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Abstract

In this paper, for every prime p and every 0 < n < oo, we classify the structure
of the torsion subgroup of the group of Q,(u,»)-rational points of elliptic curves over
Qp with good reduction, where p,» is the set of the p"-th roots of unity.
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1 Introduction

It is well-known as the Mordell-Weil theorem that the group of K-rational points E(K) on
an elliptic curve E over a number field K is finitely generated. In particular, the torsion
subgroup E(K)ioy of E(K) is finite. In 1996, Merel [Mer96] proved that there exists an
upper bound on the size of E(K )i, which depends only on the degree of K. Thus, for a
fixed integer d > 0, there exist only finitely many possibilities (up to isomorphism) for the
groups F(K )ior where K ranges over a number field of degree d and F ranges elliptic curves
over K. To give a classification of such groups for given d is one of the crucial problems
for arithmetic theory of elliptic curves. A landmark theorem concerning this problem is
a theorem of Mazur [Maz78], which studies the case d = 1 (i.e. K = Q); he showed that
if F is an elliptic curve over Q, then its torsion subgroup F(Q), is isomorphic to one of
the following 15 groups
Z/nZ (n=1,2,...,10,12),
Z)27 X Z/2mZ (m = 1,2,3,4).

After Mazur’s paper, Kammieny [Kam92] and Kenku and Momose [KM88] gave an answer
of the classification problem for d = 2, and the classification for d = 3 was given by Derickx,
Etropolski, Morrow, van Hoeij, and Zureick-Brown [DEvH+21].

This paper begins by establishing a p-adic analogue of Mazur’s theorem in the case of
good reduction. Let us introduce some notation needed for our results. We denote by I
the set of pairs (k,m) of positive integers such that m | p — 1 and (\/p — 1)* < km? <
(v/p+1)% We also denote by Ioq the subset of I consisting of elements (k,m) such that
km? # 1 mod p. Our first main result in this paper is as follows.

Theorem 1.1. Let E be an elliptic curve over Q, with good reduction.

(1) Assume p > 3. Then, E(Qp)tor is isomorphic to one of the following groups.

{ Z]/mZ x L/mkZ, (m,k) €I,
0.

FEach of these groups appears as E(Qp)ior for some elliptic curve E over Q, with
good reduction.
Moreover, if E has good ordinary reduction (resp. good supersigular reduciton), then
E(Qp)tor s isomorphic to one of the following groups in (1) (resp. (1I)).
Z)/mZ x L/mkZ, (m,k) € Iyq,
(1) 0.

0,Z/47,2)77,7./27 x 7./2Z, if p =13,
(IT) < Z/(1+p)Z, if p=1mod 4
Z)(1+p)Z,Z/2Z x Z/LZ  if p#3, p=3 mod 4.

Each of these groups in (I) (resp. (II)) appears as E(Qp)tor for some elliptic curve
E over Qp, with good ordinary reduction (resp. good supersingular reduction).

(2) Assume p =2. Then, E(Q2)tor s isomorphic to one of the following groups.
7/mi. m=1,2,3,4,5,8,
L)27 x Z)2KZ, Kk =1,2.
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Each of these groups appears as E(Q2)ior for some elliptic curve E over Qg with
good reduction.

Moreover, if E has good ordinary reduction (resp. good supersigular reduciton), then
E(Q2)tor 1s isomorphic to one of the following groups in (I)" (resp. (II)).

(1Y Z/mZ, m=2,4,8
Z)27 x 7)2kZ, k=1,2

(I1Y 0,7/3%,7/57.

FEach of these groups in (I) (resp. (I1)") appears as E(Q2)tor for some elliptic curve
E over Qg with good ordinary reduction (resp. good supersingular reduction).

Before stating our second result, it should be better to mention some known results on
the group structures of elliptic curves over (infinite degree) abelian extensions of Q. Chou
[Cho19] determined the possible torsion subgroups of E(Q?®") for an elliptic curve E over
Q and established the sharp bound #E(Q*) < 163. Building on Chou’s results, Guzvié
and Vukorepa [GV23] classified all possible torsion subgroups of E(Q(fup~)) in the case
p=2,3,5,7 and 11. where p,» is the group of p"-th roots of unity. We consider a p-adic
analogue of these results. Let E be an elliptic curve over @, with good reduction. As an
analogue of Chou ~ s result, it is natural to study the group structure of E (Q;b)wr, where
Q;b denotes the maximal abelian extensions of Q,. However, we immediately see that this
group is always infinite (indeed, the reduction map induces an isomorphism between the
prime-to-p parts of E (ng)tor and that of E(F,), where E denotes the reduction of E and
[, is the separable closure of F,. So we study the torsion subgroup of E(Qp(upe)), which
may be regarded as a p-adic analogue of the work of Guzvi¢ and Vukorepa. The second
main theorem below forms the central part of this paper.

Theorem 1.2. Let E be an elliptic curve over Q.

(1) If E has good supersingular reduction, then it holds E(Qp(tp=))tor = E(Qp)tor-
(Thus the possible group structures of this group are given in Theorem 1.1.)

(2) Assume p > 3 and assume also that E has good ordinary reduction. Then,

— it holds E(Qp(pp=))tor = E(Qp(tp) )tor-
— Moreover, E(Qp(ppo))tor is isomorphic to one of the following groups in (I)sc.

Z/mZ x Z])mkZ, (m,k) € Iyaq,
(e § Z/pZ x L]pZ,
Z/pZ x 1] 2pZ if p<5.

Each of these groups in (I)s appears as E(Qp(fp>=))tor for some elliptic curve
E over Q, with good ordinary reduction.

(3) Assume p =2 and assume also that E has good ordinary reduction. Then,

— it holds E(Q2 (N2°°))tor = E(QQ(M8>)tor-



— Moreover, E(Qa(p250))tor 8 isomorphic to one of the following groups in (I)!

Z/mZ, m=4,8
(), { ZJ2Z x Z)2KZ, k=1,4
Z/AZ x ZJAZ.

FEach of these groups in (I)., appears as E(Qz(u2))tor for some elliptic curve
E over Qg with good ordinary reduction.

As a consequence, we obtain explicit upper bounds for E(Qp)tor and E(Qp(tpe))tor
when E is an elliptic curve over Q, with good ordinary reduction (resp. good supersingular
reduction) as stated in (I) (resp. (II)) below. All these bounds are sharp:

P’ (p=7),
(I) #E(Qp)tor < (VP +1)%, #E(Qp(ppee))tor < 2% (p=3,5),
16 (p=2).
IL+p (p>5),
(II) #E(@p)tor = #E(Qp(ﬂpw))tor < 7 Ep = 337
5} p=

Note that Theorem 1.1 and Theorem 1.2 above give the classifications of the possi-
ble group structures of E(Qp(upn))tor for all primes p and 0 < n < oo except the case
where (p,n) = (2,2) and F has good ordinary reduction. The classification result on the
exceptional case is as follows.

Theorem 1.3. Let E be an elliptic curve over Qs with good ordinary reduction. Then,
/

E(Q2(a))tor is isomorphic to one of the following groups in (I)s .
7,)4Z,
(DY 4 7)27 % 22k, k=1,2,4
ZJAZ x Z]AZ.

/

FEach of these groups in (I)4 appears as E(Qa(ua))tor for some elliptic curve E over Q2
with good ordinary reduction.

Therefore, we conclude that, for all primes p and 0 < n < oo, we obtained the complete
classifications of the groups those arise as E(Qy(ppn))tor for some elliptic curve E over Q,
with good reduction.

Corollary 1.4. Assume p > 3. Let Ko, be the cyclotomic Zy,-extension of Q,. Then, we
have E(Kx)tor = E(Qp)tor for an elliptic curve E over Q, with good reduction.

Proof. If E has good supersingular reduction, the result is clear by Theorem 1.2 (1). In
the case where E has good ordinary reduction, the result follows from Theorem 1.2 (2);
E(Koo)tor = E(Koo)tor N E(Qp(ﬂp"o))tor = E(Koo)tor N E(@p(ﬂp))tor = E(Qp)tor- O

The organization of the paper is as follows. In Section 2, we give a proof of Theorem
1.1. The arguments differs significantly depending on whether p is odd or p = 2. When
p is odd, we use theoretical arguments involving the theory of canonical lifts. In case
p = 2, by using MAGMA [BCO06] and Algorithm A.1l, we explicitly find elliptic curves



listed in the Cremona database with prescribed torsion subgroups. Section 3 is the main
part of this paper. In this seciton, we give proofs of Theorem 1.2 and Theorem 1.3. As in
Section 2, the arguments also differ depending on whether p is odd or p = 2. For the case
where p is odd, the key is Proposition 3.3, which gives a classification of p-parts of the
torsion subgroup of E(Qp(up~)). For the case where p = 2, theoretical perspectives such
as ramification theory play an even more important role in addition to verification using
the Cremona database and computations by MAGMA. In Appendix A, we provide data
on certain extensions of Q2 and some elliptic curves that are required for our proof. The
labels of elliptic curves in this paper follow the convention used in the Cremona database.
The data available in the LMFDB [LMF25] is also useful for referencing elliptic curves;
however, note that the labeling in the LMFDB differs from that of the Cremona label.

Notation : In this paper, p-adic fields are finite extension fields of Qp. If F' is an algebraic
extension of Q,, we denote by G'r the absolute Galois group Gal(Q,/F') of F'. We also
denote by p,» the set of p"-th roots of unity in @p and fipoo 1= Up>obpm.

2 Group structures of E(Q))ior

The aim of this section is to prove Theorem 1.1, which gives the complete list of the groups
those arise as the torsion subgroups of the Mordell-Weil groups of elliptic curves over Q,
with good reduction. Theorem 1.1 is a combination of Theorem 2.2 and Theorem 2.3
below.

In the rest of this paper, we use the following notations.

e For an elliptic curve E over Q, with good reduction, we denote by F and E the formal
group over Z, associated with I and the reduction of F, respectively. We denote by
Ty,(E) == Jm E[p"] the p-adic Tate module of E and put V,(E) = T,(E) ®z, Qp.

Similarly, we often use notations Tj,(E), V,,(E), Tp(E) and V,(E).

e For a field K, we denote by £(K) the set of the isomorphism classes of groups which
are isomorphic to the torsion subgroup E(K)ioy of E(K) for some elliptic curve E
over K.

e For integers m,k > 1, we set Gy, , := Z/mZ x Z/mkZ.

e We denote by I the set of pairs (k,m) of positive integers such that m | p — 1 and

(VP—1)? <km? < (/p+1)>~

The set £(F,) was well-studied by Hasse, Deuring,..., Riick and Volock. The following
statement is due to [BPS12, Lemma 3.5].

Theorem 2.1. £(F,) = {Gp, i | (m, k) € I'}.

We denote by Egood(Qp) (resp. Eord(Qp), resp. E(Qp)) the subset of £(Q,) consisting
of isomorphism classes of E(Q))ior for some elliptic curve E over Q,, with good reduction
(resp. good ordinary reduction, resp. good supersingular reduction). We clearly have

ggood (Qp) = 5ord (@p) U 5ss (Qp)



Let E be an elliptic curve over Q, with good reduction. We have an exact sequence
0 — E(Q,) = E(Qp) = E(F,) — 0

of modules (cf. [Sil09, Section VIL.2])!. Since the pro-p group E(Q,) has no torsion points if
p > 3 (cf. [Sil09, Section IV, Proposition 3.2 and Theorem 6.1]) and E(F,)[p™] = E(F,)[p]
by the Hasse bound, the reduction map induces an isomorphism

E(Qp)y =~ E(Fp)p’ (2.1)

and an injection )

E(Qp)[p™] = E(Fy)[p] ifp=3. (2.2)
Here, for a module M, we denote by M [p"] the submodule of M killed by p™, M[p™] :=
Up>oM|[p"], and also denote by M,, the prime-to-p part of M.
2.1 The case p > 3

We study Eord(Qp), Ess(Qp) and Egood(Qp) for an odd prime p. We use the following
notations.

e We denote by I, (C I) the set of pairs (k, m) of positive integers such that m | p—1,
(vVp—1)? < km? < (/p+1)? and km? # 1 mod p.

e We denote by Is (C I) the set of pairs (k,m) of positive integers such that m | p—1,
(vp—1)? < km? < (/p+1)? and km? = 1 mod p.

By definition we have I = I,.q U Igs. A straight forward calculation shows that the set I
coincides with {(1,1),(1,4),(1,7),(2,1)} (resp. {(1,1+ p)}, resp. {(1,1+ p), (2, %)}) if
p =3 (resp. p =1 mod 4, resp. p # 3 and p = 3 mod 4).

Theorem 2.2 (=Theorem 1.1 (1)). Assume p > 3.
(1) Eora(Qp) = {Gm | (m, k) € Iora} U {0}.
(2) Es(Qp) ={Gmui | (m, k) € I}. Explicitly, we have
{G11,G14,G17,G21} if p=3

Ess(Qp) = {Gr14p} if p=1mod 4
{G1,1+p,G2,1pr} if p#3, p=3 mod 4

(3) Egood(Qp) = E(Fp) U{0} = {Gmp | (m, k) € I} U{0}.

For the proof of the theorem, it suffices to show (1) and (2).

In ‘Ehis paper, for an algebraic extension K of Q, with maximal ideal mg, we denote by E‘(K) the
group F(mg) = mg determined by the formal group E (cf. [Sil09, Chapter IV.3]).



2.1.1 The case of ordinary reduction

We show Theorem 2.2 (1). Let E be an elliptic curve over @, with good reduction.
Suppose that E is ordinary and E(F,) = Gp, . Since a,(E) := 1+ p — #E(F,) is prime
to p, we have km? # 1 mod p. By (2.1) and (2.2), we see that E(Qp)tor is isomorphic to
Gk Or Gy, /p (With p | k). Hence we obtain

Eora(Qp) C ggrd((@p) U ggrd((@p) U ggrd((@p)

where

Eara(Qp) = {Gp | (m, k) € Lora, p 1k},
ggrd((@p) = {Gm,k | (m7 k) € Iowa, P ’ k}7
ggrd(Qp) = {Gm,k/p ‘ (mak) € Iora, P | k}

In the following, we show that the inclusion “C” above is in fact equal. It suffices to show
that each £ ;(Q,) is a subset of Epa(Qp).

Let G i € EL 41(Qp). By Theorem 2.1, there exists an elliptic curve E over F), such that
Gk~ E(Fp). By considering lifts to Z, of the coefficients of the Weierstrass equation of
E, we obtain an elliptic curve E over Q, with good ordinary reduction whose reduction
is E. Since E(F,) has no p-torsion points by p { k, it follows from (2.1) and (2.2) that
E(Qp)tor = G k- Thus we have EL 1(Qp) C Eora(Qyp).

Let Gpp € E24(Qp). In this case, we see (m,k) € {(1,p),(1,2p)} if p < 5 and
(m,k) € {(1,p)} if p > 5. Write & = jp. By Theorem 2.1, there exists an elliptic
curve B over Fy, such that E(F,) ~ Gpni = Gijp. Let Ey/g, be the canonical lift of
E. Since Endg, Ey = Endp, E is an order of an imaginary quadratic field, the Gg,-action
on Ey[p] factors an abelian quotient. In addition, we see E[p] ~ F,(1) and E[p] ~ F, as
Gg,-modules since E(F,)[p] is not trivial. Hence we have (non-canonical) isomorphisms
Eo[p] ~ E[p|® E[p] ~ F,(1) ®F, of Gg,-modules. Thus we obtain Ey(Qp)[p] ~ E(F,)[p] ~
G1p, which gives E(Q,)[p™] ~ G1,, by (2.2). On the other hand, we also have Ey(Qp), =~
E(F,)y ~ Gi; by (2.1). Hence we obtain Ey(Qp)tor =~ Gijp. Therefore, we obtain
Era(@p) C Eora(Qp)-

Let Gp/p € £34(Qp). In this case, we see (m, k) € {(1,p),(1,2p)} if p < 5 and
(m,k) € {(1,p)} if p > 5. Since G12 € EL 4(Qp) if p < 5, it suffices to show that G11 (= 0)
is an element of £,4(Q,). By Theorem 2.1, there exists an elliptic curve £ over F, such
that E(F,) ~ Gpui = G1p. Take any lift E to Wa := W(F,)/p*W (F,) of E such that
dimp, E(Wy) @7 F, =1 (there exist p— 1 isomorphism class of such E by [DW08, Lemma
3.1 and Lemma 3.2]). Taking any lift £/, of E, we have E(Q,)[p] = 0 by [DW08, Lemma
3.1]. Since we have E(Q)), ~ E(Fy,),y =0, it holds E(Qp)ior = 0 = G1,1. Consequently,
we have £3 (Q,) C Eora(Qp). Thus we proved Theorem 2.2 (1).

2.1.2 The case of supersingular reduction

We show Theorem 2.2 (2). Let E be an elliptic curve over Q, with good reduction.
Suppose that E is supersingular. By (2.1) and (2.2), we have E(Qp)tor ~ E(Fp). Thus we
have

Ess(Qp) C{Gmi | (M, k) € Is}. (2.3)



Conversely, let Gy, ; be in the right hand side of the above and let E be the elliptic curve
over Fj, with E(F,) ~ Gp, . Note that E is supersingular since ap(E) =1+p—#E(F,) =
0 mod p. By taking any lift E/g, of E, we have E(Qp)ior =~ E(Fp) ~ Gp i by (2.1)
and (2.2) again. Thus the inclusion “C” in (2.3) is in fact equal. This finises a proof of
Theorem 2.2 (2).

2.2 The case p=2

We study E,:d(Qp), Ess(Qp) and Egood(Qp) for p = 2.

Theorem 2.3 (:Theorem 1.1 (2)) (1) 50rd(@2) = {G1,27G1,4,G1,8, G271, GQ}Q}.
(2) Es(Q2) ={G1,1,G13,G15}-
(3) €g00d(Q2) = {G1,1,G1,2,G1,3,G1,4,G15,G18,G2,1,G22}-

For the proof of the theorem, it suffices to show (1) and (2).

2.2.1 The case of ordinary reduction

We show Theorem 2.3 (1). Let E be an elliptic curve over Q2 with good reduction.
Suppose that E is ordinary. Then torsion subgroup of E(Qg) have order at most 2 by
[Sil09, Chapter IV, Proposition 3.2 and Theorem 6.1] and those of E(Fs) have order at
most 5 by the Hasse bound. Moreover, since E[2] and E[2] are cyclic of order 2, G,
acts trivially on them. Thus E(Qa)ior ~ Z/27Z and E(Fy) is isomorphic to either Z/2Z or
Z/47.. Since we have an exact sequence 0 — E(Q2)ior = E(Qa)ior — E(F2) of modules,
the group E(Q2)tor is isomorphic to one of the following groups:

Gi12,G14,G18,G21,G2p.

In fact, it follows from MAGMA calculation with Algorithm A.1 that, for each G,,
appearing above, there exists an elliptic curve E over Qu with good ordinary reduction
such that E(Q2)ior is isomorphic to Gy, . For example,

e E =15.a) satisfies E(Q2)tor ~ G1,2,
e E =15.a7 satisfies E(Q2)tor ~ G14,
o F =15.a4 satisfies F(Q2)tor ~ G155,
e E =15.a2 satisfies E(Q2)tor ~ G2.1,
e E =15.al satisfies E(Q2)tor >~ G22.

This finishes a proof of Theorem 2.3 (1).


https://www.lmfdb.org/EllipticCurve/Q/15/a/1
https://www.lmfdb.org/EllipticCurve/Q/15/a/4
https://www.lmfdb.org/EllipticCurve/Q/15/a/8
https://www.lmfdb.org/EllipticCurve/Q/15/a/2
https://www.lmfdb.org/EllipticCurve/Q/15/a/5

2.2.2 The case of supersingular reduction

We show Theorem 2.3 (2). Let E be an elliptic curve over Q2 with good reduction.
Suppose that E is supersingular. Note that E(Q2)[2] = 0 since E[2] is irreducible as a
Gg,-module (cf. [Ser72, Section 1.12, Proposition 12]). Hence, it follows from (2.1) that the
reduction map induces an isomorphism E(Q3)ior =~ E(F3). By the Hasse bound, we have
#E(F3) € {1,3,5}. Thus, E(Q2)tor is isomorphic to one of Gy 1, G153 and Gy 5. In fact,
it follows from MAGMA calculation with Algorithm A.1 that, for each G,, ) appearing
above, there exists an elliptic curve E over Qo with good supersingular reduction such
that E(Q2)tor is isomorphic to G, ;. For example,

e F =67.al satisfies E(Q2)tor ~ G1,1,
e E =19.al satisfies E(Q2)tor ~ G1,3,
e E =11.al satisfies E(Q2)tor ~ G1 5.

This finishes a proof of Theorem 2.3 (2).

3 Group structures of E(Q,(yn))tor

The aim of this section is to prove Theorem 1.2 and Theorem 1.3, which gives the classi-
fication of the groups appearing as E(Qp(tp>))tor for some elliptic curve E over Q, with
good reduction. We begin with a proof of Theorem 1.2 (1).

Proof of Theorem 1.2 (1). By [Ser72, Section 1.12, Proposition 12], we know that E[p] is
irreducible as Gg,-modules. If we assume that E(Qy(upe))[p] is not zero, then it follows
from the irreducibility that we have E(Qp(up~))[p] = E[p]. This shows that Q,(E[p]) is a
subfield of Q,(pp). Thus the prime-to-p part of the ramification index of Q,(E[p])/Q,
must be a divisor of p — 1. However, by [Ser72, Section 1.12, Proposition 12] again, the
ramification index of Q,(E[p])/Q, is p?> — 1. This is a contradiction. Hence we obtain
E(Qp(pp=))lp] = 0. In particular, we have E(Qp(up=))p™] = E(Qp)[p>] (= 0). On
the other hand, it follows from the Néron-Ogg-Shafarevich criterion that the prime-to-
p parts of E(Qp(tp=))tor and E(Qp)tor coincides with each other. Thus we conclude
E(Qp(1tp=))tor = E(Qp)tor as desired. O

For the arguments below, We use the following lemma.

Lemma 3.1. Let E/q, be an elliptic curve with good ordinary reduction. Let o be the
non-unit root of T? — a,(E)T + p = 0 and denote by Xa: Gq, — Z, the Lubin-Tate

character® associated with «. Then, the Gq,-action on the p-adic Tate module Vp(E) of
E s given by xq.

Proof. Let x: Gg, — Z, be the character obtained by the Gg,-action on V},(E) and
¢: Gg, — Z be the character obtained by the Gg,-action on V,(E). Put T2 — a,(E)T +
p = fe(T). For any crystalline Qp-representation V' of Gg,, let Deis(V) = (Beis ®@q,
V)GQP be the Fontaine’s filtered p-module®. By p-adic Hodge theory, it is known that

For the definition of Lubin-Tate characters, see Appendix A.4 of Chapter III of [Ser98]
3For the basic notion of p-adic Hodge theory, it is helpful for the reader to refer [Fon94a] and [Fon94b].


https://www.lmfdb.org/EllipticCurve/Q/67/a/1
https://www.lmfdb.org/EllipticCurve/Q/19/a/2
https://www.lmfdb.org/EllipticCurve/Q/11/a/2

Je(T) coincides with the characteristic polynomial of the p-module Deyis(V,(E)Y), that is,
fE(T) = det(T—¢ | Dais(Vp(E)Y)). Here, V stands for the dual representation. Moreover,
this coincides with the products of the characteristic polynomials of Deyis(Qp(x 1)) and
Deis(Qp(¢71)). Since x restricted to the inertia Ig, coincides with the p-adic cyclotomic
character, for any choice of a uniformizer = of Q,, it follows from [Conll, Proposition
B.4] that det(T — ¢ | Deris(Qp(x™1))) = x(7) - 7, which is independent of the choice of
(here, we regard x as a character of Q via the local reciprosity map). Since x(7) - 7 has
a postive p-adic valuation, we have x(m) - m = a for any 7. By choosing « as 7, we have
x(a) = 1. Since we have x = x on Ig,, we find x = xa. O

3.1 The case p >3
We show Theorem 1.2 (2).

Lemma 3.2. Assume p > 3. Let E be an elliptic curve over Q, with good ordinary
reduction and E the formal group associated with E. Then, it holds #E(Qp(pp))[p*>] <

p? and #E(Qy(p=))[p™] < p. -

Proof. Consider an exact sequence

0 = E(Qp(p=))[p™] = E(Qp(pp=))[p™] = E(Fp)[p™]

of Gg,-modules. By the Hasse bound, the order of E(F,)[p>] is at most p (note that
p is now odd). Thus it suffices to check that any element of E(Q,(up))[p™] is killed
by p. Denote by a the non-unit root of the equation 72 — a,(E)T +p = 0. Then, «
is a uniformizer of @, and the Gg,-action on the Tate module Tp(E) of E is given by
the Lubin-Tate character x: Gg, — Z, associated with a by Lemma 3.1. Now take any
P € E(Qp(pp=))[p™]. Then (x(o) —1)P = 0 for every 0 € Go,(u,)-
notation, we also denote by x the composite of x (considered as a character of G(g;) and

By abuse of

the local reciprocity map Q) — G%‘;. Here, Gg; is the maximal abelian quotient of G, .
If we denote by v, the p-adic valuation normalized by v,(p) = 1, then we have

Min{vy(x(0) = 1) | 0 € Gy ()} < vp(x(p™") = 1) = vp(pa™" = 1) (3.1)

by [Oze24, Proposition 2.1]. Note that 3 := pa~! is the unit root of the equation T2 —
ap(E)T +p=0. Since 0 = 82 — a,(E)B+p= (B—1)(8—ay(E) + 1) + #E(F,), we have

vlpa" 1) < o, (#E(F,)) <1 (3:2)
by the Hasse bound. Therefore, we obtain pP = 0 for every P € E(Qp(ypm))[pm] as
desired. ]

Proposition 3.3. Assume p > 3. Let E be an elliptic curve over Q, with good ordinary
reduction. Then, we have

0 if E(Fy)[p] =0,
E(Qu(pp))[p™] ~ { Z/pZ if E(Fy)[p] #0 and E(Q,)[p] =0,
ZIpZ x L|pZ if E(Fp)p] #0 and E(Qp)[p] # 0.

Furthermore, if E(F,)[p] # 0, then the minimum fields of definition of E(Qp(pupe))[p™]
and E(Qp(pp>=) )tor are Qp(pyp)-
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Proof. Let us first consider the case where E(F,)[p] = 0. Let x: Gg, — Fy (resp.
Y: G, — F)) be the characters obtained by the Gg,-action on E[p] (resp. E[p]). Since
E(F,)[p) = 0, v is not trivial. Since 9 is unramified and x coincides with mod p cyclo-
tomic character, we see that x is not trivial on G, (). Thus we have E(Q,(pp))[p] = 0.

Now the result immediately follows from an exact sequence 0 — E[p] — E[p] — E[p] — 0
of Fp[Gg,]-modules.

Next we consider the case where E(F,)[p] # 0 and E(Q,)[p] = 0. Since G, acts on
E[p] trivial, we have isomorphisms E[p] ~ F,(1) and E[p] ~ F, of Gq,-modules. Thus
there exists a natural exact sequence

0—F,(1) = E[p)] - F, =0 (3.3)

of F,[Gg,]-modules. In particular, E(Q,(up))[p] contains a submodule E(Q,(11))[p] of
order p. Now we assume that E(Qp(up»))[p] is isomorphic to Z/pZ x Z/pZ for some n > 0.
Then the extension (3.3) splits as Fp[Gq,(,,.)]-modules. Since the kernel of the restriction
map HY(Q,, Fp(1)) — HY(Qp(ppn ), Fp(1)), which is isomorphic to H(Qp(ppn)/Qp, Fp(1)),
is trivial, the extension (3.3) splits as IF,[G,]-modules. Thus we have E(Q,)[p] = Z/pZ
but this contradicts the assumption that E(Q,)[p] = 0. Hence, we obtain E(Qy(up»))[p] =~
Z/pZ for any n > 0. This shows

E(Qp(ﬂp‘x’))[p} = E(@p(ﬂp))[p] = E(Qp(ﬂp))[p]

and these are isomorphic to Fy(1) as Gg,-modules. It follows from Lemma 3.2 that
E(Qp(ppe=))[p™] is isomorphic to either Z/pZ or Z/p*Z as modules. Therefore, for the
proof, it suffices to show that E(Q,(ppe))[p™] is not isomorphic to Z/p*Z. Assume that
E(Qp(pp=))[p™] =~ Z/p*Z. Consider the following commutative diagram.

0 —— B(Qp(p=))[p™] — E(Qp(p1p)) [p™] — E(F,)[p™]

" I

E(Qu(1p))lpl E(Qu(1p))lpl E(Fp)[pl-

By Lemma 3.2, the left vertical arrow is bijective. By the Hasse bound, the right vertical
arrow is bijective. Thus we find that the reduction map E(Qy(up=))[p™] = E(F,)[p™]
is surjective. Applying Lemma 3.4 below with G = Gg, and M = E(Qy(pp=))[p™], we
obtain an isomorphism E(Qj(up=))[p™] =~ E(F,)[p>] of Gg,-modules. This gives

Fp(1) ~ Elp] = E(Qp(up=))[p™] =~ E(Fp)[p™] = E(Fp)[p] ~ F,

as Gg,-modules but this is a contradiction. Therefore, we obtain E(Qp(ppe))[p™] ~ Z/pZ
as desired. Moreover, since we also showed that E(Q, (1 ))[p™] = E(Qp (1)) [p] =~ Fp(1)
as Gg,-modules, we find that the definition field of E(Qp(up=))[p™] is Qp(pp). Note
that the fields of definition of E(Qy(up=))[p™] coincides with that of E(Qp(tpe))tor since
the prime-to-p part of E(Qp(p=))tor is rational over Q, by the Néron-Ogg-Shafarevich
criterion.

Finally we consider the case where E(F,)[p] # 0 and E(Q,)[p] # 0. Since E[p] (~
Fy(1)) and E(Qy)[p] (~ F,) are non-isomorphic Gg,-submodules of E[p], we have isomor-
phisms

0

Ep] = Elp| © E(Qp)lp] = Fp(1) & F,
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of Gg,-submodules. In particular, we have E(Qp(up=))[p] = E[p]. Since the order of
E(Qp(ppe=))[p™] is at most p? by Lemma 3.2, we obtain E(Qp(upye))[p™] = E[p]. In par-
ticular, the definition field of E(Qp(up=))[p™]is Qp(ip). As we have seen above, it follows
from the Néron-Ogg-Shafarevich criterion that the fields of definition of E(Qp(ftpe))tor is

also Qp(up). O

In the proof above, we used the following lemma.

Lemma 3.4. Let G be a group, p a prime (including the case p =2) and n > 0 an integer.
Let M be a Z./p*"Z[G]-module which is free of finite rank over Z/p*"Z. Then, we have a
canonical isomorphism p" M ~ M /p"M of 7/p"Z|G]|-modules.

Proof. The result immediately follows by applying the snake lemma to the commutative
diagram of G-modules below:

0 "M M M/p"M —0
lpn ipn lp’ll
0 "M M M/p"M — 0.

O

Proof of the first part of Theorem 1.2 (2). The Néron-Ogg-Shafarevich criterion shows that
the prime-to-p parts of E(Qp(tp=))tor and E(Qp(ip))tor coincide with each other. More-
over, we have E(Qp(pp=))[p™] = E(Qp(p))[p™] by Proposition 3.3. This finishes a
proof. O

Let us prove the second part of Theorem 1.2 (2). The statement is equivalent to say
that, for an elliptic curve E over Q, with good ordinary reduction, then E(Qp(tpe))tor is
isomorphic to one of the following groups.

(a) Gm,lm (m7 k) S IOI‘d7
(b) Gp,lv
(c) Gpao with p <5,

and each of these groups appears as E(Qp(fp=))tor for some elliptic curve E over Q, with
good ordinary reduction.

Lemma 3.5. Let E be an elliptic curve over Q, with good ordinary reduction.
(1) If E(Qp)[p] =0, then E(Qp(tp=))tor = E(Fp) as abstract groups.

(2) If E(Qp)[p] # 0, then E(Qp(tpe))tor =~ E(Fp) X Z/pZ as abstract groups.

Proof. Assume that an elliptic curve E over Q) has good ordinary reduction. If E(Qy)[p] =
0 (resp. E(Qp)[p] # 0), we have E(Qp(up))[p™] = E(Fy)[p™] (resp. E(Qp(pp=))[p™] =

E(Fp)[p>] x Z/pZ) by Proposition 3.3. Since the reduction map gives an isomorphism
between the prime-to-p parts of E(Qp(up~)) and E(F,), the result follows. O
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Proof of the second part of Theorem 1.2 (2). Suppose that an elliptic curve E over Q,
has good ordinary reduction. If E(Q,)[p] = 0, then it follows from Lemma 3.5 (1) that
E(Qp(pp=)) is isomorphic to Gy, for some (m,k) € Inq. If E(Qp)[p] # 0, then it
follows from Lemma 3.5 (2) that E(Qp(p>))tor is isomorphic to Gy, x Z/pZ for some
(m,k) € Ioq. Note that we moreover have p | k since E(F,)[p] is not zero by (2.2). In
this case we see (m, k) = (1,jp) with j € {1,2} (resp. j =1 ) for p <5 (resp. p > 5), and
then E(Qyp(ftpe))tor is isomorphic to and Gy, X Z/pZ ~ G), j. Therefore, we showed that
E(Qp(ftp>=))tor is isomorphic to one of the groups appearing in (a), (b) or (c).

Conversely, let G be a group appearing in (a), (b) or (c). Suppose G = G, as in (a)
and suppose in addition p { k. By Theorem 2.1, there exists an ordinary elliptic curve E
over F, such that G ~ E(F,). Take any lift E of E to Q,. By p 1k, E(F,)[p] is trivial,
and thus we have E(Q,)[p] = 0 by (2.2). By Lemma 3.5, we have E(Qp(tp>))tor = G.
Next we suppose one of the following situations.

e G = Gy, as in (a) and suppose in addition p | k. In this case G = Gy j, for
je{1,2} (resp. j =1 ) for p <5 (resp. p > 5).

o G=Gpj (~GijpxZJ/pZ) is as in (b) or (c).

By Theorem 2.1, there exists an ordinary elliptic curve E over F,, such that Gy j, ~ E(F,).
By Lemma 3.1 and Lemma 3.2 of [DWO08], there exist elliptic curves E; and Ey over Q,
whose reductions are E such that F1(Q,)[p] = 0 and F2(Q,)[p] # 0. (Note that the
canonical lift of E satisfies the desired condition for Fs.) It follows from Lemma 3.5 that
E1(Qp(pp=)) ~ Gijp and Ea(Qp(ppe)) ~ Gy j. This finishes a proof. O

3.2 The case p =2

We show Theorem 1.2 (3) and Theorem 1.3. We begin with a proof of the second statement
of Theorem 1.2 (3); it suffices to show that, for an elliptic curve E over Qo with good
ordinary reduction, then F(Qg(p2e))tor is isomorphic to one of the following groups.

(a) G, k € {4,8},
(b) G27ka ke {174}7
(C) G4,17

and each of these groups appears as E(Qg(uge))tor for some elliptic curve E over Qg with
good ordinary reduction.

For our proof below, we need Fontaine’s results on ramification theory of finite flat
commutative group schemes. We give a brief sketch here (with restricting 2-adic cases);
see [Ser68] and [Fon85] for more precise information. Let K be a 2-adic field and L/K be
a (not necessarily finite) Galois extension. For any non-negative real number u > 0, let
Gal(L/K)™ be the u-th upper ramification subgroup of Gal(L/K) in the sense of [Fon85].
For a finite Galois extension L/K, we define the mazimal upper ramification break of L/ K
defined by ur,/x = sup{u € R| Gal(L/K)® # 1}. Tt is well-known that

— L/K is unramified if and only if uy g =0,

— L/K is tamely ramified if and only if ur/k <1, and
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— L/K is wildly ramified if and only if uy 5 > 1.

For example, there exist 7 quadratic extensions of 2, and their maximal upper rami-
fication breaks are given in the Table A.1. We set G%) ‘= Gal(Qy/K)™. Tt is shown
by Fontaine [Fon85, Section 2, Théorem 1] that, for any finite flat commutative group
scheme G over K killed by 2", the group GE?) acts trivial on G(K) for u > ex(n + 1).
This is equivalent to say that, if we denote by L/K the Galois extension corresponding
to the kernel of the G-action on G(K), then Gal(L/K)™ is trivial for u > ex(n + 1),
that is, ur/x < ex(n +1). By applying the result for E[2"], we have up /g, < n + 1 for
L = Q2(E[2"]). Since ug,(uyn) /g, = 1 for any integer n > 1 (cf. [Ser68, Chap. IV, Sect. 4,
Cor.]), we have

B(Qa(2=))2"] = E(Qa(pizesn))[2"] (3.4)

Let us return to the proof of the second statement of Theorem 1.2 (3). We need the
following lemma.

Lemma 3.6. For an elliptic curve E over Qo with good ordinary reduction, we have
E(Qa(p2<))tor = E(F2) as abstract groups.

Proof. First we note that E(F3) contains the element of order 2 since the Galois group
G, acts on E[2] (~ Z/2Z) trivial. The Hasse bound shows that E(F3) is isomorphic to
either Z /27 or Z/AZ. Thus

R if E(Fo) ~ 7/27,
a2(E) = { —1 if E(Fy) =~ Z/4Z.

Denote by « (resp. 3) the non-unit root (resp. unit root) of the equation 72 —aq(E)T+2 =
0, where ag(E) = 14 2 — #E(Fy). Then Gg, acts on the Tate module Va(E) of E by
the Lubin-Tate character x associated with the uniformizer o by Lemma 3.1. By abuse
of notation we also denote by x: Q5 — Q5 the composite of x (considered as a character
of GabQ) and the local reciprocity map Q5 — G@bz. Here, Gab2 = Gal(Q3P/Qa(pax)) is the
maximal abelian quotient of Gg,. Then x(2) = x(a3) = 7! = —a2(E) mod 4. Since the
subgroup of QJ corresponding to Gal(Q4P/Q2(uu2<)) via the local reciprocity map is the
closure of the group generated by 2, we obtain that

X#Z1mod4 if E(Fy)~7Z/27Z,
X=1mod4 if E(Fy)~Z/AZ

on G, (u,)- Therefore, we see E(Qp(119))[2°°] =~ E(Fy) as abstract groups. Since orders

200
of torsion elements of E are power of 2, we finish the proof of the lemma. O

Proof of the second statement of Theorem 1.2 (3). Consider an exact sequence

0— EA(Qp(/QDO))tor — E(@p(ﬂ?‘x’))wr - E(F2)

of Gg,-modules. Tt follows from Lemma 3.6 that E(Qp(ua=))ior ~ E(F2) as abstract
groups, and the orders of these groups are 2 or 4 by the Hasse bound. This shows that
E(Q2(p25))tor is isomorphic to one of the groups appearing in the following.

(a)” Gig, k € {2,4,8,16},

14



(b)" Gag, k € {1,2,4},
(C) G471.

We claim that E(Q2(f25 ))tor is not isomorphic to G 16. Assume E(Qg (112 ) )tor == Z/167Z.
If this is the case, putting M = E(Q2(u2e))tor, we have 4M = FE(Qa(u2~))[2%°] and

M/4M = E(F5). It follows from Lemma 3.4 that we have an isomorphism E(Qa(uge))[2°°] =~
E(Fy) of Gg,-modules but this is a contradiction since Gg, acts on E(Qa(ugw))[2] =
E(Qy(p2))[4] (~ Z/4Z) by the 2-adic cyclotomic character modulo 4.

By the claim above, F(Qz(p2x ))tor is killed by 23. By (3.4), we see that E(Qz(j1200) )tor =
E(Q2(116))tor- Since we have a descent from Qa(u2) to a (not so large) finite extension
Q2(p16) of Q2, we can apply a computational approach; by MAGMA calculation with
Algorithm A.1, we can check that some of the groups in (a)’, (b)’ or (c) above appears as

E(Qp(ptp>=))tor for some elliptic curve E over Qo with good ordinary reduction:
e E =33.a3 satisfies E(Qa(p2))tor ~ G14.
e E =15.ab satisfies E(Qa(12))tor ~ G-

e E =15.a2 satisfies E(Qga(pu2)

( )

e E =33.al satisfies E(Q2(u20))tor ~ G2,1.
( )tor =~ G2 4.
( )

e E =15.al satisfies E(Qa(p2%))tor ~ Ga,1.

For the proof of the theorem, it suffices to show that there is no elliptic curve E over
Q2 with good ordinary reduction such that E(Qp(tp>))tor is isomorphic to either Gy o or
G22. In the rest of the proof, we denote by x: Gg, — Z; the crystalline character defined
by the Gg,-action on the p-adic Tate module TP(E) of the formal group associated with
E. We also denote by 9: Gg, — Z; the unramified character defined by the G,-action
on the p-adic Tate module T),(E) of the reduction E of E. The Weil pairing shows that
X% = X2 where y» is the 2-adic cyclotomic character. Thus we have x¥ mod 2" = 1 on
G, (uyn) for each n > 0.

(I) Non-existence of Gy 2: If E(Q2(pu2))tor = Z/2Z for some elliptic curve E over Q2
with good reduction, it follows from Fontaine’s ramification bound (3.4) that E(Qa(u2))tor =
E(Q2(u4))tor- Hence, it suffices to show that E(Qa(u4))tor % Z/27Z for any elliptic curve
FE over Q2 with good ordinary reduction.

Assume that E(Q2(u4))tor ~ Z/27 for some elliptic curve E over Qg with good ordinary
reduction. For a suitable choice of a Z/4Z-basis of E[4], the Gg,-action on E[4] is given
by

o — (x m(())d 4 o 4) . G, — GL2(Z/47)
for some map u: Gg, = Z/4Z.

We claim that

[Q2(E[4]) - Qo] = 16.

Since x = v mod 4 on G, (,,), we may regard H := Gal(Q2(E[4])/Q2(u4)) as a subgroup
of

G = {(g b) la € (Z/AZ)*,b e Z/4Z}

a
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via pgpy. Since E(Qa(pa)) A E[2], we have u mod 2 # 0 on Gq,(,,). Thus H con-
11 -1 1
01)%\o -1
these matrices, we find that E(Q2(u4))) must contain an element of order 4 but this is a
contradiction. Thus we have H = GG. Now the claim immediately follows.

By considering from the view point of ramification, we show below that

[Q2(ET[4]) : Q2] < 16

tains at least either . If we assume that H is generated by one of

holds (of course this is a contradiction). Since v is unramified, 1) mod 4 is trivial on
G where F' is the unramified quadratic extension field F' of Qo. In particular, we have
x mod 4 = x2 mod 4 on Gr. Since E(Q2(p4)) does not contain E[2], we have v mod 2 # 0
on Gg,(yu,)- Thus the field L corresponding to the kernel of u mod 2: G, — Z/2Z is a
quadratic extension of Q2. Note that we have L = Qa(E[2]) and

w(Gr) C 2 ZJAZ. (3.5)

By [Fon85, Section 2, Théorem 1], the maximal ramification break ur g, of L/Qq is
at most 2. Hence there are three possibilities for L; L is isomorphic to either L =
Qaz])/ (2 + 22 + 2) (=~ Qo(u4)), Lo = Qofz]/(2? + 22 + 6) or F (see Table A.1). Since
E(Q2(p4)) does not contain F[2], L is isomorphic to either Ly or F.

_ (xmod4 wu

on Gr. Since the order of u(GF) is at most 2 by (3.5), we see that [Q2(E[4]) : F] < 4,
which shows [Q2(E[4]) : Q2] < 8 < 16 as desired.

(i) Suppose L = F. We have

(ii) Suppose L = Lo. In this case, the field L(u4) cotains F' by Proposition A.1 (1).

Thus we have
1 wu
PE[4] = 0 1

on G- Since the order of u(Gp,,,)) is at most 2 by (3.5), we see that [Qq(E[4]) :
L(p4)] < 2, which shows [Q2(E[4]) : Q2] < 8 < 16 as desired.

Therefore, we finish the proof of (I).

(IT) Non-existence of Gaa: If E(Q2(u2))tor = Z/27Z x Z/4Z for some elliptic curve
E over Q2 with good reduction, it follows from Fontaine’s ramification bound (3.4) that

E(Q2(u2<))tor = E(Q2(us))tor- Hence, it suffices to show that E(Qa(us))tor % Z/27 X
Z,/AZ for any elliptic curve E over Qo with good ordinary reduction.

Assume that E(Q2(us))tor =~ Z/27 x Z./AZ for some elliptic curve E over Qo with good
ordinary reduction. For a suitable choice of a Z/8Z-basis of E[8], the Gg,-action on E|§]
is given by

x mod 8 U )
o) = < AR 8) G, — GLy(Z/82)

for some map u: Gg, — Z/8Z. Here we give some remarks on the character ¢) mod 8 and
the map u. By Lemma 3.6 and the assumption that F(Qs2(u2~)) is of order > 8, we have
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E(Fs) ~ Z/4Z. Thus any element of E[4] is Fa-rational but some element of E[8] is not
Fo-rational. This gives

Y mod 4 =1o0n Gg, and 1 mod 8 # 1 on Gg,(u)- (3.6)

In particular, ¢ mod 8: Gg, — (Z/8Z)* has values in {1,5} and hence ¢ mod 8: Gg, —
{1,5} (C (Z/8Z)*) is the surjective unramified character. By E[2] C E(Q2(us)))tor, We
see that u mod 2 is trivial on G, (), that is, u(Go,us)) C 2 - Z/8Z. Note that pgpy =
x2 mod 4 u mod 4
0 1
holds

) on Gg, by (3.6). Since E(Q2(pu2~)) does not contain E[4], it

u mod 4 # 0 on G, (ug)- (3.7)

On the other hand, since u mod 4 on Gg,(g[)) has values in 2-Z/4Z, it holds x(o)u(o) =
u(0) mod 4 for any o € G, (gp)- This gives the fact that u mod 4 on Gg,gp) is a
homomorphism with values in 2 - Z/4Z.
We claim that
[Q2(E[8]) : Qo] = 32.

Since x = ¢ mod 8 on G, (), it follows from (3.6) and u(G, () C 2 - Z/8Z that we
may regard H := Gal(Q2(E[8])/Q2(us)) as a subgroup of

G = {<8 b) la€{1,5} C (Z/8Z)*,be 2-Z/8Z}

a

via pgig). By (3.7), H contains at least either <(1) ?) or (g g) If H is generated by

one of these matrices, we find that E(Q2(ug)) must contain an element of order 8 but this
is a contradiction. Thus we have H = G. Now the claim immediately follows.

As we have done in the case (I), by considering from the view point of ramification,
we show below that

[Q2(E[8]) : Qo] < 32

holds (of course this is a contradiction). First we note that Q2 (FE[2]) is a subfield of Q2 (usg)
since E(Qa(us)) contains E[2]. By (3.7) and the fact that u mod 4 on Gg,(pgj)) is @ homo-
morphism with values in 2-Z/47Z, we know that the homomorphism u mod 4: Gg,( E[2)) —
2 - Z/AZ is surjective. We denote by L the quadratic extension of Qa(F[2]) which corre-
sponds to the kernel of this homomorphism. By definition of L, L is a quadratic extension
of Q2(F[2]) and we have

u(Gr) C 4-7Z/8Z. (3.8)

Since L is a subfield of Q2(E4]), it follows from Fontaine’s ramification bound (3.4) that
urg, < 3. Furthermore, L does not contained in Q2(yus). In fact, if L is a subfield of
Q2(us), then pppy must be trivial on G, (), Which shows E(Qa(us)) contains E[4] but
this is a contradiction. Since Q2(E/[2]) is now contained in Q2(ug) and is of degree at most
2 over Qq, it follows (3.4) again that Q2(E2]) is either Q2 or Q2(p4) (see Table A.1). We
make a case distinction depending on which of these two situations occurs.

(I1-1) Suppose that Q2(E[2]) = Q2. Since pgjy = (X2 n(l)Od 1w m(l)d 1 > on Gq, by
(3.6), we have Qa(E[4]) = L(u4). We recall that L satisfies all the following properties:
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(a) L is a quadratic extension of Qa,
(b) ur/g, <3 and
(c¢) L does not contained in Q2 (us).

Note that up, /g, is not equal to one since L/Qy is either unramified or wildly ramified.

e Suppose ur g, = 0. If this is the case, we have L = F and pgg) = X2 H(;Od 8 1;)

on G by (3.6). Thus it follows from (3.8) that we have [Q2(E[8]) : F| < 8, which
shows [Q2(E[8]) : Q2] < 16 < 32 as desired.

e Suppose uy g, = 2. By (a), (b) and (c) above, we find that L is isomorphic to Ly =
Q2[7]/ (2% 4 22 + 6) (see Table A.1). In particular, L(j4) contains F' by Proposition
A1 (1). We have pgig) = <X2 H(l)Od 8 Qf

(3.8) that we have [Q2(E[8]) : L(ua)] < 4, which shows [Q2(E[8]) : Q2] < 16 < 32 as

desired.

> on Gr,,) by (3.6). Thus it follows from

e Suppose ur g, = 3. There exist only 4 possibility for such L. Explicitly, L is
isomorphic to one of the following (see Table A.1).

Ly = Qo[z]/(2? +2), Ly = Qq[z]/(z* + 10),
L5:Q2[x]/(x2+4x+2), LGZQQ[.I']/(.I'2+4$—|—10).

For each of the fields, their composite with F'(u4) contains ug by Proposition A.1 (2).

This implies that LF(u4) contains pg. Hence we have pgjg) = (1) U In(l)d 8 > on
Grr(ua) by (3.6). Thus it follows from (3.8) that we have [Q2(E[8]) : LF(u4)] < 2,

which shows [Q2(E[8]) : Q2] < 16 < 32 as desired.

. 1 d4
(I1-2) Suppose that Qo(E[2]) = Qa(us). Since ppy = (0 “ mcl) ) on G, (uy)

by (3.6), we have Q2(E[4]) = L. In particular, L is a Galois extension of Q2. Here we
summarize properties of L.

(a) L is a Galois extension over Qy of degree 4 with L D Q2 (pu4),

(b) ur/g, <3 and

(¢) L does not conatined in Q2(usg).

We claim that either L = F(u4) or LF D Qa(us). If L/Q2(p4) is unramified, then we have
L = F(ua4). Suppose that L/Qs2(pa) is totally ramified. Then L is a totally ramified Galois
extension over Qg of degree 4. By Q2(u4) C L = Q2(E[4]), Fontiane’s ramification bound
implies 2 < up, /g, < 3. In fact, there does not exist? a totally ramified Galois extension
over Q2 of degree 4 with maximal ramification break 2. Thus we have ur g, = 3. There

“This is easily checked as in the database of p-adic fields in LMFDB [LMF25].
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exist only 4 possibilities of such L; L is isomorphic to one of the followings (see Table
A2).

My = Qqfz]/(z* + 222 + 42 + 2), My = Qqfz]/(x* + 222 + 4z + 10),
Mz = Qqfz]/(z* + 423 + 222 + 42 +6), My = Qo[x]/(z* + 423 + 22 + 42 + 14).

In each case®, we know that LF contains ug by Proposition A.1 (3). Thus the claim
follows.

é l{) on Gp(,s) by (3.6). Thus it follows
from (3.8) that we have [Q2(F[8]) : F(ug)] < 2, which shows [Q2(E[8]) : Q2] < 16 <
32 as desired.

e Suppose L = F(p4). We have pgjg =

e Suppose LI D Q2(us). We have pgjg = < > on Grr by (3.6). Thus it follows

from (3.8) that we have [Q2(F[8]) : LF] < 2, which shows [Q2(E[8]) : Q2] < 16 < 32
as desired.
Therefore, we finish the proof of the theorem. O

Remark 3.7. As we have seen in the arguments of (I) and (II) above, it holds that
E(Qa(pa))tor 2 7Z/27 and E(Qo(us))tor % Z/27 x Z./AZ for any elliptic curve E over Qo
with good ordinary reduction.

Next we show the first statement of Theorem 1.2 (3).

Proof of the first statement of Theorem 1.2 (3). By Fontaine’s ramification bound (3.4),
any element of F(Q2(u2x))tor killed by 2" is rational over Qg(juy+1) for any n. Thus, by
the second statement of Theorem 1.2 (3), which has already been proved, it suffices to
show E(Qa(p20))[2%°] = E(Q2(us))[2%°] if E(Q2(u2~))[2°°] is isomorphic to either Z/87Z
or Z/2Zx7/8Z. 1f this is the case, by Lemma 3.6 and the condition # E(Q2(u2e))[2°°] > 4,
we have E(F3) ~ Z/4Z. Thus the Gg,-action on E[4] is given by

d4
pa = <X2 HSO If) . G, — GLo(Z/AZ) (3.9)

for some map u: Gg, — Z/4Z.
First we consider the case where E(Qa(u90))[2°°] ~ Z/87Z. Since E(Qa(p252))[2°°] does
not contain E[2], it holds u mod 2 # 0 on Gk. In particular, pg)(Gg,(u,)) is generated by

<(1) 1) . We assume that Q2(E[4]) D Q2(us). If this is the case, pgy) (G, (us)) 1s generated

by <[1) ?) since it is the subgroup of index 2 in pgyy (GQ2(M4))' Thus we see that F(Q2(us))

contains Z /27 x Z/AZ but this contradicts the assumption E(Qsq(ua~))[2°°] ~ Z/87. Thus
we obtain Q2(E[4]) 7 Q2(us). This is equivalent to say that Qa(E[4])NQ2(ua) = Qa(f4).
Now we claim®

Q2(E[8]) N Q2(p2) = Q2(ps).

5Tn fact, since L contains ps but does not contain usg, we obtain the fact that L = Mo.
5This claim follows immediately from Proposition 2.11 of [BK01]. Our proof of the claim here follows
their arguments.
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Consider a homomorphism Gal(Q2(E[8])/Q2) — GL2(Z/8Z) coming from the Gg,-action
on E[8]. Since the restriction of this map to Gal(Q2(E[8])/Q2(E[4])) has values in the
kernel of the mod 4 reduction GLy(Z/8Z) — GLy(Z/4Z), it holds that the Galois group
of the extension Q2(E[8]) over Q2(E[4]) is of exponent 2. Thus the Galois group of the
extension Q2(E[8]) N Qa(pae) over Q2(E[4]) N Q2(u2~) is also of exponent 2. Let n > 3
be an integer such that Q2(E[8]) N Qa(ua~) = Qa(uen). By the condition Qa(E[4]) N
Q2 (p200) = Q2(pa), the Galois group of the extension Qo (E[8]) N Q2(ua=) over Q2(E[4]) N
Q2(pa)) is isomorphic to Z/2"27Z. Since this is of exponent 2, we have n = 3. Thus the
claim is now proved. Since E(Q2(u2e))[2°°] is killed by 8, it follows from the claim that
we have

E(Qa(p2=))[27] = E(Qa(E[8]) N Qa(p2))[27] = E(Q2(us))[2%]

as desired.

Next we consider the case where E(Q2(u2~))[2%°] ~ Z/27Z x 7Z/8Z. Assume that
E(Q2(u2=))[2°] # E(Q2(ps))[2°°]. Since Q2(E[2]) is a subfield of Qa(pae), it follows
that Q2(E[2]) is either Qg or Q2(u4). In particular, we have Q2(E[2]) C Q2(us). Hence
E(Q2(us))[2%°] is isomorphic to either Z/2Z x Z/27Z or Z/27 x Z/4Z. By Remark 3.7,
we have E(Qq(ug))[2%°] ~ Z/27 x Z/27Z. However, (3.9) implies that E(Q2(us))[4] must

contain some element of order just 4. This is a contradiction. Therefore, we conclude

E(Q2(u2=))[2%°] = E(Q2(us))[2%°] as desired. O

Remark 3.8. We should note that the field Q,(sp) (resp. Q2(ug)) in the first statement
of Theorem 1.2 (2) (resp. Theorem 1.2 (3)) is “the best possible” in the sense that, for
each odd prime p (resp. p = 2), there exists an elliptic cureve E over Q, with good
ordinary reduction such that the definition field of E(Q)(tp))tor is Qp(1p) (resp. Qa(ug)).
Examples for such situations are as follows.

— Suppose p > 3 and take an elliptic curve E such that F(F,) # 0 (such E exists for
any p). Let E/q, be the canonical lift of E. Then, E[p| is isomorphic to F,(1) ®F, as
a Gg,-representation (see the argument of Section 2.1.1), where G, is the absolute
Galois group of Qp. Thus Q,(E[p]) = Qp(p). On the other hand, the prime-to-p
part of E(Qp(up~)) coincides with that of E(Q,) by the Néron-Ogg -Shafarevich
criterion. Thus, the definition field of E(Qyp(ttpe))tor is Qp(1tp)-

— The definition field of E(Qa(p2e))tor for E =15.a7 is Qa(usg).

We end this section by proving Theorem 1.3.

Proof of Theorem 1.5. Since the group F(Q2(pt4))tor is a subgroup of E(Qa(p2))tor, it is
isomorphic to a subgroup of the groups listed in (). Since the kernel of the reduction
map E[2] — E[2] is rational over Qg, we know that F(Qs)ior (and also E(Qa(i4))tor)
are not zero. Furthermore, by Remark 3.7, we also have E(Qa(p4))tor 2 Z/2Z. On the
other hand, for each group G;; in ()5, MAGMA computations with Algorithm A.1 give
examples of E such that E(Q2(u4))tor ~ G ; as follows.

e E =15.al satisfies E(Q2(p4))tor =~ G4,

e E =33.a2 satisfies E(Q2(p4))tor =~ G2,1,
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e E =15.a2 satisfies E(Qa(pt4))tor =~ G2,2,
e E =15.a8 satisfies E(Q2(p4))tor =~ Ga4,
e E =15.ab satisfies E(Q2(pa))tor ~ Ga1.

Therefore, to finish the proof of the theorem, it suffices to show that E(Q2(u4))tor 1S
not isomorphic to Gi1g = Z/8Z. Assume E(Qa(p4))tor ~ Z/8Z. By Theorem 1.2
(3), E(Q2(us))tor is isomorphic to Z/8Z or Z/27Z x 7Z/8Z. By assumption, we have
E(Q2(pa))tor 2 E[2] and thus Q2(F[2]) is not contained in Q2(pu4). Since the extension
Q2(E[2])/Q2 is of degree at most 2 and ug,(g[2))/Q, < 2, it holds that Qa(FE[2]) is F or Ly
(see Table A.1). In both cases, Q2(E[2]) is not a subfield of Qa(ug). Thus F(Q2(us))tor
does not contain E[2]. Therefore, we obtain

E(Qa(p4))tor = E(Qo(118))tor =~ Z/8Z.

Let x: Gg, — Z5 and 9: Gg, — ZJ be the crystalline characters obtained by the
Go,-action on the 2-adic Tate modules Ty(E) and T (E), respectively. Consider the Gq,-
action on E[8]. Identifying E[8] = Z/8Z x Z/8Z by a suitable choice of Z/8Z-basis of E[8],
the Gg,-action on EI[8] is given by a continuous homomorphism pgg: Go, — GL2(Z/8Z)

with the matrix form
_ (x mod 8 U
PElE) = < 0 ¢ mod 8) (3.10)

for some map u: Gg, — Z/8Z. Let us study subgroups pg(s)(Go,(us)) and P (Gy(u))
of GLy(Z/8Z). Since we have E(F9) ~ Z/4Z by Lemma 3.6, the image of ¢» mod 8 on
Gq, is {1,5} C (Z/8Z)*. In particular, ) mod 8 is an unramified character with kernel
Gr. Since x¢ mod 8 is trivial on Gg, (), We see x =1 mod 8 on Gg,(,s)- We find that

PE[R] (GQs(ug)) 18 @ subgroup of

H = {(g 2) |a:1,5€Z/8ZandbEZ/8Z}

The order of the group H is 16. We note that u mod 2 is not trivial on G, () since
E(Q2(u8))tor does not contain E[2]. Thus there exist a € Z/8Z and an odd b € Z/8Z

a b . . (a b
such that (O a> € pE[g](GQQ(Ng)). Since the group generated by such a matrix (0 a)
. 11 5 1

is either the group H; generated by (0 1) or the group Hs generated by <O 5), we

find that pgg) (G, (ug)) is either Hy, Hy or H. By the facts that ) mod 8 is not trivial on
Gy (us) and E(Q2(us))tor ~ Z/8Z, we obtain that pE[S](GQQ(MB)) is not equal to H; and
H, that is,

pr(Gangu) = Ho = (g 3)) (3.11)

1 .
and B(Qa(is))[2] = () Next we consider ppp (G ) Wo i that iy (G

is a subgroup of

G := {(g i) |a,c=1,5€Z/8Z andbeZ/SZ}
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by (3.10) and the fact that i and x2 on Gg,(u,) have values in {1,5} C (Z/8Z)*.
The order of the group G is 32. We see that ppig)(Gg,(us)) 18 @ normal subgroup of
G, the quotient G/ppis)(Gao,(us)) 18 isomorphic to Z/27Z x Z/27Z and G/pgig)(Gos(us))
is generated by the classes with respect to <8 (1)> and <(1) g) Since the quotient

pE[g}(GQz(MLL))/pE[g](GQZ(”g)) is a subgroup of G/pE[g](G%(MS)) of order 2, we find that
PE(8) (Ggy(uy)) is one of the following groups;

@06 @)@ @36 e

Since we now have E(Q2a(u4))[2%°] = E(Q2(us))[2°] = ((i)), we find

PEE(GQa(us)) = <<(1) g) , (g é>> (3.12)

It follows from (3.11) and (3.12) that there exists 09 € Gg,(u) ~ Go,(us) Such that

pE(s)(00) = <(1) (5)> Since ¥ (0p) = 5 mod 8, we have

oo & Gp. (3.13)

On the other hand, as we have already checked, the field Q2(E[2]) is either F or Lo (see
Table A.1). In each case, Q2(F/[2], pu4) contains F' by Proposition A.1 (1). Since pgig(00)
mod 2 is trivial, we have o¢ € GQQ(E[Q])? which gives gy € GQ?(E[QD N GQ2(M4) C Gp. This
contradicts (3.13). Therefore, we conclude E(Q2(4)) % Z/8Z as desired and this finishes
the proof. O

A Appendix : Data and algorithm

In this section, we present the data obtained by using the computer algebra system
MAGMA [BCO06].

A.1 Quadratic and quartic extensions of QQy

In this subsection, we give the tables of quadratic and certain quartic extensions of Q9
for using to our proof in subsection 3.2. They can be easily checked by LMFDB database
[LMF25]. Tabel A.1 shows the defining polynomials for all the quadratic extensions of
Q2. Tabel A.2 shows the defining polynomials for all the quartic extensions L/Qq with
ur/g, = 3. In these tables, the integer f presents the inertia degree, e the ramification
index, ur /g, the maximal upper ramification break and p, the roots of unity which are
included in L.
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L | Polynomial | f | e | ur/q, | tn
Fl 224+z+1 [2]1 0 e
Ly | 22+22+2 [ 1]2 2 Ly
Ly | 2242z +6 [ 1]2 2 12
Ls 2 +2 1|2 3 12
Ly 2?4+ 10 1]2 3 2
Ls | 2> 4+4x+2 |1 ]2 3 142
Le | 2> +42+10 | 1 ]2 3 142

Table A.1: The quadratic extensions of Qo

L Polynomial flelurg, | tn
M ot 4+ 222 4 4o+ 2 114 3 | opus
M, zt + 222 4 42+ 10 114 3 | s
Mz | o*+42° +22° +40+6 |1 |4] 3 L2
My | 2* +423 +22°2 +4c+14 |1 | 4 3 2

Table A.2: The quartic Galois extensions of Qo with ur, g, =3

We can easily check the equalities of the composite fields by using MAGMA as follows:
Proposition A.1. In Table A.1 and A.2, we have the equalities:
(1) LiLy = F(pa).
(2) L3F(ua) = LaF(pa) = LsF(pa) = LeF'(pa) = F(pg).

(3) FM; = FMy = FMs = FMy = F(us).

A.2 Algorithm for computing #FE(K)[n]

In this subsection, we give an algorithm for calculating the order # E(K)[n| for given K,
E and n, where K is a finite extension of Q,, F is an elliptic curve over K and n > 1 is
an integer. In the case where K is an algebraic number filed, we can compute the torsion
subgroup E(K)ior by the intrinsic function TorsionSubgroup(F) which is implemented
in MAGMA. However, this intrinsic function is not valid for a p-adic field K. In spite
of such a function, we use the several functions that they are implemented in MAGMA
and valid even for a p-adic field. First, the function DivisionPolynomial(FE,n) gives a
polynomial whose roots are the x-coordinates of the points of E(K)[n] for a p-adic field
K, an elliptic curve E and an integer n > 1. Second, the function Roots(f) gives the
roots of a given polynomial f over K. Finally, the function Points(E(K),zg) gives the
points of £ whose z-coordinate equals zy. By combining these functions, we can compute
the order #E(K)[n] as follows:
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Algorithm A.1 Calculate #E(K)[n]

Require: n > 1, K, FE
Ensure: t = #E(K)[n]

t<+1

f < DivisionPolynomial(E, n)

R < Roots(f, K)

r <+ #R

if » # 0 then

for x € R do
t + t + #Points(E(K), x)

end for
end if
return ¢

A.3 List of torsion subgroups

In this subsection, we give a list of possible candidates that they actually occur for tor-
In each list, we use Cremona’s database of
elliptic curves. Hence the label of each elliptic curve is presented as Cremona label, which
is different from the one used in LMFDB. We use Algorithm A.l which can compute
#E(K)[n| for given K, E and n > 1. As in the proof of Theorem 1.2, it is enough to com-
pute E(Qp(pp)) (resp. E(Q2(p16))) instead of computing E(Qy(ppe)) for an odd prime p

sion subgroups of E(Q,) and E(Qp(up=)).

(resp. for p =2)".

E(Qg) | Label E(Q3) | Label E(Q5) | Label E(Qy) | Label
GLQ 15a5 Gl,l 26a2 G171 11a2 G171 26b2
G174 15a7 GLQ 14a3 GLQ 38b2 G1’3 104al
GLg 15a4 G1,3 26al G173 19al G174 17al
G271 15a2 G1’5 11al G174 39a2 G1’5 38b1l
G272 15al G1,6 14al G175 11al G176 20al
Gi7 | 26b1 Gi7 | 26b1

GLg 17a3 Gl’g 19a2

G179 26al G1710 11al

G1710 38b1 G1,11 75al

G271 39al G1,12 30al

G272 17al G1,13 57al

Gay | 17a2

Gz’g 30a2

Gs1 19al

Table A.3: Examples of E(Q))tor With good ordinary reduction

"In case p = 2, we actually have E(Qz(p2))tor = E(Q2(1s))tor, as stated in Theorem 1.2.

24




E(Q2) | Label E(Qs3) | Label E(Qs) | Label E(Q7) | Label
G1,1 67al G171 140b1 GI,G 14al G1,8 15a4
G173 19al G174 17al G272 15al
G1’5 11al G271 17a2

Gz | 26b1

Table A.4: Examples of E(Q))tor With good supersingular reduction

E(QQ (Mgoo )) Label E(Q5 (/1,500 )) Label E(Q7 (/1,700 )) Label
Gia 33a3 G2 46al Gi3 104al
Gl’g 15a5 G173 19al G174 17al
GQJ 33al G174 39a2 G175 38bl
G2’4 15a2 G175 11a2 G1,6 20al
G471 15al G1’7 26b1 G177 26b2

G1,8 17a3 G179 19a2

E(Q3(M3w)) Label G1’9 26al G1’10 11al
GLQ 56b1 G1710 38b2 G1711 75al
G173 26a2 G271 39al G1712 30al
Gis 11al Gao 17al G113 57al
G176 14a3 G571 11al G271 17a2
G31 26al G52 38bl Ga3 30a2
G32 14al Ga1 19al

Gra 26b1

E(Q2(p4)) | Label
Gi4 15a5
Gz}l 33al
Ga2 15a2
G4 15a4
Gy 15al

Table A.6: Examples of E(Q2(p4))tor with good ordinary reduction
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E(Qa(p2>)) | Label || E(Qs(us=)) | Label
Gl,l 67al G176 14al
Gia 19al
Gis 11al

E(Q3(pus=)) | Label || E(Q7(u7e)) | Label
G171 140b1 G178 15a4
G1,4 17al G272 15al
G 17a2
Gz 26b1

Table A.7: Examples of E(Qp(jtpe))tor With good supersingular reduction
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