 3 was given by Derickx,
Etropolski, Morrow, van Hoeij, and Zureick-Brown [DEvH+21].

This paper begins by establishing a p-adic analogue of Mazur’s theorem in the case of
good reduction. Let us introduce some notation needed for our results. We denote by I
the set of pairs (k,m) of positive integers such that m | p − 1 and (

√
p − 1)2 < km2 <

(
√
p+ 1)2. We also denote by Iord the subset of I consisting of elements (k,m) such that

km2 ̸≡ 1 mod p. Our first main result in this paper is as follows.

Theorem 1.1. Let E be an elliptic curve over Qp with good reduction.

(1) Assume p ≥ 3. Then, E(Qp)tor is isomorphic to one of the following groups.{
Z/mZ× Z/mkZ, (m, k) ∈ I,
0.

Each of these groups appears as E(Qp)tor for some elliptic curve E over Qp with
good reduction.

Moreover, if E has good ordinary reduction (resp. good supersigular reduciton), then
E(Qp)tor is isomorphic to one of the following groups in (I) (resp. (II)).

(I)

{
Z/mZ× Z/mkZ, (m, k) ∈ Iord,
0.

(II)


0,Z/4Z,Z/7Z,Z/2Z× Z/2Z, if p = 3,
Z/(1 + p)Z, if p ≡ 1 mod 4

Z/(1 + p)Z,Z/2Z× Z/1+p
2 Z if p ̸= 3, p ≡ 3 mod 4.

Each of these groups in (I) (resp. (II)) appears as E(Qp)tor for some elliptic curve
E over Qp with good ordinary reduction (resp. good supersingular reduction).

(2) Assume p = 2. Then, E(Q2)tor is isomorphic to one of the following groups.{
Z/mZ, m = 1, 2, 3, 4, 5, 8,
Z/2Z× Z/2kZ, k = 1, 2.
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Each of these groups appears as E(Q2)tor for some elliptic curve E over Q2 with
good reduction.

Moreover, if E has good ordinary reduction (resp. good supersigular reduciton), then
E(Q2)tor is isomorphic to one of the following groups in (I)′ (resp. (II)′).

(I)′
{

Z/mZ, m = 2, 4, 8
Z/2Z× Z/2kZ, k = 1, 2

(II)′ 0,Z/3Z,Z/5Z.

Each of these groups in (I)′ (resp. (II)′) appears as E(Q2)tor for some elliptic curve
E over Q2 with good ordinary reduction (resp. good supersingular reduction).

Before stating our second result, it should be better to mention some known results on
the group structures of elliptic curves over (infinite degree) abelian extensions of Q. Chou
[Cho19] determined the possible torsion subgroups of E(Qab) for an elliptic curve E over
Q and established the sharp bound #E(Qab) ≤ 163. Building on Chou’s results, Gužvić
and Vukorepa [GV23] classified all possible torsion subgroups of E(Q(µp∞)) in the case
p = 2, 3, 5, 7 and 11. where µpn is the group of pn-th roots of unity. We consider a p-adic
analogue of these results. Let E be an elliptic curve over Qp with good reduction. As an
analogue of Chou’s result, it is natural to study the group structure of E(Qab

p )tor, where

Qab
p denotes the maximal abelian extensions of Qp. However, we immediately see that this

group is always infinite (indeed, the reduction map induces an isomorphism between the
prime-to-p parts of E(Qab

p )tor and that of Ē(Fp), where Ē denotes the reduction of E and

Fp is the separable closure of Fp. So we study the torsion subgroup of E(Qp(µp∞)), which
may be regarded as a p-adic analogue of the work of Gužvić and Vukorepa. The second
main theorem below forms the central part of this paper.

Theorem 1.2. Let E be an elliptic curve over Qp.

(1) If E has good supersingular reduction, then it holds E(Qp(µp∞))tor = E(Qp)tor.
(Thus the possible group structures of this group are given in Theorem 1.1.)

(2) Assume p ≥ 3 and assume also that E has good ordinary reduction. Then,

– it holds E(Qp(µp∞))tor = E(Qp(µp))tor.

– Moreover, E(Qp(µp∞))tor is isomorphic to one of the following groups in (I)∞.

(I)∞


Z/mZ× Z/mkZ, (m, k) ∈ Iord,
Z/pZ× Z/pZ,
Z/pZ× Z/2pZ if p ≤ 5.

Each of these groups in (I)∞ appears as E(Qp(µp∞))tor for some elliptic curve
E over Qp with good ordinary reduction.

(3) Assume p = 2 and assume also that E has good ordinary reduction. Then,

– it holds E(Q2(µ2∞))tor = E(Q2(µ8))tor.
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– Moreover, E(Q2(µ2∞))tor is isomorphic to one of the following groups in (I)′∞.

(I)′∞


Z/mZ, m = 4, 8
Z/2Z× Z/2kZ, k = 1, 4
Z/4Z× Z/4Z.

Each of these groups in (I)′∞ appears as E(Q2(µ2∞))tor for some elliptic curve
E over Q2 with good ordinary reduction.

As a consequence, we obtain explicit upper bounds for E(Qp)tor and E(Qp(µp∞))tor
when E is an elliptic curve over Qp with good ordinary reduction (resp. good supersingular
reduction) as stated in (I) (resp. (II)) below. All these bounds are sharp:

(I) #E(Qp)tor ≤ (
√
p+ 1)2,#E(Qp(µp∞))tor ≤


p2 (p ≥ 7),
2p2 (p = 3, 5),
16 (p = 2).

(II) #E(Qp)tor = #E(Qp(µp∞))tor ≤


1 + p (p ≥ 5),
7 (p = 3),
5 (p = 2).

Note that Theorem 1.1 and Theorem 1.2 above give the classifications of the possi-
ble group structures of E(Qp(µpn))tor for all primes p and 0 ≤ n ≤ ∞ except the case
where (p, n) = (2, 2) and E has good ordinary reduction. The classification result on the
exceptional case is as follows.

Theorem 1.3. Let E be an elliptic curve over Q2 with good ordinary reduction. Then,
E(Q2(µ4))tor is isomorphic to one of the following groups in (I)′2 .

(I)′2


Z/4Z,
Z/2Z× Z/2kZ, k = 1, 2, 4
Z/4Z× Z/4Z.

Each of these groups in (I)′2 appears as E(Q2(µ4))tor for some elliptic curve E over Q2

with good ordinary reduction.

Therefore, we conclude that, for all primes p and 0 ≤ n ≤ ∞, we obtained the complete
classifications of the groups those arise as E(Qp(µpn))tor for some elliptic curve E over Qp

with good reduction.

Corollary 1.4. Assume p ≥ 3. Let K∞ be the cyclotomic Zp-extension of Qp. Then, we
have E(K∞)tor = E(Qp)tor for an elliptic curve E over Qp with good reduction.

Proof. If E has good supersingular reduction, the result is clear by Theorem 1.2 (1). In
the case where E has good ordinary reduction, the result follows from Theorem 1.2 (2);
E(K∞)tor = E(K∞)tor ∩ E(Qp(µp∞))tor = E(K∞)tor ∩ E(Qp(µp))tor = E(Qp)tor.

The organization of the paper is as follows. In Section 2, we give a proof of Theorem
1.1. The arguments differs significantly depending on whether p is odd or p = 2. When
p is odd, we use theoretical arguments involving the theory of canonical lifts. In case
p = 2, by using MAGMA [BC06] and Algorithm A.1, we explicitly find elliptic curves
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listed in the Cremona database with prescribed torsion subgroups. Section 3 is the main
part of this paper. In this seciton, we give proofs of Theorem 1.2 and Theorem 1.3. As in
Section 2, the arguments also differ depending on whether p is odd or p = 2. For the case
where p is odd, the key is Proposition 3.3, which gives a classification of p-parts of the
torsion subgroup of E(Qp(µp∞)). For the case where p = 2, theoretical perspectives such
as ramification theory play an even more important role in addition to verification using
the Cremona database and computations by MAGMA. In Appendix A, we provide data
on certain extensions of Q2 and some elliptic curves that are required for our proof. The
labels of elliptic curves in this paper follow the convention used in the Cremona database.
The data available in the LMFDB [LMF25] is also useful for referencing elliptic curves;
however, note that the labeling in the LMFDB differs from that of the Cremona label.

Notation : In this paper, p-adic fields are finite extension fields of Qp. If F is an algebraic
extension of Qp, we denote by GF the absolute Galois group Gal(Qp/F ) of F . We also

denote by µpn the set of pn-th roots of unity in Qp and µp∞ := ∪m≥0µpm .

2 Group structures of E(Qp)tor

The aim of this section is to prove Theorem 1.1, which gives the complete list of the groups
those arise as the torsion subgroups of the Mordell-Weil groups of elliptic curves over Qp

with good reduction. Theorem 1.1 is a combination of Theorem 2.2 and Theorem 2.3
below.

In the rest of this paper, we use the following notations.

• For an elliptic curve E overQp with good reduction, we denote by Ê and Ē the formal
group over Zp associated with E and the reduction of E, respectively. We denote by
Tp(E) := lim←−n

E[pn] the p-adic Tate module of E and put Vp(E) = Tp(E) ⊗Zp Qp.

Similarly, we often use notations Tp(Ê), Vp(Ê), Tp(Ē) and Vp(Ē).

• For a field K, we denote by E(K) the set of the isomorphism classes of groups which
are isomorphic to the torsion subgroup E(K)tor of E(K) for some elliptic curve E
over K.

• For integers m, k ≥ 1, we set Gm,k := Z/mZ× Z/mkZ.

• We denote by I the set of pairs (k,m) of positive integers such that m | p − 1 and
(
√
p− 1)2 < km2 < (

√
p+ 1)2.

The set E(Fp) was well-studied by Hasse, Deuring,..., Rück and Volock. The following
statement is due to [BPS12, Lemma 3.5].

Theorem 2.1. E(Fp) = {Gm,k | (m, k) ∈ I} .

We denote by Egood(Qp) (resp. Eord(Qp), resp. Ess(Qp)) the subset of E(Qp) consisting
of isomorphism classes of E(Qp)tor for some elliptic curve E over Qp with good reduction
(resp. good ordinary reduction, resp. good supersingular reduction). We clearly have

Egood(Qp) = Eord(Qp) ∪ Ess(Qp).
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Let E be an elliptic curve over Qp with good reduction. We have an exact sequence

0→ Ê(Qp)→ E(Qp)→ Ē(Fp)→ 0

of modules (cf. [Sil09, Section VII.2])1. Since the pro-p group Ê(Qp) has no torsion points if
p ≥ 3 (cf. [Sil09, Section IV, Proposition 3.2 and Theorem 6.1]) and Ē(Fp)[p

∞] = Ē(Fp)[p]
by the Hasse bound, the reduction map induces an isomorphism

E(Qp)p′ ≃ Ē(Fp)p′ (2.1)

and an injection
E(Qp)[p

∞] ↪→ Ē(Fp)[p] if p ≥ 3. (2.2)

Here, for a module M , we denote by M [pn] the submodule of M killed by pn, M [p∞] :=
∪n>0M [pn], and also denote by Mp′ the prime-to-p part of M .

2.1 The case p ≥ 3

We study Eord(Qp), Ess(Qp) and Egood(Qp) for an odd prime p. We use the following
notations.

• We denote by Iord (⊂ I) the set of pairs (k,m) of positive integers such that m | p−1,
(
√
p− 1)2 < km2 < (

√
p+ 1)2 and km2 ̸≡ 1 mod p.

• We denote by Iss (⊂ I) the set of pairs (k,m) of positive integers such that m | p−1,
(
√
p− 1)2 < km2 < (

√
p+ 1)2 and km2 ≡ 1 mod p.

By definition we have I = Iord ∪ Iss. A straight forward calculation shows that the set Iss
coincides with {(1, 1), (1, 4), (1, 7), (2, 1)} (resp. {(1, 1 + p)}, resp. {(1, 1 + p), (2, 1+p

4 )}) if
p = 3 (resp. p ≡ 1 mod 4, resp. p ̸= 3 and p ≡ 3 mod 4).

Theorem 2.2 (=Theorem 1.1 (1)). Assume p ≥ 3.

(1) Eord(Qp) = {Gm,k | (m, k) ∈ Iord} ∪ {0}.

(2) Ess(Qp) = {Gm,k | (m, k) ∈ Iss}. Explicitly, we have

Ess(Qp) =


{G1,1, G1,4, G1,7, G2,1} if p = 3

{G1,1+p} if p ≡ 1 mod 4

{G1,1+p, G2, 1+p
4
} if p ̸= 3, p ≡ 3 mod 4

(3) Egood(Qp) = E(Fp) ∪ {0} = {Gm,k | (m, k) ∈ I} ∪ {0}.

For the proof of the theorem, it suffices to show (1) and (2).

1In this paper, for an algebraic extension K of Qp with maximal ideal mK , we denote by Ê(K) the
group Ê(mK) = mK determined by the formal group Ê (cf. [Sil09, Chapter IV.3]).
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2.1.1 The case of ordinary reduction

We show Theorem 2.2 (1). Let E be an elliptic curve over Qp with good reduction.
Suppose that Ē is ordinary and Ē(Fp) = Gm,k. Since ap(E) := 1 + p −#Ē(Fp) is prime
to p, we have km2 ̸≡ 1 mod p. By (2.1) and (2.2), we see that E(Qp)tor is isomorphic to
Gm,k or Gm,k/p (with p | k). Hence we obtain

Eord(Qp) ⊂ E1ord(Qp) ∪ E2ord(Qp) ∪ E3ord(Qp)

where

E1ord(Qp) := {Gm,k | (m, k) ∈ Iord, p ∤ k},
E2ord(Qp) := {Gm,k | (m, k) ∈ Iord, p | k},
E3ord(Qp) := {Gm,k/p | (m, k) ∈ Iord, p | k}.

In the following, we show that the inclusion “⊂” above is in fact equal. It suffices to show
that each E iord(Qp) is a subset of Eord(Qp).

Let Gm,k ∈ E1ord(Qp). By Theorem 2.1, there exists an elliptic curve Ē over Fp such that
Gm,k ≃ Ē(Fp). By considering lifts to Zp of the coefficients of the Weierstrass equation of
Ē, we obtain an elliptic curve E over Qp with good ordinary reduction whose reduction
is Ē. Since Ē(Fp) has no p-torsion points by p ∤ k, it follows from (2.1) and (2.2) that
E(Qp)tor ≃ Gm,k. Thus we have E1ord(Qp) ⊂ Eord(Qp).

Let Gm,k ∈ E2ord(Qp). In this case, we see (m, k) ∈ {(1, p), (1, 2p)} if p ≤ 5 and
(m, k) ∈ {(1, p)} if p > 5. Write k = jp. By Theorem 2.1, there exists an elliptic
curve Ē over Fp such that Ē(Fp) ≃ Gm,k = G1,jp. Let E0/Qp be the canonical lift of
Ē. Since EndQpE0 = EndFpĒ is an order of an imaginary quadratic field, the GQp-action

on E0[p] factors an abelian quotient. In addition, we see Ê[p] ≃ Fp(1) and Ē[p] ≃ Fp as
GQp-modules since Ē(Fp)[p] is not trivial. Hence we have (non-canonical) isomorphisms

E0[p] ≃ Ê[p]⊕Ē[p] ≃ Fp(1)⊕Fp of GQp-modules. Thus we obtain E0(Qp)[p] ≃ Ē(Fp)[p] ≃
G1,p, which gives E(Qp)[p

∞] ≃ G1,p by (2.2). On the other hand, we also have E0(Qp)p′ ≃
Ē(Fp)p′ ≃ G1,j by (2.1). Hence we obtain E0(Qp)tor ≃ G1,jp. Therefore, we obtain
E2ord(Qp) ⊂ Eord(Qp).

Let Gm,k/p ∈ E3ord(Qp). In this case, we see (m, k) ∈ {(1, p), (1, 2p)} if p ≤ 5 and
(m, k) ∈ {(1, p)} if p > 5. Since G1,2 ∈ E1ord(Qp) if p ≤ 5, it suffices to show that G1,1 (= 0)
is an element of Eord(Qp). By Theorem 2.1, there exists an elliptic curve Ē over Fp such
that Ē(Fp) ≃ Gm,k = G1,p. Take any lift Ẽ to W2 := W (Fp)/p

2W (Fp) of Ē such that
dimFp Ẽ(W2)⊗Z Fp = 1 (there exist p− 1 isomorphism class of such Ẽ by [DW08, Lemma

3.1 and Lemma 3.2]). Taking any lift E/Qp of Ẽ, we have E(Qp)[p] = 0 by [DW08, Lemma
3.1]. Since we have E(Qp)p′ ≃ Ē(Fp)p′ = 0, it holds E(Qp)tor = 0 = G1,1. Consequently,
we have E3ord(Qp) ⊂ Eord(Qp). Thus we proved Theorem 2.2 (1).

2.1.2 The case of supersingular reduction

We show Theorem 2.2 (2). Let E be an elliptic curve over Qp with good reduction.
Suppose that Ē is supersingular. By (2.1) and (2.2), we have E(Qp)tor ≃ Ē(Fp). Thus we
have

Ess(Qp) ⊂ {Gm,k | (m, k) ∈ Iss}. (2.3)
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Conversely, let Gm,k be in the right hand side of the above and let Ē be the elliptic curve
over Fp with Ē(Fp) ≃ Gm,k. Note that Ē is supersingular since ap(E) = 1+p−#Ē(Fp) ≡
0 mod p. By taking any lift E/Qp of Ē, we have E(Qp)tor ≃ Ē(Fp) ≃ Gm,k by (2.1)
and (2.2) again. Thus the inclusion “⊂” in (2.3) is in fact equal. This finises a proof of
Theorem 2.2 (2).

2.2 The case p = 2

We study Eord(Qp), Ess(Qp) and Egood(Qp) for p = 2.

Theorem 2.3 (=Theorem 1.1 (2)). (1) Eord(Q2) = {G1,2, G1,4, G1,8, G2,1, G2,2}.

(2) Ess(Q2) = {G1,1, G1,3, G1,5}.

(3) Egood(Q2) = {G1,1, G1,2, G1,3, G1,4, G1,5, G1,8, G2,1, G2,2}.

For the proof of the theorem, it suffices to show (1) and (2).

2.2.1 The case of ordinary reduction

We show Theorem 2.3 (1). Let E be an elliptic curve over Q2 with good reduction.
Suppose that Ē is ordinary. Then torsion subgroup of Ê(Q2) have order at most 2 by
[Sil09, Chapter IV, Proposition 3.2 and Theorem 6.1] and those of Ē(F2) have order at
most 5 by the Hasse bound. Moreover, since Ê[2] and Ē[2] are cyclic of order 2, GQ2

acts trivially on them. Thus Ê(Q2)tor ≃ Z/2Z and Ē(F2) is isomorphic to either Z/2Z or
Z/4Z. Since we have an exact sequence 0 → Ê(Q2)tor → E(Q2)tor → Ē(F2) of modules,
the group E(Q2)tor is isomorphic to one of the following groups:

G1,2, G1,4, G1,8, G2,1, G2,2.

In fact, it follows from MAGMA calculation with Algorithm A.1 that, for each Gm,k

appearing above, there exists an elliptic curve E over Q2 with good ordinary reduction
such that E(Q2)tor is isomorphic to Gm,k. For example,

• E =15.a5 satisfies E(Q2)tor ≃ G1,2,

• E =15.a7 satisfies E(Q2)tor ≃ G1,4,

• E =15.a4 satisfies E(Q2)tor ≃ G1,8,

• E =15.a2 satisfies E(Q2)tor ≃ G2,1,

• E =15.a1 satisfies E(Q2)tor ≃ G2,2.

This finishes a proof of Theorem 2.3 (1).
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2.2.2 The case of supersingular reduction

We show Theorem 2.3 (2). Let E be an elliptic curve over Q2 with good reduction.
Suppose that Ē is supersingular. Note that E(Q2)[2] = 0 since E[2] is irreducible as a
GQ2-module (cf. [Ser72, Section 1.12, Proposition 12]). Hence, it follows from (2.1) that the
reduction map induces an isomorphism E(Q2)tor ≃ Ē(F2). By the Hasse bound, we have
#Ē(F2) ∈ {1, 3, 5}. Thus, E(Q2)tor is isomorphic to one of G1,1, G1,3 and G1,5. In fact,
it follows from MAGMA calculation with Algorithm A.1 that, for each Gm,k appearing
above, there exists an elliptic curve E over Q2 with good supersingular reduction such
that E(Q2)tor is isomorphic to Gm,k. For example,

• E =67.a1 satisfies E(Q2)tor ≃ G1,1,

• E =19.a1 satisfies E(Q2)tor ≃ G1,3,

• E =11.a1 satisfies E(Q2)tor ≃ G1,5.

This finishes a proof of Theorem 2.3 (2).

3 Group structures of E(Qp(µpn))tor

The aim of this section is to prove Theorem 1.2 and Theorem 1.3, which gives the classi-
fication of the groups appearing as E(Qp(µp∞))tor for some elliptic curve E over Qp with
good reduction. We begin with a proof of Theorem 1.2 (1).

Proof of Theorem 1.2 (1). By [Ser72, Section 1.12, Proposition 12], we know that E[p] is
irreducible as GQ2-modules. If we assume that E(Qp(µp∞))[p] is not zero, then it follows
from the irreducibility that we have E(Qp(µp∞))[p] = E[p]. This shows that Qp(E[p]) is a
subfield of Qp(µp∞). Thus the prime-to-p part of the ramification index of Qp(E[p])/Qp

must be a divisor of p − 1. However, by [Ser72, Section 1.12, Proposition 12] again, the
ramification index of Qp(E[p])/Qp is p2 − 1. This is a contradiction. Hence we obtain
E(Qp(µp∞))[p] = 0. In particular, we have E(Qp(µp∞))[p∞] = E(Qp)[p

∞] (= 0). On
the other hand, it follows from the Néron-Ogg-Shafarevich criterion that the prime-to-
p parts of E(Qp(µp∞))tor and E(Qp)tor coincides with each other. Thus we conclude
E(Qp(µp∞))tor = E(Qp)tor as desired.

For the arguments below, We use the following lemma.

Lemma 3.1. Let E/Qp
be an elliptic curve with good ordinary reduction. Let α be the

non-unit root of T 2 − ap(E)T + p = 0 and denote by χα : GQp → Z×
p the Lubin-Tate

character2 associated with α. Then, the GQp-action on the p-adic Tate module Vp(Ê) of

Ê is given by χα.

Proof. Let χ : GQp → Z×
p be the character obtained by the GQp-action on Vp(Ê) and

φ : GQp → Z×
p be the character obtained by the GQp-action on Vp(Ē). Put T 2− ap(E)T +

p = fE(T ). For any crystalline Qp-representation V of GQp , let Dcris(V ) = (Bcirs ⊗Qp

V )GQp be the Fontaine’s filtered ϕ-module3. By p-adic Hodge theory, it is known that

2For the definition of Lubin-Tate characters, see Appendix A.4 of Chapter III of [Ser98]
3For the basic notion of p-adic Hodge theory, it is helpful for the reader to refer [Fon94a] and [Fon94b].
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fE(T ) coincides with the characteristic polynomial of the ϕ-module Dcris(Vp(E)∨), that is,
fE(T ) = det(T−ϕ | Dcris(Vp(E)∨)). Here, ∨ stands for the dual representation. Moreover,
this coincides with the products of the characteristic polynomials of Dcris(Qp(χ

−1)) and
Dcris(Qp(φ

−1)). Since χ restricted to the inertia IQp coincides with the p-adic cyclotomic
character, for any choice of a uniformizer π of Qp, it follows from [Con11, Proposition
B.4] that det(T − ϕ | Dcris(Qp(χ

−1))) = χ(π) · π, which is independent of the choice of π
(here, we regard χ as a character of Q×

p via the local reciprosity map). Since χ(π) · π has
a postive p-adic valuation, we have χ(π) · π = α for any π. By choosing α as π, we have
χ(α) = 1. Since we have χ = χα on IQp , we find χ = χα.

3.1 The case p ≥ 3

We show Theorem 1.2 (2).

Lemma 3.2. Assume p ≥ 3. Let E be an elliptic curve over Qp with good ordinary
reduction and Ê the formal group associated with E. Then, it holds #E(Qp(µp∞))[p∞] ≤
p2 and #Ê(Qp(µp∞))[p∞] ≤ p.

Proof. Consider an exact sequence

0→ Ê(Qp(µp∞))[p∞]→ E(Qp(µp∞))[p∞]→ Ē(Fp)[p
∞]

of GQp-modules. By the Hasse bound, the order of Ē(Fp)[p
∞] is at most p (note that

p is now odd). Thus it suffices to check that any element of Ê(Qp(µp∞))[p∞] is killed
by p. Denote by α the non-unit root of the equation T 2 − ap(E)T + p = 0. Then, α
is a uniformizer of Qp and the GQp-action on the Tate module Tp(Ê) of Ê is given by
the Lubin-Tate character χ : GQp → Z×

p associated with α by Lemma 3.1. Now take any

P ∈ Ê(Qp(µp∞))[p∞]. Then (χ(σ) − 1)P = 0 for every σ ∈ GQp(µp∞ ). By abuse of

notation, we also denote by χ the composite of χ (considered as a character of Gab
Qp

) and

the local reciprocity map Q×
p → Gab

Qp
. Here, Gab

Qp
is the maximal abelian quotient of GQp .

If we denote by vp the p-adic valuation normalized by vp(p) = 1, then we have

Min{vp(χ(σ)− 1) | σ ∈ GQp(µp∞ )} ≤ vp(χ(p−1)− 1) = vp(pα
−1 − 1) (3.1)

by [Oze24, Proposition 2.1]. Note that β := pα−1 is the unit root of the equation T 2 −
ap(E)T + p = 0. Since 0 = β2 − ap(E)β + p = (β − 1)(β − ap(E) + 1) +#Ē(Fp), we have

vp(pα
−1 − 1) ≤ vp(#Ē(Fp)) ≤ 1 (3.2)

by the Hasse bound. Therefore, we obtain pP = 0 for every P ∈ Ê(Qp(µp∞))[p∞] as
desired.

Proposition 3.3. Assume p ≥ 3. Let E be an elliptic curve over Qp with good ordinary
reduction. Then, we have

E(Qp(µp∞))[p∞] ≃


0 if Ē(Fp)[p] = 0,

Z/pZ if Ē(Fp)[p] ̸= 0 and E(Qp)[p] = 0,

Z/pZ× Z/pZ if Ē(Fp)[p] ̸= 0 and E(Qp)[p] ̸= 0.

Furthermore, if Ē(Fp)[p] ̸= 0, then the minimum fields of definition of E(Qp(µp∞))[p∞]
and E(Qp(µp∞))tor are Qp(µp).
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Proof. Let us first consider the case where Ē(Fp)[p] = 0. Let χ : GQp → F×
p (resp.

ψ : GQp → F×
p ) be the characters obtained by the GQp-action on Ê[p] (resp. Ē[p]). Since

Ē(Fp)[p] = 0, ψ is not trivial. Since ψ is unramified and χψ coincides with mod p cyclo-
tomic character, we see that χ is not trivial on GQp(µp∞ ). Thus we have Ê(Qp(µp∞))[p] = 0.

Now the result immediately follows from an exact sequence 0 → Ê[p]→ E[p]→ Ē[p]→ 0
of Fp[GQp ]-modules.

Next we consider the case where Ē(Fp)[p] ̸= 0 and E(Qp)[p] = 0. Since GQp acts on

Ē[p] trivial, we have isomorphisms Ê[p] ≃ Fp(1) and Ē[p] ≃ Fp of GQp-modules. Thus
there exists a natural exact sequence

0→ Fp(1)→ E[p]→ Fp → 0 (3.3)

of Fp[GQp ]-modules. In particular, E(Qp(µp))[p] contains a submodule Ê(Qp(µp))[p] of
order p. Now we assume that E(Qp(µpn))[p] is isomorphic to Z/pZ×Z/pZ for some n > 0.
Then the extension (3.3) splits as Fp[GQp(µpn )]-modules. Since the kernel of the restriction

map H1(Qp,Fp(1))→ H1(Qp(µpn),Fp(1)), which is isomorphic to H1(Qp(µpn)/Qp,Fp(1)),
is trivial, the extension (3.3) splits as Fp[GQp ]-modules. Thus we have E(Qp)[p] = Z/pZ
but this contradicts the assumption that E(Qp)[p] = 0. Hence, we obtain E(Qp(µpn))[p] ≃
Z/pZ for any n > 0. This shows

E(Qp(µp∞))[p] = E(Qp(µp))[p] = Ê(Qp(µp))[p]

and these are isomorphic to Fp(1) as GQp-modules. It follows from Lemma 3.2 that
E(Qp(µp∞))[p∞] is isomorphic to either Z/pZ or Z/p2Z as modules. Therefore, for the
proof, it suffices to show that E(Qp(µp∞))[p∞] is not isomorphic to Z/p2Z. Assume that
E(Qp(µp∞))[p∞] ≃ Z/p2Z. Consider the following commutative diagram.

0 // Ê(Qp(µp∞))[p∞] // E(Qp(µp∞))[p∞] // Ē(Fp)[p
∞]

0 // Ê(Qp(µp))[p] //
?�

O

E(Qp(µp))[p] //
?�

O

Ē(Fp)[p].
?�

O

By Lemma 3.2, the left vertical arrow is bijective. By the Hasse bound, the right vertical
arrow is bijective. Thus we find that the reduction map E(Qp(µp∞))[p∞] → Ē(Fp)[p

∞]
is surjective. Applying Lemma 3.4 below with G = GQp and M = E(Qp(µp∞))[p∞], we

obtain an isomorphism Ê(Qp(µp∞))[p∞] ≃ Ē(Fp)[p
∞] of GQp-modules. This gives

Fp(1) ≃ Ê[p] = Ê(Qp(µp∞))[p∞] ≃ Ē(Fp)[p
∞] = Ē(Fp)[p] ≃ Fp

as GQp-modules but this is a contradiction. Therefore, we obtain E(Qp(µp∞))[p∞] ≃ Z/pZ
as desired. Moreover, since we also showed that E(Qp(µp∞))[p∞] = Ê(Qp(µp))[p] ≃ Fp(1)
as GQp-modules, we find that the definition field of E(Qp(µp∞))[p∞] is Qp(µp). Note
that the fields of definition of E(Qp(µp∞))[p∞] coincides with that of E(Qp(µp∞))tor since
the prime-to-p part of E(Qp(µp∞))tor is rational over Qp by the Néron-Ogg-Shafarevich
criterion.

Finally we consider the case where Ē(Fp)[p] ̸= 0 and E(Qp)[p] ̸= 0. Since Ê[p] (≃
Fp(1)) and E(Qp)[p] (≃ Fp) are non-isomorphic GQp-submodules of E[p], we have isomor-
phisms

E[p] = Ê[p]⊕ E(Qp)[p] ≃ Fp(1)⊕ Fp

11



of GQp-submodules. In particular, we have E(Qp(µp∞))[p] = E[p]. Since the order of
E(Qp(µp∞))[p∞] is at most p2 by Lemma 3.2, we obtain E(Qp(µp∞))[p∞] = E[p]. In par-
ticular, the definition field of E(Qp(µp∞))[p∞] is Qp(µp). As we have seen above, it follows
from the Néron-Ogg-Shafarevich criterion that the fields of definition of E(Qp(µp∞))tor is
also Qp(µp).

In the proof above, we used the following lemma.

Lemma 3.4. Let G be a group, p a prime (including the case p = 2) and n > 0 an integer.
Let M be a Z/p2nZ[G]-module which is free of finite rank over Z/p2nZ. Then, we have a
canonical isomorphism pnM ≃M/pnM of Z/pnZ[G]-modules.

Proof. The result immediately follows by applying the snake lemma to the commutative
diagram of G-modules below:

0 // pnM //

pn

��

M //

pn

��

M/pnM //

pn

��

0

0 // pnM //M //M/pnM // 0.

Proof of the first part of Theorem 1.2 (2). The Néron-Ogg-Shafarevich criterion shows that
the prime-to-p parts of E(Qp(µp∞))tor and E(Qp(µp))tor coincide with each other. More-
over, we have E(Qp(µp∞))[p∞] = E(Qp(µp))[p

∞] by Proposition 3.3. This finishes a
proof.

Let us prove the second part of Theorem 1.2 (2). The statement is equivalent to say
that, for an elliptic curve E over Qp with good ordinary reduction, then E(Qp(µp∞))tor is
isomorphic to one of the following groups.

(a) Gm,k, (m, k) ∈ Iord,

(b) Gp,1,

(c) Gp,2 with p ≤ 5,

and each of these groups appears as E(Qp(µp∞))tor for some elliptic curve E over Qp with
good ordinary reduction.

Lemma 3.5. Let E be an elliptic curve over Qp with good ordinary reduction.

(1) If E(Qp)[p] = 0, then E(Qp(µp∞))tor ≃ Ē(Fp) as abstract groups.

(2) If E(Qp)[p] ̸= 0, then E(Qp(µp∞))tor ≃ Ē(Fp)× Z/pZ as abstract groups.

Proof. Assume that an elliptic curve E over Qp has good ordinary reduction. If E(Qp)[p] =
0 (resp. E(Qp)[p] ̸= 0), we have E(Qp(µp∞))[p∞] ≃ Ē(Fp)[p

∞] (resp. E(Qp(µp∞))[p∞] ≃
Ē(Fp)[p

∞] × Z/pZ) by Proposition 3.3. Since the reduction map gives an isomorphism
between the prime-to-p parts of E(Qp(µp∞)) and Ē(Fp), the result follows.
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Proof of the second part of Theorem 1.2 (2). Suppose that an elliptic curve E over Qp

has good ordinary reduction. If E(Qp)[p] = 0, then it follows from Lemma 3.5 (1) that
E(Qp(µp∞)) is isomorphic to Gm,k for some (m, k) ∈ Iord. If E(Qp)[p] ̸= 0, then it
follows from Lemma 3.5 (2) that E(Qp(µp∞))tor is isomorphic to Gm,k × Z/pZ for some
(m, k) ∈ Iord. Note that we moreover have p | k since Ē(Fp)[p] is not zero by (2.2). In
this case we see (m, k) = (1, jp) with j ∈ {1, 2} (resp. j = 1 ) for p ≤ 5 (resp. p > 5), and
then E(Qp(µp∞))tor is isomorphic to and Gm,k ×Z/pZ ≃ Gp,j . Therefore, we showed that
E(Qp(µp∞))tor is isomorphic to one of the groups appearing in (a), (b) or (c).

Conversely, let G be a group appearing in (a), (b) or (c). Suppose G = Gm,k as in (a)
and suppose in addition p ∤ k. By Theorem 2.1, there exists an ordinary elliptic curve Ē
over Fp such that G ≃ Ē(Fp). Take any lift E of Ē to Qp. By p ∤ k, Ē(Fp)[p] is trivial,
and thus we have E(Qp)[p] = 0 by (2.2). By Lemma 3.5, we have E(Qp(µp∞))tor ≃ G.
Next we suppose one of the following situations.

• G = Gm,k as in (a) and suppose in addition p | k. In this case G = G1,jp for
j ∈ {1, 2} (resp. j = 1 ) for p ≤ 5 (resp. p > 5).

• G = Gp,j (≃ G1,jp × Z/pZ) is as in (b) or (c).

By Theorem 2.1, there exists an ordinary elliptic curve Ē over Fp such that G1,jp ≃ Ē(Fp).
By Lemma 3.1 and Lemma 3.2 of [DW08], there exist elliptic curves E1 and E2 over Qp

whose reductions are Ē such that E1(Qp)[p] = 0 and E2(Qp)[p] ̸= 0. (Note that the
canonical lift of Ē satisfies the desired condition for E2.) It follows from Lemma 3.5 that
E1(Qp(µp∞)) ≃ G1,jp and E2(Qp(µp∞)) ≃ Gp,j . This finishes a proof.

3.2 The case p = 2

We show Theorem 1.2 (3) and Theorem 1.3. We begin with a proof of the second statement
of Theorem 1.2 (3); it suffices to show that, for an elliptic curve E over Q2 with good
ordinary reduction, then E(Q2(µ2∞))tor is isomorphic to one of the following groups.

(a) G1,k, k ∈ {4, 8},

(b) G2,k, k ∈ {1, 4},

(c) G4,1,

and each of these groups appears as E(Q2(µ2∞))tor for some elliptic curve E over Q2 with
good ordinary reduction.

For our proof below, we need Fontaine’s results on ramification theory of finite flat
commutative group schemes. We give a brief sketch here (with restricting 2-adic cases);
see [Ser68] and [Fon85] for more precise information. Let K be a 2-adic field and L/K be
a (not necessarily finite) Galois extension. For any non-negative real number u ≥ 0, let
Gal(L/K)(u) be the u-th upper ramification subgroup of Gal(L/K) in the sense of [Fon85].
For a finite Galois extension L/K, we define the maximal upper ramification break of L/K
defined by uL/K = sup{u ∈ R |Gal(L/K)(u) ̸= 1}. It is well-known that

– L/K is unramified if and only if uL/K = 0,

– L/K is tamely ramified if and only if uL/K ≤ 1, and
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– L/K is wildly ramified if and only if uL/K > 1.

For example, there exist 7 quadratic extensions of Q2, and their maximal upper rami-

fication breaks are given in the Table A.1. We set G
(u)
K := Gal(Q2/K)(u). It is shown

by Fontaine [Fon85, Section 2, Théorèm 1] that, for any finite flat commutative group

scheme G over K killed by 2n, the group G
(u)
K acts trivial on G(K) for u > eK(n + 1).

This is equivalent to say that, if we denote by L/K the Galois extension corresponding
to the kernel of the GK-action on G(K), then Gal(L/K)(u) is trivial for u > eK(n + 1),
that is, uL/K ≤ eK(n + 1). By applying the result for E[2n], we have uL/Q2

≤ n + 1 for
L = Q2(E[2n]). Since uQ2(µ2n )/Q2

= n for any integer n > 1 (cf. [Ser68, Chap. IV, Sect. 4,
Cor.]), we have

E(Q2(µ2∞))[2n] = E(Q2(µ2n+1))[2n] (3.4)

Let us return to the proof of the second statement of Theorem 1.2 (3). We need the
following lemma.

Lemma 3.6. For an elliptic curve E over Q2 with good ordinary reduction, we have
Ê(Q2(µ2∞))tor ≃ Ē(F2) as abstract groups.

Proof. First we note that Ē(F2) contains the element of order 2 since the Galois group
GQ2 acts on Ē[2] (≃ Z/2Z) trivial. The Hasse bound shows that Ē(F2) is isomorphic to
either Z/2Z or Z/4Z. Thus

a2(E) =

{
1 if Ē(F2) ≃ Z/2Z,
− 1 if Ē(F2) ≃ Z/4Z.

Denote by α (resp. β) the non-unit root (resp. unit root) of the equation T 2−a2(E)T+2 =
0, where a2(E) = 1 + 2 − #Ē(F2). Then GQ2 acts on the Tate module V2(Ê) of Ê by
the Lubin-Tate character χ associated with the uniformizer α by Lemma 3.1. By abuse
of notation we also denote by χ : Q×

2 → Q×
2 the composite of χ (considered as a character

of Gab
Q2
) and the local reciprocity map Q×

2 → Gab
Q2
. Here, Gab

Q2
= Gal(Qab

2 /Q2(µ2∞)) is the

maximal abelian quotient of GQ2 . Then χ(2) = χ(αβ) = β−1 ≡ −a2(E) mod 4. Since the
subgroup of Q×

2 corresponding to Gal(Qab
2 /Q2(µ2∞)) via the local reciprocity map is the

closure of the group generated by 2, we obtain that{
χ ̸≡ 1 mod 4 if Ē(F2) ≃ Z/2Z,
χ ≡ 1 mod 4 if Ē(F2) ≃ Z/4Z

on GQ2(µ2∞ ). Therefore, we see Ê(Qp(µ2∞))[2∞] ≃ Ē(F2) as abstract groups. Since orders

of torsion elements of Ê are power of 2, we finish the proof of the lemma.

Proof of the second statement of Theorem 1.2 (3). Consider an exact sequence

0→ Ê(Qp(µ2∞))tor → E(Qp(µ2∞))tor → Ē(F2)

of GQ2-modules. It follows from Lemma 3.6 that Ê(Qp(µ2∞))tor ≃ Ē(F2) as abstract
groups, and the orders of these groups are 2 or 4 by the Hasse bound. This shows that
E(Q2(µ2∞))tor is isomorphic to one of the groups appearing in the following.

(a)’ G1,k, k ∈ {2, 4, 8, 16},
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(b)’ G2,k, k ∈ {1, 2, 4},

(c) G4,1.

We claim that E(Q2(µ2∞))tor is not isomorphic to G1,16. Assume E(Q2(µ2∞))tor ≃ Z/16Z.
If this is the case, putting M = E(Q2(µ2∞))tor, we have 4M = Ê(Q2(µ2∞))[2∞] and
M/4M = Ē(F2). It follows from Lemma 3.4 that we have an isomorphism Ê(Q2(µ2∞))[2∞] ≃
Ē(F2) of GQ2-modules but this is a contradiction since GQ2 acts on Ê(Q2(µ2∞))[2∞] =
Ê(Q2(µ2∞))[4] (≃ Z/4Z) by the 2-adic cyclotomic character modulo 4.

By the claim above, E(Q2(µ2∞))tor is killed by 23. By (3.4), we see that E(Q2(µ2∞))tor =
E(Q2(µ16))tor. Since we have a descent from Q2(µ2∞) to a (not so large) finite extension
Q2(µ16) of Q2, we can apply a computational approach; by MAGMA calculation with
Algorithm A.1, we can check that some of the groups in (a)’, (b)’ or (c) above appears as
E(Qp(µp∞))tor for some elliptic curve E over Q2 with good ordinary reduction:

• E =33.a3 satisfies E(Q2(µ2∞))tor ≃ G1,4.

• E =15.a5 satisfies E(Q2(µ2∞))tor ≃ G1,8.

• E =33.a1 satisfies E(Q2(µ2∞))tor ≃ G2,1.

• E =15.a2 satisfies E(Q2(µ2∞))tor ≃ G2,4.

• E =15.a1 satisfies E(Q2(µ2∞))tor ≃ G4,1.

For the proof of the theorem, it suffices to show that there is no elliptic curve E over
Q2 with good ordinary reduction such that E(Qp(µp∞))tor is isomorphic to either G1,2 or
G2,2. In the rest of the proof, we denote by χ : GQ2 → Z×

2 the crystalline character defined
by the GQp-action on the p-adic Tate module Tp(Ê) of the formal group associated with
E. We also denote by ψ : GQ2 → Z×

2 the unramified character defined by the GQp-action
on the p-adic Tate module Tp(Ē) of the reduction Ē of E. The Weil pairing shows that
χψ = χ2 where χ2 is the 2-adic cyclotomic character. Thus we have χψ mod 2n = 1 on
GQ2(µ2n ) for each n > 0.

(I) Non-existence of G1,2: If E(Q2(µ2∞))tor ≃ Z/2Z for some elliptic curve E over Q2

with good reduction, it follows from Fontaine’s ramification bound (3.4) that E(Q2(µ2∞))tor =
E(Q2(µ4))tor. Hence, it suffices to show that E(Q2(µ4))tor ̸≃ Z/2Z for any elliptic curve
E over Q2 with good ordinary reduction.

Assume that E(Q2(µ4))tor ≃ Z/2Z for some elliptic curve E overQ2 with good ordinary
reduction. For a suitable choice of a Z/4Z-basis of E[4], the GQ2-action on E[4] is given
by

ρE[4] =

(
χ mod 4 u

0 ψ mod 4

)
: GQ2 → GL2(Z/4Z)

for some map u : GQ2 → Z/4Z.
We claim that

[Q2(E[4]) : Q2] = 16.

Since χ ≡ ψ mod 4 on GQ2(µ4), we may regard H := Gal(Q2(E[4])/Q2(µ4)) as a subgroup
of

G :=

{(
a b
0 a

)
| a ∈ (Z/4Z)×, b ∈ Z/4Z

}
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via ρE[4]. Since E(Q2(µ4)) ̸⊃ E[2], we have u mod 2 ̸= 0 on GQ2(µ4). Thus H con-

tains at least either

(
1 1
0 1

)
or

(
−1 1
0 −1

)
. If we assume that H is generated by one of

these matrices, we find that E(Q2(µ4))) must contain an element of order 4 but this is a
contradiction. Thus we have H = G. Now the claim immediately follows.

By considering from the view point of ramification, we show below that

[Q2(E[4]) : Q2] < 16

holds (of course this is a contradiction). Since ψ is unramified, ψ mod 4 is trivial on
GF where F is the unramified quadratic extension field F of Q2. In particular, we have
χ mod 4 = χ2 mod 4 on GF . Since E(Q2(µ4)) does not contain E[2], we have u mod 2 ̸= 0
on GQ2(µ4). Thus the field L corresponding to the kernel of u mod 2: GQ2 → Z/2Z is a
quadratic extension of Q2. Note that we have L = Q2(E[2]) and

u(GL) ⊂ 2 · Z/4Z. (3.5)

By [Fon85, Section 2, Théorèm 1], the maximal ramification break uL/Q2
of L/Q2 is

at most 2. Hence there are three possibilities for L; L is isomorphic to either L1 =
Q2[x]/(x

2 + 2x + 2) (≃ Q2(µ4)), L2 = Q2[x]/(x
2 + 2x + 6) or F (see Table A.1). Since

E(Q2(µ4)) does not contain E[2], L is isomorphic to either L2 or F .

(i) Suppose L = F . We have

ρE[4] =

(
χ mod 4 u

0 1

)
on GF . Since the order of u(GF ) is at most 2 by (3.5), we see that [Q2(E[4]) : F ] ≤ 4,
which shows [Q2(E[4]) : Q2] ≤ 8 < 16 as desired.

(ii) Suppose L = L2. In this case, the field L(µ4) cotains F by Proposition A.1 (1).
Thus we have

ρE[4] =

(
1 u
0 1

)
on GL(µ4). Since the order of u(GL(µ4)) is at most 2 by (3.5), we see that [Q2(E[4]) :
L(µ4)] ≤ 2, which shows [Q2(E[4]) : Q2] ≤ 8 < 16 as desired.

Therefore, we finish the proof of (I).

(II) Non-existence of G2,2: If E(Q2(µ2∞))tor ≃ Z/2Z × Z/4Z for some elliptic curve
E over Q2 with good reduction, it follows from Fontaine’s ramification bound (3.4) that
E(Q2(µ2∞))tor = E(Q2(µ8))tor. Hence, it suffices to show that E(Q2(µ8))tor ̸≃ Z/2Z ×
Z/4Z for any elliptic curve E over Q2 with good ordinary reduction.

Assume that E(Q2(µ8))tor ≃ Z/2Z×Z/4Z for some elliptic curve E over Q2 with good
ordinary reduction. For a suitable choice of a Z/8Z-basis of E[8], the GQ2-action on E[8]
is given by

ρE[8] =

(
χ mod 8 u

0 ψ mod 8

)
: GQ2 → GL2(Z/8Z)

for some map u : GQ2 → Z/8Z. Here we give some remarks on the character ψ mod 8 and
the map u. By Lemma 3.6 and the assumption that E(Q2(µ2∞)) is of order ≥ 8, we have
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Ē(F2) ≃ Z/4Z. Thus any element of Ē[4] is F2-rational but some element of Ē[8] is not
F2-rational. This gives

ψ mod 4 = 1 on GQ2 and ψ mod 8 ̸= 1 on GQ2(µ8). (3.6)

In particular, ψ mod 8: GQ2 → (Z/8Z)× has values in {1, 5} and hence ψ mod 8: GQ2 →
{1, 5} (⊂ (Z/8Z)×) is the surjective unramified character. By E[2] ⊂ E(Q2(µ8)))tor, we
see that u mod 2 is trivial on GQ2(µ8), that is, u(GQ2(µ8)) ⊂ 2 · Z/8Z. Note that ρE[4] =(
χ2 mod 4 u mod 4

0 1

)
on GQ2 by (3.6). Since E(Q2(µ2∞)) does not contain E[4], it

holds
u mod 4 ̸= 0 on GQ2(µ8). (3.7)

On the other hand, since u mod 4 on GQ2(E[2]) has values in 2 ·Z/4Z, it holds χ(σ)u(σ) ≡
u(σ) mod 4 for any σ ∈ GQ2(E[2]). This gives the fact that u mod 4 on GQ2(E[2]) is a
homomorphism with values in 2 · Z/4Z.

We claim that
[Q2(E[8]) : Q2] = 32.

Since χ ≡ ψ mod 8 on GQ2(µ8), it follows from (3.6) and u(GQ2(µ8)) ⊂ 2 · Z/8Z that we
may regard H := Gal(Q2(E[8])/Q2(µ8)) as a subgroup of

G :=

{(
a b
0 a

)
| a ∈ {1, 5} ⊂ (Z/8Z)×, b ∈ 2 · Z/8Z

}

via ρE[8]. By (3.7), H contains at least either

(
1 2
0 1

)
or

(
5 2
0 5

)
. If H is generated by

one of these matrices, we find that E(Q2(µ8)) must contain an element of order 8 but this
is a contradiction. Thus we have H = G. Now the claim immediately follows.

As we have done in the case (I), by considering from the view point of ramification,
we show below that

[Q2(E[8]) : Q2] < 32

holds (of course this is a contradiction). First we note that Q2(E[2]) is a subfield of Q2(µ8)
since E(Q2(µ8)) contains E[2]. By (3.7) and the fact that u mod 4 on GQ2(E[2]) is a homo-
morphism with values in 2 ·Z/4Z, we know that the homomorphism u mod 4: GQ2(E[2]) →
2 · Z/4Z is surjective. We denote by L the quadratic extension of Q2(E[2]) which corre-
sponds to the kernel of this homomorphism. By definition of L, L is a quadratic extension
of Q2(E[2]) and we have

u(GL) ⊂ 4 · Z/8Z. (3.8)

Since L is a subfield of Q2(E[4]), it follows from Fontaine’s ramification bound (3.4) that
uL/Q2

≤ 3. Furthermore, L does not contained in Q2(µ8). In fact, if L is a subfield of
Q2(µ8), then ρE[4] must be trivial on GQ2(µ8), which shows E(Q2(µ8)) contains E[4] but
this is a contradiction. Since Q2(E[2]) is now contained in Q2(µ8) and is of degree at most
2 over Q2, it follows (3.4) again that Q2(E[2]) is either Q2 or Q2(µ4) (see Table A.1). We
make a case distinction depending on which of these two situations occurs.

(II-1) Suppose that Q2(E[2]) = Q2. Since ρE[4] =

(
χ2 mod 4 u mod 4

0 1

)
on GQ2 by

(3.6), we have Q2(E[4]) = L(µ4). We recall that L satisfies all the following properties:
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(a) L is a quadratic extension of Q2,

(b) uL/Q2
≤ 3 and

(c) L does not contained in Q2(µ8).

Note that uL/Q2
is not equal to one since L/Q2 is either unramified or wildly ramified.

• Suppose uL/Q2
= 0. If this is the case, we have L = F and ρE[8] =

(
χ2 mod 8 u

0 1

)
on GF by (3.6). Thus it follows from (3.8) that we have [Q2(E[8]) : F ] ≤ 8, which
shows [Q2(E[8]) : Q2] ≤ 16 < 32 as desired.

• Suppose uL/Q2
= 2. By (a), (b) and (c) above, we find that L is isomorphic to L2 =

Q2[x]/(x
2 +2x+6) (see Table A.1). In particular, L(µ4) contains F by Proposition

A.1 (1). We have ρE[8] =

(
χ2 mod 8 u

0 1

)
on GL(µ4) by (3.6). Thus it follows from

(3.8) that we have [Q2(E[8]) : L(µ4)] ≤ 4, which shows [Q2(E[8]) : Q2] ≤ 16 < 32 as
desired.

• Suppose uL/Q2
= 3. There exist only 4 possibility for such L. Explicitly, L is

isomorphic to one of the following (see Table A.1).

L3 = Q2[x]/(x
2 + 2), L4 = Q2[x]/(x

2 + 10),

L5 = Q2[x]/(x
2 + 4x+ 2), L6 = Q2[x]/(x

2 + 4x+ 10).

For each of the fields, their composite with F (µ4) contains µ8 by Proposition A.1 (2).

This implies that LF (µ4) contains µ8. Hence we have ρE[8] =

(
1 u mod 8
0 1

)
on

GLF (µ4) by (3.6). Thus it follows from (3.8) that we have [Q2(E[8]) : LF (µ4)] ≤ 2,
which shows [Q2(E[8]) : Q2] ≤ 16 < 32 as desired.

(II-2) Suppose that Q2(E[2]) = Q2(µ4). Since ρE[4] =

(
1 u mod 4
0 1

)
on GQ2(µ4)

by (3.6), we have Q2(E[4]) = L. In particular, L is a Galois extension of Q2. Here we
summarize properties of L.

(a) L is a Galois extension over Q2 of degree 4 with L ⊃ Q2(µ4),

(b) uL/Q2
≤ 3 and

(c) L does not conatined in Q2(µ8).

We claim that either L = F (µ4) or LF ⊃ Q2(µ8). If L/Q2(µ4) is unramified, then we have
L = F (µ4). Suppose that L/Q2(µ4) is totally ramified. Then L is a totally ramified Galois
extension over Q2 of degree 4. By Q2(µ4) ⊂ L = Q2(E[4]), Fontiane’s ramification bound
implies 2 ≤ uL/Q2

≤ 3. In fact, there does not exist4 a totally ramified Galois extension
over Q2 of degree 4 with maximal ramification break 2. Thus we have uL/Q2

= 3. There

4This is easily checked as in the database of p-adic fields in LMFDB [LMF25].
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exist only 4 possibilities of such L; L is isomorphic to one of the followings (see Table
A.2).

M1 = Q2[x]/(x
4 + 2x2 + 4x+ 2), M2 = Q2[x]/(x

4 + 2x2 + 4x+ 10),

M3 = Q2[x]/(x
4 + 4x3 + 2x2 + 4x+ 6), M4 = Q2[x]/(x

4 + 4x3 + 2x2 + 4x+ 14).

In each case5, we know that LF contains µ8 by Proposition A.1 (3). Thus the claim
follows.

• Suppose L = F (µ4). We have ρE[8] =

(
1 u
0 1

)
on GF (µ8) by (3.6). Thus it follows

from (3.8) that we have [Q2(E[8]) : F (µ8)] ≤ 2, which shows [Q2(E[8]) : Q2] ≤ 16 <
32 as desired.

• Suppose LF ⊃ Q2(µ8). We have ρE[8] =

(
1 u
0 1

)
on GLF by (3.6). Thus it follows

from (3.8) that we have [Q2(E[8]) : LF ] ≤ 2, which shows [Q2(E[8]) : Q2] ≤ 16 < 32
as desired.

Therefore, we finish the proof of the theorem.

Remark 3.7. As we have seen in the arguments of (I) and (II) above, it holds that
E(Q2(µ4))tor ̸≃ Z/2Z and E(Q2(µ8))tor ̸≃ Z/2Z × Z/4Z for any elliptic curve E over Q2

with good ordinary reduction.

Next we show the first statement of Theorem 1.2 (3).

Proof of the first statement of Theorem 1.2 (3). By Fontaine’s ramification bound (3.4),
any element of E(Q2(µ2∞))tor killed by 2n is rational over Q2(µn+1) for any n. Thus, by
the second statement of Theorem 1.2 (3), which has already been proved, it suffices to
show E(Q2(µ2∞))[2∞] = E(Q2(µ8))[2

∞] if E(Q2(µ2∞))[2∞] is isomorphic to either Z/8Z
or Z/2Z×Z/8Z. If this is the case, by Lemma 3.6 and the condition #E(Q2(µ2∞))[2∞] > 4,
we have Ē(F2) ≃ Z/4Z. Thus the GQ2-action on E[4] is given by

ρE[4] =

(
χ2 mod 4 u

0 1

)
: GQ2 → GL2(Z/4Z) (3.9)

for some map u : GQ2 → Z/4Z.
First we consider the case where E(Q2(µ2∞))[2∞] ≃ Z/8Z. Since E(Q2(µ2∞))[2∞] does

not contain E[2], it holds u mod 2 ̸= 0 on GK . In particular, ρE[4](GQ2(µ4)) is generated by(
1 1
0 1

)
.We assume that Q2(E[4]) ⊃ Q2(µ8). If this is the case, ρE[4](GQ2(µ8)) is generated

by

(
1 2
0 1

)
since it is the subgroup of index 2 in ρE[4](GQ2(µ4)). Thus we see that E(Q2(µ8))

contains Z/2Z×Z/4Z but this contradicts the assumption E(Q2(µ2∞))[2∞] ≃ Z/8Z. Thus
we obtain Q2(E[4]) ̸⊃ Q2(µ8). This is equivalent to say that Q2(E[4])∩Q2(µ2∞) = Q2(µ4).
Now we claim6

Q2(E[8]) ∩Q2(µ2∞) = Q2(µ8).

5In fact, since L contains µ4 but does not contain µ8, we obtain the fact that L = M2.
6This claim follows immediately from Proposition 2.11 of [BK01]. Our proof of the claim here follows

their arguments.
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Consider a homomorphism Gal(Q2(E[8])/Q2)→ GL2(Z/8Z) coming from the GQ2-action
on E[8]. Since the restriction of this map to Gal(Q2(E[8])/Q2(E[4])) has values in the
kernel of the mod 4 reduction GL2(Z/8Z) → GL2(Z/4Z), it holds that the Galois group
of the extension Q2(E[8]) over Q2(E[4]) is of exponent 2. Thus the Galois group of the
extension Q2(E[8]) ∩ Q2(µ2∞) over Q2(E[4]) ∩ Q2(µ2∞) is also of exponent 2. Let n ≥ 3
be an integer such that Q2(E[8]) ∩ Q2(µ2∞) = Q2(µ2n). By the condition Q2(E[4]) ∩
Q2(µ2∞) = Q2(µ4), the Galois group of the extension Q2(E[8])∩Q2(µ2∞) over Q2(E[4])∩
Q2(µ2∞)) is isomorphic to Z/2n−2Z. Since this is of exponent 2, we have n = 3. Thus the
claim is now proved. Since E(Q2(µ2∞))[2∞] is killed by 8, it follows from the claim that
we have

E(Q2(µ2∞))[2∞] = E(Q2(E[8]) ∩Q2(µ2∞))[2∞] = E(Q2(µ8))[2
∞]

as desired.
Next we consider the case where E(Q2(µ2∞))[2∞] ≃ Z/2Z × Z/8Z. Assume that

E(Q2(µ2∞))[2∞] ̸= E(Q2(µ8))[2
∞]. Since Q2(E[2]) is a subfield of Q2(µ2∞), it follows

that Q2(E[2]) is either Q2 or Q2(µ4). In particular, we have Q2(E[2]) ⊂ Q2(µ8). Hence
E(Q2(µ8))[2

∞] is isomorphic to either Z/2Z × Z/2Z or Z/2Z × Z/4Z. By Remark 3.7,
we have E(Q2(µ8))[2

∞] ≃ Z/2Z × Z/2Z. However, (3.9) implies that E(Q2(µ8))[4] must
contain some element of order just 4. This is a contradiction. Therefore, we conclude
E(Q2(µ2∞))[2∞] = E(Q2(µ8))[2

∞] as desired.

Remark 3.8. We should note that the field Qp(µp) (resp. Q2(µ8)) in the first statement
of Theorem 1.2 (2) (resp. Theorem 1.2 (3)) is “the best possible” in the sense that, for
each odd prime p (resp. p = 2), there exists an elliptic cureve E over Qp with good
ordinary reduction such that the definition field of E(Qp(µp∞))tor is Qp(µp) (resp. Q2(µ8)).
Examples for such situations are as follows.

– Suppose p ≥ 3 and take an elliptic curve Ē such that Ē(Fp) ̸= 0 (such Ē exists for
any p). Let E/Qp

be the canonical lift of Ē. Then, E[p] is isomorphic to Fp(1)⊕Fp as
a GQp-representation (see the argument of Section 2.1.1), where GQp is the absolute
Galois group of Qp. Thus Qp(E[p]) = Qp(µp). On the other hand, the prime-to-p
part of E(Qp(µp∞)) coincides with that of E(Qp) by the Néron-Ogg -Shafarevich
criterion. Thus, the definition field of E(Qp(µp∞))tor is Qp(µp).

– The definition field of E(Q2(µ2∞))tor for E =15.a7 is Q2(µ8).

We end this section by proving Theorem 1.3.

Proof of Theorem 1.3. Since the group E(Q2(µ4))tor is a subgroup of E(Q2(µ2∞))tor, it is
isomorphic to a subgroup of the groups listed in (I)′∞. Since the kernel of the reduction
map E[2] → Ē[2] is rational over Q2, we know that E(Q2)tor (and also E(Q2(µ4))tor)
are not zero. Furthermore, by Remark 3.7, we also have E(Q2(µ4))tor ̸≃ Z/2Z. On the
other hand, for each group Gi,j in (I)′2, MAGMA computations with Algorithm A.1 give
examples of E such that E(Q2(µ4))tor ≃ Gi,j as follows.

• E =15.a1 satisfies E(Q2(µ4))tor ≃ G1,4,

• E =33.a2 satisfies E(Q2(µ4))tor ≃ G2,1,
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• E =15.a2 satisfies E(Q2(µ4))tor ≃ G2,2,

• E =15.a8 satisfies E(Q2(µ4))tor ≃ G2,4,

• E =15.a5 satisfies E(Q2(µ4))tor ≃ G4,1.

Therefore, to finish the proof of the theorem, it suffices to show that E(Q2(µ4))tor is
not isomorphic to G1,8 = Z/8Z. Assume E(Q2(µ4))tor ≃ Z/8Z. By Theorem 1.2
(3), E(Q2(µ8))tor is isomorphic to Z/8Z or Z/2Z × Z/8Z. By assumption, we have
E(Q2(µ4))tor ̸⊃ E[2] and thus Q2(E[2]) is not contained in Q2(µ4). Since the extension
Q2(E[2])/Q2 is of degree at most 2 and uQ2(E[2])/Q2

≤ 2, it holds that Q2(E[2]) is F or L2

(see Table A.1). In both cases, Q2(E[2]) is not a subfield of Q2(µ8). Thus E(Q2(µ8))tor
does not contain E[2]. Therefore, we obtain

E(Q2(µ4))tor = E(Q2(µ8))tor ≃ Z/8Z.

Let χ : GQ2 → Z×
2 and ψ : GQ2 → Z×

2 be the crystalline characters obtained by the
GQ2-action on the 2-adic Tate modules T2(Ê) and T2(Ē), respectively. Consider the GQ2-
action on E[8]. Identifying E[8] = Z/8Z×Z/8Z by a suitable choice of Z/8Z-basis of E[8],
the GQ2-action on E[8] is given by a continuous homomorphism ρE[8] : GQ2 → GL2(Z/8Z)
with the matrix form

ρE[8] =

(
χ mod 8 u

0 ψ mod 8

)
(3.10)

for some map u : GQ2 → Z/8Z. Let us study subgroups ρE[8](GQ2(µ8)) and ρE[8](GQ2(µ4))
of GL2(Z/8Z). Since we have Ē(F2) ≃ Z/4Z by Lemma 3.6, the image of ψ mod 8 on
GQ2 is {1, 5} ⊂ (Z/8Z)×. In particular, ψ mod 8 is an unramified character with kernel
GF . Since χψ mod 8 is trivial on GQ2(µ8), we see χ ≡ ψ mod 8 on GQ2(µ8). We find that
ρE[8](GQ2(µ8)) is a subgroup of

H :=

{(
a b
0 a

)
| a = 1, 5 ∈ Z/8Z and b ∈ Z/8Z

}
The order of the group H is 16. We note that u mod 2 is not trivial on GQ2(µ8) since
E(Q2(µ8))tor does not contain E[2]. Thus there exist a ∈ Z/8Z and an odd b ∈ Z/8Z

such that

(
a b
0 a

)
∈ ρE[8](GQ2(µ8)). Since the group generated by such a matrix

(
a b
0 a

)
is either the group H1 generated by

(
1 1
0 1

)
or the group H2 generated by

(
5 1
0 5

)
, we

find that ρE[8](GQ2(µ8)) is either H1, H2 or H. By the facts that ψ mod 8 is not trivial on
GQ2(µ8) and E(Q2(µ8))tor ≃ Z/8Z, we obtain that ρE[8](GQ2(µ8)) is not equal to H1 and
H, that is,

ρE[8](GQ2(µ8)) = H2 = ⟨
(
5 1
0 5

)
⟩ (3.11)

and E(Q2(µ8))[2
∞] = ⟨

(
1
4

)
⟩. Next we consider ρE[8](GQ2(µ4)). We find that ρE[8](GQ2(µ4))

is a subgroup of

G :=

{(
a b
0 c

)
| a, c = 1, 5 ∈ Z/8Z and b ∈ Z/8Z

}
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by (3.10) and the fact that ψ and χ2 on GQ2(µ4) have values in {1, 5} ⊂ (Z/8Z)×.
The order of the group G is 32. We see that ρE[8](GQ2(µ8)) is a normal subgroup of
G, the quotient G/ρE[8](GQ2(µ8)) is isomorphic to Z/2Z × Z/2Z and G/ρE[8](GQ2(µ8))

is generated by the classes with respect to

(
5 0
0 1

)
and

(
1 0
0 5

)
. Since the quotient

ρE[8](GQ2(µ4))/ρE[8](GQ2(µ8)) is a subgroup of G/ρE[8](GQ2(µ8)) of order 2, we find that
ρE[8](GQ2(µ4)) is one of the following groups;

⟨
(
5 0
0 1

)
,

(
5 1
0 5

)
⟩, ⟨

(
1 0
0 5

)
,

(
5 1
0 5

)
⟩, ⟨

(
5 0
0 5

)
,

(
5 1
0 5

)
⟩.

Since we now have E(Q2(µ4))[2
∞] = E(Q2(µ8))[2

∞] = ⟨
(
1
4

)
⟩, we find

ρE[8](GQ2(µ4)) = ⟨
(
1 0
0 5

)
,

(
5 1
0 5

)
⟩. (3.12)

It follows from (3.11) and (3.12) that there exists σ0 ∈ GQ2(µ4) ∖ GQ2(µ8) such that

ρE[8](σ0) =

(
1 0
0 5

)
. Since ψ(σ0) ≡ 5 mod 8, we have

σ0 ̸∈ GF . (3.13)

On the other hand, as we have already checked, the field Q2(E[2]) is either F or L2 (see
Table A.1). In each case, Q2(E[2], µ4) contains F by Proposition A.1 (1). Since ρE[8](σ0)
mod 2 is trivial, we have σ0 ∈ GQ2(E[2]), which gives σ0 ∈ GQ2(E[2]) ∩GQ2(µ4) ⊂ GF . This
contradicts (3.13). Therefore, we conclude E(Q2(µ4)) ̸≃ Z/8Z as desired and this finishes
the proof.

A Appendix : Data and algorithm

In this section, we present the data obtained by using the computer algebra system
MAGMA [BC06].

A.1 Quadratic and quartic extensions of Q2

In this subsection, we give the tables of quadratic and certain quartic extensions of Q2

for using to our proof in subsection 3.2. They can be easily checked by LMFDB database
[LMF25]. Tabel A.1 shows the defining polynomials for all the quadratic extensions of
Q2. Tabel A.2 shows the defining polynomials for all the quartic extensions L/Q2 with
uL/Q2

= 3. In these tables, the integer f presents the inertia degree, e the ramification
index, uL/Q2

the maximal upper ramification break and µn the roots of unity which are
included in L.
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L Polynomial f e uL/Q2
µn

F x2 + x+ 1 2 1 0 µ6
L1 x2 + 2x+ 2 1 2 2 µ4
L2 x2 + 2x+ 6 1 2 2 µ2
L3 x2 + 2 1 2 3 µ2
L4 x2 + 10 1 2 3 µ2
L5 x2 + 4x+ 2 1 2 3 µ2
L6 x2 + 4x+ 10 1 2 3 µ2

Table A.1: The quadratic extensions of Q2

L Polynomial f e uL/Q2
µn

M1 x4 + 2x2 + 4x+ 2 1 4 3 µ8
M2 x4 + 2x2 + 4x+ 10 1 4 3 µ4
M3 x4 + 4x3 + 2x2 + 4x+ 6 1 4 3 µ2
M4 x4 + 4x3 + 2x2 + 4x+ 14 1 4 3 µ2

Table A.2: The quartic Galois extensions of Q2 with uL/Q2
= 3

We can easily check the equalities of the composite fields by using MAGMA as follows:

Proposition A.1. In Table A.1 and A.2, we have the equalities:

(1) L1L2 = F (µ4).

(2) L3F (µ4) = L4F (µ4) = L5F (µ4) = L6F (µ4) = F (µ8).

(3) FM1 = FM2 = FM3 = FM4 = F (µ8).

A.2 Algorithm for computing #E(K)[n]

In this subsection, we give an algorithm for calculating the order #E(K)[n] for given K,
E and n, where K is a finite extension of Qp, E is an elliptic curve over K and n > 1 is
an integer. In the case where K is an algebraic number filed, we can compute the torsion
subgroup E(K)tor by the intrinsic function TorsionSubgroup(E) which is implemented
in MAGMA. However, this intrinsic function is not valid for a p-adic field K. In spite
of such a function, we use the several functions that they are implemented in MAGMA
and valid even for a p-adic field. First, the function DivisionPolynomial(E, n) gives a
polynomial whose roots are the x-coordinates of the points of E(K)[n] for a p-adic field
K, an elliptic curve E and an integer n > 1. Second, the function Roots(f) gives the
roots of a given polynomial f over K. Finally, the function Points(E(K), x0) gives the
points of E whose x-coordinate equals x0. By combining these functions, we can compute
the order #E(K)[n] as follows:
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Algorithm A.1 Calculate #E(K)[n]

Require: n > 1, K, E
Ensure: t = #E(K)[n]
t← 1
f ← DivisionPolynomial(E, n)
R← Roots(f,K)
r ← #R
if r ̸= 0 then
for x ∈ R do
t← t+#Points(E(K), x)

end for
end if
return t

A.3 List of torsion subgroups

In this subsection, we give a list of possible candidates that they actually occur for tor-
sion subgroups of E(Qp) and E(Qp(µp∞)). In each list, we use Cremona’s database of
elliptic curves. Hence the label of each elliptic curve is presented as Cremona label, which
is different from the one used in LMFDB. We use Algorithm A.1 which can compute
#E(K)[n] for given K, E and n > 1. As in the proof of Theorem 1.2, it is enough to com-
pute E(Qp(µp)) (resp. E(Q2(µ16))) instead of computing E(Qp(µp∞)) for an odd prime p
(resp. for p = 2)7.

E(Q2) Label

G1,2 15a5
G1,4 15a7
G1,8 15a4
G2,1 15a2
G2,2 15a1

E(Q3) Label

G1,1 26a2
G1,2 14a3
G1,3 26a1
G1,5 11a1
G1,6 14a1

E(Q5) Label

G1,1 11a2
G1,2 38b2
G1,3 19a1
G1,4 39a2
G1,5 11a1
G1,7 26b1
G1,8 17a3
G1,9 26a1
G1,10 38b1
G2,1 39a1
G2,2 17a1

E(Q7) Label

G1,1 26b2
G1,3 104a1
G1,4 17a1
G1,5 38b1
G1,6 20a1
G1,7 26b1
G1,9 19a2
G1,10 11a1
G1,11 75a1
G1,12 30a1
G1,13 57a1
G2,1 17a2
G2,3 30a2
G3,1 19a1

Table A.3: Examples of E(Qp)tor with good ordinary reduction

7In case p = 2, we actually have E(Q2(µ2∞))tor = E(Q2(µ8))tor, as stated in Theorem 1.2.
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E(Q2) Label

G1,1 67a1
G1,3 19a1
G1,5 11a1

E(Q3) Label

G1,1 140b1
G1,4 17a1
G2,1 17a2
G1,7 26b1

E(Q5) Label

G1,6 14a1

E(Q7) Label

G1,8 15a4
G2,2 15a1

Table A.4: Examples of E(Qp)tor with good supersingular reduction

E(Q2(µ2∞)) Label

G1,4 33a3
G1,8 15a5
G2,1 33a1
G2,4 15a2
G4,1 15a1

E(Q3(µ3∞)) Label

G1,2 56b1
G1,3 26a2
G1,5 11a1
G1,6 14a3
G3,1 26a1
G3,2 14a1

E(Q5(µ5∞)) Label

G1,2 46a1
G1,3 19a1
G1,4 39a2
G1,5 11a2
G1,7 26b1
G1,8 17a3
G1,9 26a1
G1,10 38b2
G2,1 39a1
G2,2 17a1
G5,1 11a1
G5,2 38b1

E(Q7(µ7∞)) Label

G1,3 104a1
G1,4 17a1
G1,5 38b1
G1,6 20a1
G1,7 26b2
G1,9 19a2
G1,10 11a1
G1,11 75a1
G1,12 30a1
G1,13 57a1
G2,1 17a2
G2,3 30a2
G3,1 19a1
G7,1 26b1

Table A.5: Examples of E(Qp(µp∞))tor with good ordinary reduction

E(Q2(µ4)) Label

G1,4 15a5
G2,1 33a1
G2,2 15a2
G2,4 15a4
G4,1 15a1

Table A.6: Examples of E(Q2(µ4))tor with good ordinary reduction
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E(Q2(µ2∞)) Label

G1,1 67a1
G1,3 19a1
G1,5 11a1

E(Q3(µ3∞)) Label

G1,1 140b1
G1,4 17a1
G2,1 17a2
G1,7 26b1

E(Q5(µ5∞)) Label

G1,6 14a1

E(Q7(µ7∞)) Label

G1,8 15a4
G2,2 15a1

Table A.7: Examples of E(Qp(µp∞))tor with good supersingular reduction
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