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Introduction

The aim of this thesis is to study a conjecture of Rasmussen and
Tamagawa ([RT]) which is related with the non-existence of certain
abelian varieties with constrained prime power torsion subgroups, and
to give some results on some variants of this conjecture. Problems of
non-existence or finiteness for isomorphism classes of various abelian
varieties have been studied by many mathematicians. As some famous
results on such problems, we know

• the Shafarevich Conjecture, proved by Faltings in [Fa], which
is as follows: there exist only finitely many isomorphism classes
of abelian varieties over a given number field, with polarization
of a given degree, which have good reduction outside given
places. Furthermore, Zarhin [Za] improved on Fartings’ result
by omitting the assumption about polarization. We may say
that this is an analogue of Hermite-Minkowski theorem (there
exist only finitely many isomorphism classes of number fields
with given degree and ramification set of places), which is also
famous number theoretic result.
• Fontaine’s theorem in [Fo2] by a study of ramification the-
ory. He showed that there exist no abelian varieties over the
rational number field with everywhere good reduction.

A conjecture of Rasmussen and Tamagawa is in the spirit of the
Shafarevich Conjecture. Rather than fixing a specific reduction type
for an abelian variety, they varied it in some special conditions and
placed an arithmetic constraint on torsion. More precisely, Rasmussen
and Tamagawa defined the set A(K, g, ℓ) of g-dimensional isomorphism
classes of certain abelian varieties overK with constrained prime power
torsion. We can see easily that the set A(K, g, ℓ) is finite by the Sha-
farevich Conjecture as above. Rasmussen and Tamagawa conjectured
that such a finiteness should hold if we take the union of these sets for
ℓ varies over all primes.

conjecture ([RT], Conjecture 1). The set

A(K, g) := {(A, ℓ) | [A] ∈ A(K, g, ℓ), ℓ : prime number}
is finite, that is, the setA(K, g, ℓ) is empty for any prime ℓ large enough.

This conjecture is shown only in a few case in published papers, see
Theorem 5.5. Rasmussen and Tamagawa showed the conjecture in the
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8 INTRODUCTION

case where g ≤ 3 and K is a certain small number field. Under the gen-
eralized Riemann hypothesis, Rasmussen and Tamagawa proved this
conjecture (but it is unpublished, yet). We prove the following results
on variants of the Rasmussen-Tamagawa Conjecture (but statements
here are rough. See Chapter 6 and 7 for precise statements).

theorem. (1) (Corollary 6.15) There exists a constant C which
depends only on K and g such that the set

A(K, g, ℓ) ∩ {semistable reduction everywhere}
is empty for any prime number ℓ > C. In fact, we may take C =
2δ1

(
2g
g

)
, where d is the extension degree of K/Q, dK the discriminant

of K and δ1 := 2dg + 1.
(2) (Theorem 7.1) There exists a constant C which depends only on K
and g such that the set

A(K, g, ℓ) ∩ {whose ℓ-adic representation has an abelian image}
is empty for any prime number ℓ > C.

Now we describe the organization of this paper. In Chapter 1 to 4,
we recall basic theories which we use in this paper. In Chapter 5, we
explain the Conjecture of Rasmussen and Tamagawa. In Chapter 6,
we prove the non-existence of certain Galois representations and prove
(1) of the above theorem. Finally in Chapter 7, we prove (2) of the
above theorem.

Acknowledgements. The author would like to express his sin-
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advice and comments to his works. The author would like to thank
Akio Tamagawa and Seidai Yasuda for pointing out the mistake of
the previous version of the proof for Theorem 6.8 and gave him useful
advice. The author wants to thank Shin Hattori for bringing informa-
tion of results on the Caruso’s paper [Ca1] into my attention. It is
a pleasure to thank Yoichi Mieda for giving him useful advice about
the alteration theorem of de Jong. The author also wants to thank his
family for their warm encouragements. This work is supported by the
JSPS Fellowships for Young Scientists.
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Notation

Throughout this paper, we use the following notations:

• Q : the rational number field.
• Z : the ring of rational integers.

For any prime number ℓ,

• Qℓ : the ℓ-adic completion of Q.
• Zℓ : the valuation ring of Qℓ.
• Fℓ : the finite field of ℓ-elements.

For any field F , we choose an algebraic closure F̄ of F and

• F sep : the separable closure of F in F̄ .
• GF := Gal(F sep/F ) : the absolute Galois group of F .

Except Chapter 3, we always use K to denote a number field, that
is, a finite extension of Q and

• Kab : the maximal abelian extension of K in K̄.
• Gab

K := Gal(Kab/K) : the Galois group of Kab over K.
• IK : the idele group of K.

For a finite place v of K,

• Kv : the completion of K at v with integer ring Ov.
• Uv := O×

v : the group of units of Ov.
• Gv := Gal(K̄v/Kv) : the absolute Galois group of Kv.
• Iv ⊂ Gv : the inertia subgroup of v.
• qv : the order of the residue field of v.

Fixing an embedding K̄ ↪→ K̄v (or equivalently, choosing an extension
of v to K̄), we identify Gv (resp. Iv) with a decomposition group of K
at v (resp. an inertia subgroup of K at v).

For any scheme X over a commutative ring R and an R-algebra R′, we
denote the fiber product X ×Spec(R) Spec(R

′) by XR′ .





CHAPTER 1

Galois representations

In this chapter, we recall some basic notions of Galois representa-
tions. Throughout this chapter, we write K for a finite extension of
Q.

1. Definition

Let G be a Galois group.

Definition 1.1. A Galois representation (defined over A) is a con-
tinuous homomorphism

ρ : G→ GLn(A),

where A is some topological ring and n is a positive integer. Two Galois
representations ρ1 and ρ2 are equivalent (or isomorphic) if there exists
a matrix P ∈ GLn(A) such that P−1ρ1P = ρ2. We call n the degree
(or, dimension) of ρ.

Given such a thing, we can consider the free A-module An of rank
n together with a continuous action of G by defining σ.m = ρ(σ)m.
Conversely, given a finite free A-moduleM of rank n with a continuous
A-linear action of G, we obtain a representation ρ as above by choosing
a basis for M . Changing the basis yields an equivalent representation.
Therefore, to give a Galois representation G→ GLn(A) is the same as
to give a finite free A-module of rank n with continuous action of G.

Definition 1.2. (1) A Galois representation ρ : G → GLn(A) is
called abelian if Im(ρ) is an abelian group.
(2) A Galois representation ρ : G→ GLn(A) is called potentially abelian
if ρ|H is abelian for some finite index subgroup H of G.

Clearly, any 1-dimensional Galois representation is abelian.

Definition 1.3. A Galois representation is called Artinian if it has
finite image.

Let ℓ be a prime number and λ a finite place of a number field E.
We denote by Eλ the completion of E at λ and Fλ the residue field of
λ.

Definition 1.4. (1) If A is the field Qℓ (resp. Eλ), then a Galois
representation defined over A is called an ℓ-adic (resp. λ-adic) repre-
sentation.

11



12 1. GALOIS REPRESENTATIONS

(2) If A is the subfield of F̄ℓ, then a Galois representation defined over
A is called a mod ℓ representation. We call a Galois representation
defined over Fλ a mod λ representation.

Definition 1.5. For a Galois representation V of G (defined over
A), put

V ∨ := HomA(V,A)

and equip V ∨ with the G-action defined by g.f(v) := f(g−1.v) for
f ∈ V ∨, g ∈ G and v ∈ V . We call V ∨ the dual of V .

Remark 1.6. Let ρ : G → GLA(V ) ≃ GLn(A) be a Galois repre-
sentation (for certain basis of V ). Then we can choose a natural basis
of V ∨ such that corresponding representation ρ∨ : G → GLA(V

∨) ≃
GLn(A) is given by ρ∨(g) = (ρ(g)t)−1. Here ρ(g)t is the transposed
matrix of ρ(g).

Definition 1.7. (1) Let F be a complete discrete valuation field
with valuation v, I the inertia subgroup of GF and Iw the wild inertia
subgroup of GF , that is, the maximal pro-ℓ subgroup of I where ℓ
is the residue characteristic of v. Let ρ : GF → GLn(A) be a Galois
representation. We say that ρ is unramified (resp. tamely ramified) if
ρ|I (resp. ρ|Iw ) is trivial. We say that ρ is wildly ramified if ρ is not
tamely ramified.
(2) Let ρ : GK → GLn(A) be a Galois representation of GK . Let v be
a finite place of K. Then we say that ρ is unramified at v (resp. tamely
ramified at v) if the restriction of ρ to Gv = GKv is unramified (resp.
tamely ramified). If ρ is unramified at v, the notion ρ(Frv) ∈ GLn(A) is
well-defined by a natural manner, where Frv is the arithmetic Frobenius
of v. We say that ρ is wildly ramified at v if ρ is not tamely ramified
at v.
(3) Let ρ : GK → GLn(A) be a Galois representation of GK . Let S be
a finite set of places of K. We say that ρ is unramified outside S (or
away from S) if ρ is unramified at all finite places of K not in S.

Example 1.8. Suppose G = GF , where F is a field whose charac-
teristic is prime to ℓ. For any positive integer i, we choose a primitive
ℓi-th root of unity ζℓi in F̄ such that ζℓℓi+1 = ζℓi . Then there exists an

integer ag(i) such that g(ζℓi) = ζ
ag(i)

ℓi
for g ∈ GF . Note that ℓ does not

divide ag(i). Since g(ζℓi+1)ℓ = g(ζℓi), we obtain ag(i+1) ≡ ag(i) mod ℓi.
Hence there exists a unique ℓ-adic unit χℓ(g) ∈ Z×

ℓ such that χℓ(g) ≡
ag(i) mod ℓi for all i, and we obtain 1-dimensional Galois represen-
tation χℓ : GF → Z×

ℓ , which is called an ℓ-adic cyclotomic character.
The representation χ̄ℓ : GF → F×

ℓ defined by χ̄ℓ(g) := (χℓ(g) mod ℓ) =
(ag(1) mod ℓ) is called a mod ℓ cyclotomic character.

Let E be a finite extension of Q and λ a finite place of E above ℓ.
The λ-adic cyclotomic character χλ and themod λ cyclotomic character

χ̄λ are characters GF
χ̄ℓ→ Q×

ℓ ↪→ E×
λ and GF

χ̄ℓ→ F×
ℓ ↪→ F×

λ , respectively.
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If F is a number field K, it is not difficult to check that χℓ and χ̄ℓ

are unramified outside ℓ and, for any finite place v of K not above ℓ,
we have χℓ(Frv) = qv and χ̄ℓ(Frv) = (qv mod ℓ).

For any integer i, we denote by Zℓ(i) the Galois representation
of GF which is Zℓ as a set and equipped with GF -action defined by
g.x := χi

ℓ(g)x. For any Galois representation V defined over a Zℓ-
algebra A, we put V (i) := V ⊗Zℓ

Zℓ(i) and equip V (i) with a natural
GF -action. We call V (i) the i-th Tate twist of V .

2. Geometric Galois representations

Let ℓ be a prime number.

Definition 1.9. (1) An ℓ-adic Galois representation ρ : GK →
GLn(Qℓ) is called geometric if

(a) it is unramified outside a finite set of places of K;
(b) its restriction to every decomposition group Gv (for v running

through all finite places of K) is potentially semistable in the
sense of Fontaine (for the places above p) and Grothendieck1

(for the places not above p).

(2) Let E be a finite extension of Qℓ. An E-representation of degree n
of GK is called geometric if it is geometric as a ℓ-adic representation of
degree n · [E : Q].
(3) Let E be an algebraic extension of Qℓ. An E-representation V of
degree n of GK is called geometric if there exist a finite extension E0

of ℓ in E, a geometric E0 representation V0 of GK and an isomorphism
of E-representations E ⊗E0 V0 ≃ V .

By Grothendieck’s monodromy theorem, the condition (b) in (1) is
equivalent to say the condition (b)′ below:

(b)′ its restriction to decomposition groupGv (for v running through
all finite places of K above ℓ) is potentially semistable.

Let X be a proper smooth variety over K. Let Hr
ét(XK̄ ,Qℓ) be

the ℓ-adic étale cohomology group of X. Then Hr
ét(XK̄ ,Qℓ) is a Qℓ-

vector space of dimension br(X), where br(X) is the r-th Betti number
of X(C). It is known that Hr

ét(XK̄ ,Qℓ) has a natural GK-action and
thus it is a Galois representation of GK . For a finite place v of K such
that XKv is a generic fiber of a proper smooth scheme over Ov, it is
known that Hr

ét(XK̄ ,Qℓ) is unramified at v. Since there exists infinitely
many such v, we know that Hr

ét(XK̄ ,Qℓ) ramifies only finitely many v.
Moreover, it is known that Hr

ét(XK̄ ,Qℓ) is geometric, which is a deep
result of Tsuji [Ts2]. An irreducible Qℓ-representation of GK is said
to come from algebraic geometry if it is isomorphic to a subquotient

1An ℓ-adic representation V of GK is semistable at a place v not above ℓ if Iv
acts on V unipotently. An ℓ-adic representation V of GK is potentially semistable
at a place v not above ℓ if some open subgroup of Iv acts on V unipotently.
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of an étale cohomology group Hr
ét(XK̄ ,Qℓ(i)) with coefficients in Qℓ(i)

for some integer i, of a proper smooth algebraic variety X over K.
The following amazing conjecture is well-known.

Conjecture 1.10. An irreducible ℓ-adic representation of GK is
geometric if and only if it comes from algebraic geometry.

The part of Conjecture 1.10 saying that irreducible “geometric” rep-
resentations “come from algebraic geometry” is known for irreducible
potentially abelian representations by the following well-known result
(however, we write this result without giving definition of some no-
tions).

Proposition 1.11 ([FM], Part 1, Section 6). Let ρ : GK → GLn(Qℓ)
be a potentially abelian ℓ-adic Galois representation of GK. Then the
following are equivalent:
(1) ρ is locally algebraic (see Section 3).
(2) ρ is Hodge-Tate at all finite places v above ℓ.
(3) ρ is de Rham at all finite places v above ℓ.
(4) ρ is potentially semistable at all finite places v above ℓ.
(5) ρ is potentially crystalline at all finite places v above ℓ.
(6) ρ is geometric.
(7) ρ comes from CM abelian varieties (up to a finite image).

3. Artin conductor

The Artin conductor is an invariant which measures the depth of
ramifications of Galois representations (cf. [Se1], Chapter VI or [Se2],
Chapter 19). Let F be a field. Let ρ : GK → GL(V ) ≃ GLd(F ) be a
Galois representation of a number field K with finite image. Here we
equip GLd(F ) with the discrete topology. We define its Artin conductor
N(ρ) as follows: Choose a finite Galois extension L over K such that
ρ factors through Gal(L/K) and define

N(ρ) :=
∏
p

pn(p,ρ),

where p runs through the nonzero prime ideals of K not dividing the
characteristic of F and, for each p,

n(p, ρ) : =
∞∑
i=0

1

[G0 : Gi]
dimF (V/V

Gi)

=

∫ ∞

−1

dimFV/V
Gu

du

where Gi (resp. G
u) is the i-th ramification subgroup of Gal(L/K) in

lower numbering (resp. the u-th ramification subgroup of Gal(L/K) in
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upper numbering)2 of the decomposition group of a prime of L lying
above p, and V Gi is the fixed part of V by the action of Gi. If F is a
field of characteristic ℓ, then the Artin conductor of ρ is said to be the
Artin conductor outside ℓ. Since the ramification filtration in upper
numbering is compatible with taking quotients, the exponent n(p, ρ)
does not depend on the choice of L. It is known that n(p, ρ) is a non-
negative integer. It is clear that n(p, ρ) > 0 if and only if ρ ramifies at
p. Put

sw(p, ρ) : =
∞∑
i=1

1

[G0 : Gi]
dimF (V/V

Gi)

=

∫ ∞

0

dimFV/V
Gu

du.

Then ρ is wildly ramified at p if and only if sw(p, ρ) > 0. By definition,
if ρ is of dimension 1, we see that sw(p, ρ) is the minimal u ≥ 0 such
that Gu acts on V trivially.

Example 1.12 (1-dimensional case). Suppose that F is a field of
characteristic ℓ > 0. Let ρ : GK → F× be a representation of dimension
1 and p a prime ideal of K different from ℓ. Let Kp be the completion

of K at p. Denote by U
(0)
p the group of units of the integer ring Op

of Kp and, for any positive integer u > 0, put U
(u)
p := 1 + pu. By

class field theory, we may regard ρ as a representation IK → F× of the
idele group of K and may regard ρ|Gp as a representation K×

p → F×

of K×
p where Gp is a decomposition subgroup of GK at p. By using the

Hasse-Arf Theorem, we see that n(p, ρ) is the minimal integer u ≥ 0

such that ρ(U
(u)
p ) = 1.

Furthermore suppose that F is a subfield of F̄ℓ. Let N = N(ρ) be
the Artin conductor of ρ outside ℓ. Then we can show that the fixed
field of the kernel of ρ is contained in the strict ray class field of K of
conductor N(ρ)ℓ. This can be checked as follows: For any ideal a of
the integer ring of K, put Up(a) := ker(O×

p → (Op/aOp)
×) and denote

by K(a) the strict ray class field of K of conductor a. Then Up(N) is
contained in the kernel of ρ for any prime ideal p of K different from
ℓ by the last sentence of the first paragraph. Choose an integer m ≥ 0
large enough such that ρ is trivial on Up(ℓ

m) for any prime ideals p of
K above ℓ. Then

∏
p Up(Nℓ

m)× (K×
∞)0 ⊂ IK is contained in the kernel

of ρ. Here (K×
∞)0 is the connected component of the identity of K×

∞
where K∞ is the product of the completions of K at the archimedean
places. Class field theory says that ρ : GK → F× must factor through
Gal(K(Nℓm)/K). Since F× is prime-to-ℓ, ρ in fact factors through
Gal(K(Nℓ)/K).

2In particular, for a chosen prime of L lying above p, G−1 = G−1 is the decom-
position group, G0 = G0 is an inertia subgroup and G1 is a wild inertia subgroup.
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Let ρ be an abelian and semisimple representation of GK of ar-
bitrary dimension, then the fixed field of the kernel of ρ is in fact
contained in the ray class field of conductor N(ρ)ℓ. Indeed, such a
representation ρ is isomorphic to a direct summand of 1-dimensional
representations over F̄ℓ by Schur’s lemma3.

4. Compatible systems

Let E be a finite extension of Q. For a finite place λ of E, we denote
by ℓλ the prime number below λ, Eλ the completion of E at λ and Fλ

the residue field of λ. We denote by Eλ the completion of E at a finite
place λ of E. Let S be a finite set of finite places of K and T a finite
set of finite places of E. Put Sℓ := S∪{places of K above ℓ}. A repre-
sentation ρ : GK → GLn(Eλ) is said to be E-rational with ramification
set S if ρ is unramified outside Sℓ and the characteristic polynomial
det(T − ρ(Frv)) of Frv has coefficients in E for each finite place v /∈ Sℓ

of K, where Frv is an arithmetic Frobenius of v.
Now we give definitions of compatible systems of λ-adic (resp. mod

λ) representations, which mainly follows from that in [Kh1] and [Kh2].
An E-rational strictly compatible system (ρλ)λ of n-dimensional λ-adic
representations of GK with defect set T and ramification set S, consists
of, for each finite place λ of E not in T , a continuous representation
ρλ : GK → GLn(Eλ) that is

(i) ρλ is unramified outside Sℓλ ;
(ii) for any finite place v /∈ S ofK, there exists a monic polynomial

fv(T ) ∈ E[T ] such that for all places λ /∈ T of E which is
coprime to the residue characteristic of v, the characteristic
polynomial det(T − ρλ(Frv)) of Frv is equal to fv(T ).

An E-rational strictly compatible system (ρ̄λ)λ of n-dimensional mod λ
representations of GK with defect set T and ramification set S, consists
of, for each finite place λ of E not in T , a continuous representation
ρ̄λ : GK → GLn(Fλ) that is

(i) ρ̄λ is unramified outside Sℓλ ;
(ii) for any finite place v /∈ S ofK, there exists a monic polynomial

fv(T ) ∈ E[T ] such that for all places λ /∈ T of E which is
coprime to the residue characteristic of v, fv(T ) is integral at
λ and the characteristic polynomial det(T − ρλ(Frv)) of Frv is
the reduction of fv(T ) mod λ.

We will often suppress the sets S and T from the notations.

Example 1.13. Let X be a proper smooth variety over K. Let
Vℓ := Hr

ét(XK̄ ,Qℓ)
∨ be the dual of the ℓ-adic étale cohomology group

Hr
ét(XK̄ ,Qℓ) of X. Then the system (Vℓ)ℓ is a strict compatible system

3It follows from Schur’s lemma that an irreducible abelian representation of a
finite group defined over an algebraically closed field is of dimension 1.
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whose defect set is all prime numbers and ramification set is the set
of finite places v of K such that X has bad reduction at v. This fact
follows from the Weil Conjecture which is proved by Deligne (cf. [De1],
[De2].

It is conjectured that every E-rational strictly compatible system
arises motivically.

Conjecture 1.14 ([Kh1], Conjecture 1). Any E-rational strictly
compatible system of λ-adic (resp. mod λ) representations arises mo-
tivically4.

Conjecture 1.15 ([Kh1], Conjecture 2). Let (ρλ)λ be an E-rational
strictly compatible system of mod λ representations with defect set T
and ramification set S.
(1) (Lifting) It lifts to ( i.e., is the reduction up to semisimplification
of ) a strictly compatible system of semisimple λ-adic representations.
(2) (Bounded conductor) It is of bounded Artin conductor (the defini-
tion of this notion is below).
(3) (Purity) Assume that ρλ is irreducible for almost all λ. Then the
roots of fv(X) for finite places v not in S are of absolute value qtv with
respect to all embeddings of Q̄ in C, and for an half integer t that is
independent of v.
(4) (Integrality) (ρλ⊗χ̄m

λ )λ is integral where χ̄λ is the mod λ cyclotomic
character and m is some integer.

Because of known properties of Galois representations which arise
from geometry, one expects that Conjecture 1.14 implies Conjecture
1.15. These conjectures hold for abelian semisimple strictly compatible
systems (see Theorem 1.21).

An inertial level L of K is a collection (Lv)v of open normal sub-
groups Lv of Iv for each finite place v of K such that Lv = Iv for almost
all v. An inertial level L of a geometric λ-adic representation ρλ of GK

is the collection (Lv(ρλ))v of open normal subgroups Lv(ρλ) of Iv for
each finite place v of K, where Lv(ρλ) is the largest open subgroup of
Iv such that the restriction of ρλ to Lv(ρλ) is semistable. By definition,
we have Lv(ρλ) = Iv for almost all v. A compatible system (ρλ)λ of
geometric λ-adic representations of GK has a bounded inertial level if
there exists an inertial level L = (Lv)v such that Lv ⊂ Lv(ρλ) for all λ
and v. A λ-adic representation ρλ is E-rational with Frobenius weights
w1, w2, . . . , wn outside S if ρλ is E-rational with ramification set S and
for all finite places v /∈ Sℓ of K, the complex roots of the character-
istic polynomial det(T − ρ(Frv)) of Frv (, for a chosen embedding of

4In the article [Kh1], Conjecture 1.14 (in this paper) is written only for E-
integral mod λ representations. However, we may extend this condition “E-integral”
to “E-rational” by Conjecture 1.15, and it is not difficult to see that “mod λ case”
implies “λ-adic case”.
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E into C,) have their complex absolute values q
w1/2
v , q

w2/2
v , . . . , q

wn/2
v

where qv is the cardinality of the residue field of v. A strict compati-
ble system (ρλ)λ is said to be E-rational strict compatible system with
Frobenius weights w1, w2, . . . , wn if each ρλ is E-rational with Frobe-
nius weights w1, w2, . . . , wn outside a ramification set of (ρλ)λ. We call
w1, w2, . . . , wn the Frobenius weights of ρλ (resp. (ρλ)λ) and ρλ (resp.
(ρλ)λ) is said to be pure if w1 = w2 = · · · = wn. Finally, a compatible
system (ρλ)λ of geometric λ-adic representations of GK has bounded
Hodge-Tate weights if there exist integers a and b with a ≤ b such that,
for any λ and finite place v of K above ℓλ, all the Hodge-Tate weights
of ρ|Gv viewed as a Qℓ-representation are in [a, b].

Finally, a compatible system (ρ̄λ)λ of mod λ representations of GK

is of bounded Artin conductor if there exists an ideal N of K such that,
for any λ, the Artin conductor of ρ̄λ divides N.

5. Locally algebraic representations

We recall Serre’s theory of locally algebraic Galois representations
[Se3] (see also [Ri]).

Suppose that E is an algebraic number field (of either finite or
infinite degree over Q). We denote by Eλ the completion of E at a
finite place λ of E. Let S be a finite set of finite places of K and T a
finite set of finite places of E. Put Sℓ := S ∪ {places of K above ℓ}.
Let ℓ = ℓλ be the prime number under a finite place λ of E. Let
T = ResK/Q(Gm) be the torus over Q obtained from the multiplicative
group Gm over K by restriction of scalars to Q. We write T/Eλ

for
the base change T ⊗Q Eλ. Let Kℓ := K ⊗Q Qℓ =

∏
v|ℓKv, and regard

its multiplicative group as a subgroup of the idèle group IK of K.
Note that K×

ℓ = T/Qℓ
(Qℓ) ⊂ T/Eλ

(Eλ). An abelian representation
ρ : Gab

K → GLn(Eλ) may be thought of as a representation of IK by
means of class field theory. Now ρ is said to be locally algebraic if there
exists a morphism r : T/Eλ

→ GLn/Eλ
of algebraic groups defined over

Eλ such that

ρ(x) = r(x−1)

for all x ∈ K×
ℓ close enough to 1. For any finite extension L of K,

ρ is locally algebraic if and only if ρ|GL
is locally algebraic. For a

potentially abelian representation ρ : GK → GLn(Eλ), we say that ρ is
locally algebraic if ρ|GL

is locally algebraic where L is a finite extension
of K such that ρ|GL

is abelian.
Let m = (mv)v∈S(m) be a modulus of K, that is, a family of positive

integers mv for v in a finite set S(m) of finite places of K (we set
mv := 0 if v /∈ S(m)). We say that m is a modulus of definition for an
abelian locally algebraic representation ρ if:

(1) ρ is trivial on Uv,m for each v ∈ S(m) with v - ℓ; and
(2) ρ(x) = r(x−1) for x ∈ Uℓ,m.
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Here, Uv,m is the group of units u of K×
v such that u ≡ 1 modulo the

mv-th power of a uniformizer of K×
v if v is a finite place (resp. it is the

connected component of K×
v if v is an infinite place), Uℓ,m =

∏
v|ℓ Uv,m,

and r : T/Eλ
→ GLn/Eλ

is as above. An abelian representation ρ is
locally algebraic if and only if ρ is geometric in the sense of Fontaine-
Mazur ([FM], Section 6, Proposition). More precisely, an abelian rep-
resentation ρ is locally algebraic with a modulus m if and only if it
becomes semistable when restricted to Uℓ,m.

Put Um :=
∏

v Uv,m (v runs through all the places of K), Im :=
IK/Um and Tm the quotient of T by the Zariski closure of K×∩Um. Let
Cm := IK/(K

×Um) be the ray class group of K of modulus m. Then
there exists a commutative algebraic group Sm over Q which satisfies
the following properties:

there exist an exact sequence

1→ Tm → Sm → Cm → 1

and a group homomorphism ε : Im → Sm(Q) which make a following
diagram commutative:

1 // K×/(K× ∩ Um) //

��

Im //

ε

��

Cm
// 1

1 // Tm(Q) // Sm(Q) // Cm
// 1.

An algebraic homomorphism ϕ : Sm → GLn over E induces a λ-
adic representation ϕλ : GK → GLn(Eλ) as follows: Denote by αλ the
composite map

IK → T (Qℓ)→ Tm(Qℓ) ↪→ Sm(Qℓ) ↪→ Sm(Eλ),

where the first arrow is the projection of IK to its ℓ-th factor K×
ℓ =

T (Qℓ) and the latter three arrows are canonical maps. Regarding ε
as a map IK → Sm(Eλ), it is not difficult to check that ε = αλ on
K×. Therefore, putting ελ := εα̇−1

λ , we see that ελ : IK → Sm(Eλ)
factors through IK/K

× and, by class field theory, ελ defines a map
ελ : G

ab
K → Sm(Eλ). Now we denote by ϕλ the composite map

Gab
K

ελ→ Sm(Eλ)
ϕ→ GLn(Eλ).

By construction, ϕλ is abelian, semisimple, locally algebraic and E-
rational with ramification set S(m). Moreover, (ϕλ)λ is an E-rational
strict compatible system of abelian semisimple λ-adic representations
with empty defect set and ramification set S(m) ([Se4], Section II,
Section 2.5, Theorem or, [Ri], Proposition (1.4.4)).

Theorem 1.16 ([He], Théorèm 2). Let E be a finite extension of
Q and λ a finite place of E. Then any E-rational abelian semisimple
λ-adic representation ρλ : GK → GLn(Eλ) is locally algebraic.
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Theorem 1.17 ([Ri], Theorem (MT 1)). Let E be an algebraic ex-
tension of Q and λ a finite place of E. Then any E-rational abelian
semisimple locally algebraic λ-adic representation ρλ : GK → GLn(Eλ)
with a modulus of definition m arises from a unique semisimple repre-
sentation ϕ : Sm → GLn over E.

6. Hecke characters

In this section, we recall the construction of a Galois representation
arising from a Hecke character. We denote by (K×

∞)0 the connected
component of the identity of the product of the completions of K at
the archimedean places and c complex conjugation. For any z ∈ C,
denote by z̄ the complex conjugation c(z) of z.

Definition 1.18. A Hecke character is a continuous homomor-
phism ψ : IK/K

× → C× such that

ψ|(K×
∞)0(x) =

∏
σ real

xnσ
σ

∏
σ complex

xnσ
σ x̄ncσ

cσ (∗)

for integers nσ, ncσ and with xσ the components of x. We say that
the tuple of integers (nσ)σ is the infinity type of ψ, and say that ψ is
unramified at a finite place v if the units Uv at v are in the kernel of
ψ. The conductor of ψ is the largest ideal N such that elements of the
finite ideles I(∞) congruent to 1 mod N are in the kernel of ψ.

Now we construct a representation ψλ from a Hecke character ψ. We
want to use class field theory: Gab

K ≃ IK/K×(K×
∞)0, where K×(K×

∞)0

is the topological closure of K×(K×
∞)0.

Let ℓ be a prime number. Let ψ0 : IK → C× be a homomorphism
defined by

ψ0(x) = ψ(x)
∏

σ real

x−nσ
σ

∏
σ complex

x−nσ
σ x̄−ncσ

cσ ,

then its kernel is open and takes values in a sufficiently large subfield
E of C which is a finite extension of Q5, and thus we may regard ψ0 as
a continuous representation IK → E×. By definition, this character ψ0

factors through the quotient IK/(K
×
∞)0, however, ψ0 is not trivial on

K×. Thus we modify ψ0 by changing the image of the ℓ-part K×
ℓ :=

(K ⊗Q Qℓ)
× ≃

∏
v|ℓK

×
v of IK . Suppose that E contains the Galois

closure of K and take any finite place λ of E above ℓ. Let η : K× →
5This can be checked as follows: Since ψ0 is continuous, there exists an open

subgroup U of IK such that ψ0 factors through IK/U . It is known that the image
of IK/U in the idele class group IK/K

× of K is finite. Denote by X a set of
representative of IK/UK

×, which is a finite set. If x ∈ U · K×, then ψ0(x) has
values in the Galois closure KGal of K by definition of a Hecke character. On the
other hand, since X is finite, there exists an integer t such that, for any x ∈ X,
xt is in U ·K× and thus ψ0(x)

t has values in KGal. Thus ψ0(X) is contained in a
finite extension E of KGal. Therefore, the image of ψ0 is contained in E.
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E×
λ be the homomorphism defined by η(x) =

∏
σ σ(x)

nσ and extend
η to ηℓ : (K ⊗ Qℓ)

× → E×
λ . From this ηℓ, we obtain a continuous

homomorphism ψλ := ψ0 · (ηℓ ◦ αℓ), where αℓ : IK → (K ⊗ Qℓ)
× is

the projection. Using the isomorphism of class field theory Gab
K ≃

IK/K×(K×
∞)0, we obtain a continuous character ψλ : GK → E×

λ .
Since ψλ is continuous, we know that ψλ has values in the group of

units of Eλ and thus we obtain a mod λ representation ψ̄λ : GK → F×
λ

where Fλ is the residue field of λ.
Denote by πv a uniformizer of Kv for any finite place v.

Proposition 1.19. Let the notation as above.
(1) ψλ is unramified away from the conductor N of ψ. Moreover, ψλ is
trivial on ker(Uv → (Ov/nOv)

×) for any place v of K away from ℓ.
(2) For any finite place v away from N and ℓ,

ψλ(Frv) = ψλ(πv) = ψ(πv) = ψ0(πv) ∈ E.

In particular, ψλ(Frv) is independent of the choice of λ and has values
in E.
(3) The system (ψλ)λ forms an E-rational strictly compatible system
of 1-dimensional λ-adic representations of GK with bounded conductor
and bounded Hodge-Tate weights.
(4) The system (ψ̄λ)λ forms an E-rational strictly compatible system of
1-dimensional mod λ representations of GK with bounded Artin con-
ductor. In fact Artin conductor of ψ̄λ is bounded by the conductor of
ψ.

Proof. The assertions (1) and (2) follows directly from the con-
struction of a representation arising from a Hecke character. The
boundedness of the conductor The assertion (3) follows from the ex-
istence of the conductor of a Hecke character and the boundedness of
Hodge-Tate weights follows from the equation (∗) in Definition 1.18.
The assertion (4) follows easily from the definition of the conductor of
a Hecke character and Example 1.12. �

In the case of 1-dimensional representations, Proposition 1.11 is
written as follows.

Proposition 1.20. Let ψ : GK → E×
λ be a 1-dimensional λ-adic

representation. Let ℓ be a residual characteristic of λ. Then the fol-
lowing are equivalent:
(1) ψ is locally algebraic.
(2) ψ arises from a Hecke character.
(3) ψ is Hodge-Tate at all finite places v above ℓ.
(4) ψ is de Rham at all finite places v above ℓ.
(5) ψ is potentially semistable at all finite places v above ℓ.
(6) ψ is potentially crystalline at all finite places v above ℓ.
(7) ψ comes from CM abelian varieties (up to a finite image).
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Khare proved in [Kh2] that every E-rational strictly compatible
system of abelian representations arises motivically.

Theorem 1.21 ([Kh2], Theorem 2 and Corollary 1). An E-rational
strictly compatible system of abelian semisimple λ-adic (resp. mod λ)
representations of GK arises from n Hecke characters.

Corollary 1.22. (1) An E-rational strictly compatible system (ρλ)λ
of abelian semisimple λ-adic representations of GK has bounded inertial
level and bounded Hodge-Tate weights.
(2) An E-rational strictly compatible system (ρλ)λ of abelian semisimple
mod λ representations of GK is of bounded Artin conductor.

Proof. By Theorem 1.21, such (ρλ)λ arises from Hecke characters.
Hence the Proposition follows from standard properties of a represen-
tation arising from Hecke characters (cf. Proposition 1.19). �



CHAPTER 2

Tame inertia weights

In this chapter, we recall the definition of the tame inertia weights
(cf. [Se4], Section 1) and Caruso’s work on the tame inertia weights
of a residual representation of a semistable Galois representation (cf.
[Ca1]). Furthermore, in the last section, we consider the relationship
between classical polygons (that is, the Hodge polygon and the Newton
polygon introduced in [Fo1]) and the tame inertia polygon (which is
proposed in [CS]).

In this chapter, we write K for a complete discrete valuation field of
characteristic zero with perfect residue field k of positive characteristic
p.

1. Definition of tame inertia weights

We denote by I the inertia subgroup of GK , Iw its wild inertia
subgroup and It := I/Iw the tame inertia group. Let V be an h-
dimensional irreducible Fp-representation of I and fix an algebraic clo-
sure k̄ of k. We denote by F̄p the algebraic closure of Fp in k̄ and Fph the
finite subfield of F̄p with p

h-elements. Since V is irreducible and Iw is a
normal subgroup of I, the action of I on V factors through It and thus
we can regard1 V as a representation of It. Applying Schur’s lemma, we
see that E := EndIt(V ) is the finite field of order ph. Moreover, the rep-
resentation V inherits a structure of a 1-dimensional E-representation
of It by a natural manner. This representation is given by a character

ρ : It → E×. Choose any isomorphism f : E ≃−→ Fph and consider the

composition ρf : It
ρ→ E× f→ F×

ph
:

It ρ
//

))SSSSSSSSSSSSSSSSSSS

ρf

++E×
_�

��

f

≃ // F×
ph
.

GL(V ) = EndFp(V )×

Denote by µph−1(K̄) the set of (ph − 1)-st roots of unity in an
algebraic closure K̄ of K. Consider the isomorphism µph−1(K̄) ≃ F×

ph

1Since Iw is normal in I, we see that V Iw is stable under the action of I. By the
irreducibility of V , we have that V Iw is 0 or V itself. Since Iw is pro-p, V Iw = V
and this implies Iw acts on V trivially.

23
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coming from the reduction map OK̄ � k̄, where OK̄ is the integer ring
of K̄. Then a fundamental character of level h is given as follows:

θh : It → µph−1(K̄) ≃ F×
ph
.

σ 7→ ησ

η

Here η is a (ph − 1)-st root of a uniformizer of K. It is easy to

check that θ1+p+···+ph−1

h = θ1, θ
ph−1
h = 1 and, with respect to h embed-

dings Fph ↪→ F̄p, all the fundamental characters are given by θh,0(:=
θh), θh,1, θh,2, . . . , θh,h−1, where θh,i = θph,i−1 for 0 ≤ i ≤ h − 1 and

θh,0 = θph,h−1. It is known that θe1 coincides with the mod p cyclotomic
character ([Se4], Section 1.8, Proposition 8). Since It is pro-cyclic and
Im(θh) = F×

ph
, there exists an integer nf ∈ {0, 1, . . . , ph − 2} such that

ρf = θ
nf

h . If we decompose nf = n0 + n1p + n2p
2 + · · · + nh−1p

h−1

with integers 0 ≤ ni ≤ p − 1 for any i, then we can see that the set
{n0, n1, n2, . . . , nh−1} is independent of the choice of f .

Definition 2.1. We call these numbers n0, n1, n2, . . . , nh−1 the
tame inertia weights of V . In general, for any Fp-representation V
of I, the tame inertia weights of V are the tame inertia weights of all
the Jordan-Hölder quotients of V .

Example 2.2. Suppose that k is algebraically closed. Let E be an
elliptic curve over K with semistable reduction. If E has supersingular
reduction, assume e = 1. Then the tame inertia weights of E[p] are 0
and e (cf. [Se4], Section 1, Proposition 11 and 12).

Definition 2.3. Let V be a p-adic representation of GK . The
tame inertia weights of V are the tame inertia weights of a residual
representation of V |I .

The above definition is independent of the choice of a residual rep-
resentation of V by the Brauer-Nesbitt theorem.

Definition 2.4. Let w be an integer with 0 ≤ w < p− 1 and V be
an n-dimensional p-adic representation of GK . Denote by w1 ≤ w2 ≤
· · · ≤ wn all the tame inertia weights of V . We say that V is of uniform
tame inertia weight w if w1 = w2 = · · · = wn = w.

2. Filtered (φ,N)-modules

We recall the theory of classical filtered (φ,N)-modules, which clas-
sify semistable p-adic representations of GK .

Let W (k) be the ring of Witt vectors of k and φ the Frobenius
automorphism on k and W (k). Put K0 := Fr(W (k)).

Definition 2.5. A filtered (φ,N)-module is a finite dimensional
K0-vector space D endowed with
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• a Frobenius semilinear injection φ : D → D.
• a K0-linear map N : D → D such that Nφ = pφN .
• a decreasing filtration (FiliDK)i∈Z on DK := D ⊗K0 K by K-
vector spaces such that FiliDK = DK for i≪ 0 and FiliDK =
0 for i≫ 0.

We denote by MF(φ,N) the category of filtered (φ,N)-modules2.
The morphisms in MF(φ,N) are K0-linear maps that preserve a filtra-
tion and commute with φ and N .

LetD be a filtered (φ,N)-module. Put tH(D) :=
∑

i∈Z i·dimK0gr
iDK ,

where griDK := FiliDK/Fil
i+1DK . For a rational number α, denote by

Dα the slope α part of D associated with the action of the Frobenius
of D. If k is algebraically closed and if α = r/s with r, s ∈ Z, s ≥ 1,
then Dα is the sub K0-vector space generated by d ∈ D such that
φs(d) = prd. We can check D = ⊕α∈QDα. It can be seen αdα ∈ Z,
where dα := dimK0Dα. We put tN(D) :=

∑
α∈Q α · dimK0Dα.

Definition 2.6. A filtered (φ,N)-moduleD is called weakly admis-
sible if tH(D) = tN(D) and for any filtered (φ,N)-submodule D′ ⊂ D,
tH(D

′) ≤ tN(D
′).

We denote by MFw(φ,N) the full subcategory of MF(φ,N) whose
objects are weakly admissible filtered (φ,N)-modules.

Let V be a p-adic representation of GK . Put Dst(V ) := (Bst ⊗Qp

V )GK and Dst(V )K := Dst(V ) ⊗K0 K, where Bst is Fontaine’s p-adic
period ring (cf. [Fo3]). Then Dst(V ) is a finite dimensional K0 vector
space and dimK0Dst(V ) ≤ dimQpV . We say that V is semistable if
dimK0Dst(V ) = dimQpV . We equip Dst(V ) with a structure of a fil-
tered (φ,N)-module by a natural manner, that is, φDst(V ) := φBst ⊗
1, NDst(V ) := NBst ⊗ 1, and Fili(Dst(V )K) := (FiliBst ⊗ V )GK ⊗K0 K.
The aforementioned result of Colmez and Fontaine is

Theorem 2.7 ([CF]). The functor Dst : V → (Bst⊗Qp V )GK estab-
lishes an equivalence of categories between the category of semistable
p-adic representations of GK and the category of weakly admissible fil-
tered (φ,N)-modules. A quasi-inverse Vst to Dst is given by Vst(D) :=
Fil0(BdR ⊗K DK) ∩ (Bst ⊗K0 D)φ=1,N=0.

We note that, if we put D∗
st(V ) := Dst(V

∨), then the Hodge-Tate
weights of V is exactly the i ∈ Z such that griD∗

st(V )K ̸= 0. A quasi-
inverse V ∗

st to D
∗
st is given by V ∗

st(D) := HomFil·,φ,N(D,Bst).

3. Breuil modules

From now on, we fix a uniformizer π in K and denote by E(u)
its minimal polynomial over K0 (which is an Eisenstein polynomial of

2Of course, this category MF(φ,N) depends on the field K. Thus it should be
denoted by MFK(φ,N). But for simplicity, we use notation MF(φ,N) instead of
MFK(φ,N)
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degree e := [K : K0]). Let S be the p-adic completion of W (k)[u, E(u)i

i!
]

where u is an indeterminate and endow S with the following structures:

• a continuous φ-semilinear Frobenius φ : S → S defined by
φ(u) := up.
• a continuous linear derivation N : S → S defined by N(u) =
−u.
• a decreasing filtration (FiliS)i∈Z≥0

where FiliS is the p-adic

completion of
∑

j≥i S
E(u)j

j!
.

We can check thatNφ = pφN,N(Fili+1S) ⊂ FiliS (i ∈ Z≥0), φ(Fil
iS) ⊂

piS (0 ≤ i ≤ p− 1). In particular, φi :=
1
pi
φ : FiliS → S is well-defined

for any 0 ≤ i ≤ p− 1. Putting c := φ1(E(u)), we see c ∈ S×.
Put SK0 := S ⊗W (k)K0 = S[1/p]. We extend φ and N of S to SK0 ,

and write FiliSK0 := FiliS ⊗W (k) K0 = (FiliS)[1/p] for all i ≥ 0.

Definition 2.8. We define MF(φ,N) to be the category whose
objects are finite free SK0-modules D endowed with

• a φSK0
-semilinear homomorphism φ : D → D such that the

determinant of φ is invertible in SK0 .
• a decreasing filtration (FiliD)i∈Z such that Fil0D = 0 and that
FiliSK0 · FiljD ⊂ Fili+jD.
• a K0-linear endomorphism N : D → D which satisfy the fol-
lowing:

(1) N(sx) = N(s)x+ sN(x) for s ∈ SK0 and x ∈ D,
(2) Nφ = pφN ,
(3) N(FiliD) ⊂ Fili−1D.

The morphisms in MF(φ,N) are S-linear maps that preserve fil-
tration and commute with φ and N . The above φ and N on D are
called Frobenius and monodromy operator, respectively. An object in
this categoryMF(φ,N) is called a Breuil module.

Let D be a filtered (φ,N)-module. We can associate an object
D = D(D) ∈MF(φ,N) by the following:

D := S ⊗W (k) D

and

• φ := φS ⊗ φD : D → D.
• N := NS ⊗ Id + Id⊗ND.
• Fil0D := D and by induction;

Fili+1D := {x ∈ D | N(x) ∈ FiliD, fπ(x) ∈ Fili+1DK}
where fπ : D → DK is defined by s(u)⊗ x 7→ s(π)x.

Let R := lim←−OK̄/pOK̄ where the transition maps are given by the

p-th power map. We fix a sequence (πn)n≥0 of elements πn ∈ K̄ such
that π0 := π and πp

n+1 = πn for any non-negative integer n. Write
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π:= (πn mod p) ∈ R, and let [π] ∈ W (R) be the Teichmüller lift. Let

Âst be the p-adic completion of Acris⟨X⟩ = Acris[X,
Xi

i!
]i≥0; explicitly,

Âst = {
∑
i≥0

ai
X i

i!
| ai ∈ Acris, ai → 0}.

We endow Âst with the following structures:

• a continuous φ-semilinear Frobenius φ : Âst → Âst defined by
φ(X) := (1 +X)p − 1.

• a continuous Acris-linear homomorphism N : Âst → Âst defined
by N(X) := 1 +X.
• a decreasing filtration

FilnÂst = {
∑
i≥0

ai
X i

i!
| ai ∈ Filn−iAcris, ai → 0},

where FilkAcris := Acris for k ≤ 0.
• a GK-action on Âst defined by g.X := [ε(g)]X + [ε(g)] − 1,
where ε(g) := g(π)/ π ∈ R.

We can check thatNφ = pφN,N(Fili+1Âst) ⊂ FiliÂst (i ∈ Z≥0) and

φ(FiliÂst) ⊂ piÂst (0 ≤ i ≤ p− 1). In particular, φi :=
1
pi
φ : FiliÂst →

Âst is well-defined for any 0 ≤ i ≤ p − 1. Furthermore, a GK-action
on Âst preserves the filtration and commutes with φ and N . The
homomorphism3 S → Âst, defined by u 7→ [π]/(1 + X), induces an

isomorphism S
≃−→ (Âst)

GK (cf. [Br1], Proposition 4.1.2), and by this

isomorphism we regard Âst as an S-algebra.
For any D ∈MF(φ,N), one can associate a Qp[GK ]-module

V ∗
st(D) := HomS,Fil·,φ,N(D, Âst[1/p]).

Theorem 2.9 ([Br1]). The functor D : D 7→ S ⊗W (k) D(:= D) in-
duces an equivalence between the categoriesMF(φ,N) and MF(φ,N)
and there exists a natural isomorphism4 V ∗

st(D) ≃ V ∗
st(D).

We denote by MFw(φ,N) the essential image of D restricted to
MFw(φ,N).

MF(φ,N)
D−→ MF(φ,N)

∪ ∪

MFw(φ,N)
D−→ MFw(φ,N).

3By definition, this morphism preserves the filtration and commutes with φ
and N .

4In particular, dimQpV
∗
st(D) = dimQpV

∗
st(D) = dimK0D = rankSK0

D.
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4. Integral structures

From now on, we fix an integer r ≥ 0 such that r < p− 1.

Definition 2.10. Let D be an weakly admissible filtered (φ,N)-
module satisfying Fil0DK = 0 and Filr+1DK = 0. Let D := D(D) ∈
MFw(φ,N). A strongly divisible lattice (or, strongly divisible module)
of weight ≤ r in D is an S-submoduleM of D such that

• M is finite free as an S-module andM[1/p] ≃ D.
• M is stable under φD.
• φD(Fil

rM) ⊂ prM where FilrM :=M∩ FilrD.
• M is stable under ND.

A strongly divisible lattice of weight ≤ r is a strongly divisible lattice
in someD as above. A morphism between two strongly divisible lattices
of weight ≤ r is an S-linear morphism which commutes the additional
structures.

Definition 2.11. The category ′Modr,φ,N
/S is the category whose

objects are S-modulesM endowed with an S-submodule FilrM ofM,
a φS-semilinear homomorphism φr : Fil

rM → M and a W (k)-linear
endomorphism N :M→M which satisfy the following:

• FilrS · M ⊂ FilrM.
• φr(sx) =

1
cr
φr(s)φr(E(u)

rx) for s ∈ FilrS and x ∈M.
• N(sx) = N(s)x+ sN(x) for s ∈ S and x ∈M.
• (Griffiths transversality) E(u)N(FilrM) ⊂ FilrM.
• The following diagram is commutative:

FilrM
φr //

E(u)N

��

M
cN

��
FilrM

φr //M.

The morphisms in ′Modr,φ,N
/S are S-linear maps that preserve Filr

and commute with φr and N . The above φr and N on M are called
Frobenius and monodromy operator, respectively.

Definition 2.12. The category ModFIr,φ,N/S is the full subcategory

of ′Modr,φ,N
/S whose objectsM satisfy the following:

• M is of finite length as a Zp-module.
• Im(φr) generatesM as an S-modules.

Definition 2.13. The category Modr,φ,N
/S is the full subcategory of

′Modr,φ,N
/S whose objectsM satisfy the following:

• M is finite free as an S-module.
• (Mn,Fil

rMn, φr, N) ∈ ModFIr,φ,N/S for all positive integers n.

Here,Mn :=M/pnM,FilrMn := FilrM/pnFilrM, and φr, N onM
induce those ofMn.
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By definition, we can regard a strongly divisible module of weight
≤ r as an object in the category Modr,φ,N/S .

Note that Âst ∈ ′Modr,φ,N
/S . For anyM∈ Modr,φ,N

/S , define

T ∗
st(M) := Hom′Modr,φ,N

/S
(M, Âst)

and endow it with a GK-action by (g.f)(x) := g(f(x)) for g ∈ GK , f ∈
T ∗
st(M) and x ∈M.

Proposition 2.14 ([Br4]). The category of strongly divisible lat-

tices of weight ≤ r is just Modr,φ,N
/S .

LetM∈ Modr,φ,N
/S . By Proposition 2.14, there existsD ∈MFw(φ,N),

which correspond to D ∈ MF(φ,N) satisfying Fil0DK = DK and
Filr+1DK = 0, such thatM is a strongly divisible lattice in D. We can
check that

V ∗
st(D) ≃ V ∗

st(D) = HomS,Fil·,φ,N(D, Âst[1/p])

= HomS,Filr,φ,N(D, Âst[1/p]) ≃ T ∗
st(M)⊗Zp Qp

asQp[GK ]-modules5. On the other hand, sinceM is free over S, T ∗
st(M)

is a free Zp-module. Therefore, we know that T ∗
st(M) is a GK-stable

Zp-lattice of V ∗
st(D) ≃ V ∗

st(D) and rankZpT
∗
st(M) = rankSM.

5. Simple objects in ModFIr,φ,N/S

Suppose er < p − 1. We will see later that a simple object in
ModFIr,φ,N/S corresponds to a Jordan-Hölder quotient of a residual rep-

resentation of a semistable Galois representation, and hence we want
to know properties of simple objects in ModFIr,φ,N/S . Since any simple

objectM in ModFIr,φ,N/S is killed6 by p, we may restrict our attention

to the full subcategory of ModFIr,φ,N/S whose objects are killed by p.

Let σ : S/pS → k[u]/uep be a surjective k-algebra homomorphism
defined by σ(u) := u and σ(uei/i!) := 0 for i ≥ p. By this homo-
morphism, we regard k[u]/uep as an S/pS-module. Put c̄ := σ(c) ∈

5By Theorem 2.9, only a non-trivial part of this equation is
HomS,Fil·,φ,N (D, Âst[1/p]) = HomS,Filr,φ,N (D, Âst[1/p]). This can be checked

as follows: It is enough to show that, if f is in HomS,Filr,φ,N (D, Âst[1/p]), then

f preserves Fili for 0 ≤ i ≤ r. Let 0 ≤ i ≤ r. Take any x ∈ Filr−iD. Since
FiliSK0 · Fil

r−iD ⊂ FilrD, we have E([π])if(x) = f(E(u)ix) ∈ FilrD. Writing

f(x) =
∑∞

j=0 aj
Xj

j! where aj ∈ Acris, we have E([π])iaj ∈ Filr−jAcris[1/p]. Hence

have aj ∈ Filr−i−jAcris[1/p] (cf. Lemma 3.2.2 of [Li1]). and therefore, we obtain

f(x) ∈ Filr−iAcris[1/p]. This shows that f preserves Filr−i.
6Suppose that there exists a simple object M with pM ̸= 0. Since the

multiplication-by-p map p|M on M is a morphism in ModFIr,φ,N
/S , ker(p|M) is

a non-trivial subobject ofM. This is a contradiction.



30 2. TAME INERTIA WEIGHTS

(k[u]/uep)×. Note that σ(E(u)) = ue. We endow k[u]/uep with addi-
tional structures which are compatible with those of S via σ, explicitly,

• a continuous φ-semilinear Frobenius φ : k[u]/uep → k[u]/uep

defined by φ(u) := up.
• a continuous linear derivation N : k[u]/uep → k[u]/uep defined
by N(u) = −u.
• a decreasing filtration (Filik[u]/uep)i∈Z≥0

where Filik[u]/uep :=

ueik[u]/uep.

Definition 2.15. We define ModFIr,φ,N/k to be the category whose

objects are k[u]/uep-modulesM endowed with an k[u]/uep-submodule
FilrM of M, a φk[u]/uep-semilinear homomorphism φr : Fil

rM → M
over k[u]/uep and a k-linear endomorphism N :M→M which satisfy
the following:

• Filrk[u]/uep · M(= uerM) ⊂ FilrM.
• Im(φr) generatesM as a k[u]/uep-modules.
• N(λx) = N(λ)x+ λN(x) for λ ∈ k[u]/uep and x ∈M.
• ueN(FilrM) ⊂ FilrM.
• The following diagram is commutative:

FilrM
φr //

ueN
��

M
c̄N

��
FilrM

φr //M.

It is known that the categories ModFIr,φ,N/S and ModFIr,φ,N/k are

abelian and artinian category (cf. [Ca1], Section 3.5).

Let M be an object of ModFIr,φ,N/S killed by p. Regard M as an

finite free S/pS-module and put T (M) := M ⊗S/pS,σ k[u]/u
ep. By

equipping T (M) with natural φr, N and Filr arising from those ofM
and k[u]/uep, we see that T (M) is an object of ModFIr,φ,N/k .

Proposition 2.16 ([Ca1], Proposition 2.3.1). The functor T in-

duces an equivalence between the full subcategory of ModFIr,φ,N/S whose

objects are killed by p and ModFIr,φ,N/k .

Proposition 2.17 ([Ca1], Proposition 3.2.1). LetM∈ ModFIr,φ,N/k

be free of rank d over k[u]/uep. Then there exist k[u]/uep-basis e1, e2, . . . , ed
ofM and non-negative integers n1, n2, . . . , nd such that

FilrM = k[u]/uep · un1e1 ⊕ k[u]/uep · un2e2 ⊕ · · · k[u]/uep · unded.

Furthermore, the integers n1, n2, . . . , nd are independent of the choice
of basis.

We call such a basis (e1, e2, . . . , ed) adapted basis. This proposition
follows from the structure theorem of finitely generated modules over
PID.
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Definition 2.18. Let n = (ni)i∈Z/hZ be a sequence of integers

0 ≤ ni ≤ er with period h. We define an objectM(n) of ModFIr,φ,N/k

as follows:

• M(n) := ⊕i∈Z/hZk[u]/u
ep · ei.

• FilrM(n) := ⊕i∈Z/hZk[u]/u
ep · uniei.

• φr(u
niei) := ei+1 for i ∈ Z/hZ.

• N(ei) := 0 for i ∈ Z/hZ.

Proposition 2.19 ([Ca1], Théorème 4.3.2). Suppose that k is al-
gebraically closed. ThenM(n) is simple. Conversely, any simple object

in ModFIr,φ,N/k is isomorphic to an object of the formM(n).

Proposition 2.20 ([Ca1], Corollaire 4.3.4). Let n = (ni)i∈Z/hZ and
m = (mi)i∈Z/h′Z be sequences of period h and h′, respectively. Then two
objectsM(n) andM(m) are isomorphic if and only if h = h′ and, for
some integer a, ni = mi+a for any i.

Let M be an object in ModFIr,φ,N/S . Putting Âst,∞ := Âst ⊗W (k)

K0/W (k), we define

T ∗
st(M) := Hom′Modr,φ,N

/S
(M, Âst,∞).

IfM∈ ModFIr,φ,N/S is isomorphic to S/pn1S⊕S/pn2S⊕· · ·⊕S/pndS as

S-modules, then T ∗
st(M) is isomorphic to Zp/p

n1Zp⊕Zp/p
n2Zp⊕ · · · ⊕

Zp/p
ndZp as Zp-modules ([Ca1], Proposition 6.4.5).

The following is one of main result of [Ca1].

Theorem 2.21 ([Ca1], Théorème 1.0.3 and 5.2.2). Suppose that

k is algebraically closed. Let M be a simple object of ModFIr,φ,N/S and

M(n) the object corresponding toM via the functor T (see Proposition
2.16). Let h be the period of the sequence n = (ni)i. Then the tame
inertia weights of T ∗

st(M) are er−n1, er−n2, . . . , er−nh. In particular,
the tame inertia weights of T ∗

st(M) are between 0 and er.

6. Caruso’s bound on tame inertia weights

The tame inertia weights of an p-adic semistable Galois represen-
tation of GKλ

with Hodge-Tate weights in [0, r] have remarkable prop-
erties if er < p − 1. For example, Serre conjectured in [Se4] that the
tame inertia weights on the Jordan-Hölder quotients of a residual rep-
resentation of the r-th p-adic étale cohomology group Hr

ét(XK̄ ,Z/pZ)
of a proper smooth scheme X over K are between 0 and er. Caruso
proved Serre’s conjecture in [Ca2] by using the integral p-adic Hodge
theory. He also proved the analogous result on the tame inertia weights
of Hr

ét(XK̄ ,Qp) in [Ca1] (see also Theorem 2.24).
We fix an integer r ≥ 0 such that er < p − 1. We denote by

Repst
Zp
(GK)

r (resp. RepZp
(GK)tors) the category ofGK-stable Zp-lattices

of semistable p-adic representations of GK with Hodge-Tate weights in
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[0, r] (resp. the category of finite torsion Zp-modules with a continuous
GK-action). We have already constructed the functors

T ∗
fr : Modr,φ,N

/S → Repst
Zp
(GK)

r

and
T ∗
tors : ModFIr,φ,N/S → RepZp

(GK)tors.

These functors have good properties.

Theorem 2.22 ([Ca1], Théorème 1.0.4 and 1.0.5). (1) The functor
T ∗
fr is an isomorphism.

(2) The functor T ∗
tors is exact and fully faithful, and its essential image

is stable under taking sub-objects and quotient objects.

Remark 2.23. In this remark, we ignore the assumption er < p−1.
Breuil conjectured in [Br4] that, if r < p−1, the functor T ∗

fr induces an

equivalence of categories between Modr,φ,N
/S and Repst

Zp
(GK)

r. If r ≤ 1,

then the conjecture has been proved by Breuil in [Br3] and [Br4].
If e = 1, then Breuil showed the conjecture in [Br2] by generalizing
arguments of Fontaine and Laffaille [FL]. The conjecture in the case
er < p − 1 is proved by Caruso as written in Theorem 2.22. In the
general case, the conjecture is proved completely by Liu [Li1].

In fact, Liu defined (φ, Ĝ)-modules of height ≤ r in [Li2] and proved

that, for any non-negative integer r ≥ 0, the category of (φ, Ĝ)-modules
of height ≤ r is equivariant to the category RepstZp

(GK)
r.

By the definition of strongly divisible lattices, we see that, for any
strongly divisible lattice M̃ and n ≥ 0, the quotient M̃/pnM̃ is an

object of ModFIr,φ,N/S and the following diagram is commutative:

Modr,φ,N
/S

T ∗
fr //

mod pn

��

Repst
Zp
(GK)

r

mod pn

��
ModFIr,φ,N/S

T ∗
tors // RepZp

(GK)tors.

Now we show the following important theorem7:

Theorem 2.24 ([Ca1]). Let Tp ∈ Repst
Zp
(GK)

r and T̄p = Tp/pTp
its residual representation. Then the tame inertia weights of T̄p|I are
between 0 and er.

Proof. We may assume that k is algebraically closed. Choose a
strongly divisible lattice M̃ corresponding to Tp via T ∗

fr. Then M :=

M̃/pM̃ is contained in ModFIr,φ,N/S and T ∗
tors(M) is isomorphic to T̄p.

We identify T ∗
tors(M) with T̄p. Since the essential image of T ∗

tors : ModFIr,φ,N/S →
7Theorem 2.24 seems to be well-known for experts, but there is no proof in

[Ca1], explicitly.
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RepZp
(GK)tors is stable under sub-quotient, any Jordan-Hölder quotient

of T̄p is isomorphic to a representation of the form T ∗
tors(M′) for some

M′ ∈ ModFIr,φ,N/S . The objectM′ is simple because the functor T ∗
tors is

exact (cf. Theorem 2.22) and the image under T ∗
tors of a non-zero object

is still non-zero. Therefore, we obtain the desired result by Theorem
2.21. �

Remark 2.25. In fact, we do not need the assumption er < p− 1
in Theorem 2.24 (the case er ≥ p− 1 is trivial).

7. Hodge polygons, Newton polygons and tame inertia
polygons

We recall three polygons associated with p-adic Galois representa-
tions (cf. [CS], [Fo1]) and consider representations whose tame inertia
polygon (defined below) is a line.

The polygon associated with rational numbers n1 ≤ n2 ≤ · · · ≤
nd is the polygon with break points (0, 0) and (j, n1 + · · · + nj) for
1 ≤ j ≤ d in the usual Cartesian plane. We denote this polygon by
P (n1, n2, . . . , nd). For a p-adic representation V of GK of dimension n,
put D := D∗

st(V ) := (Bst ⊗Qp V
∨)GK and DK := D ⊗K0 K, where Bst

is Fontaine’s p-adic period ring (cf. [Fo3]). Then D has a structure of
a filtered (φ,N)-module by a natural manner. If V is semistable, then
V is crystalline if and only if the monodromy operator N of D∗

st(V ) is
0.

Definition 2.26. The Hodge polygon of V is the polygon associ-
ated with integers t such that FiltDK ̸= Filt+1DK with the rule that t
appears dt-times, where dt := dimK0GrtDK = dimK0Fil

tDK/Fil
t+1DK .

Note that, if V is a Hodge-Tate representation and denote all the
Hodge-Tate weights of V by h1 ≤ h2 ≤ · · · ≤ hn, then the Hodge
polygon of V coincides with the polygon P (h1, h2, . . . , hn). Recall that,
if V is a Hodge-Tate representation, Hodge-Tate weights of V are the
integers t such that there exists an isomorphism

V ⊗Qp Cp ≃ ⊕tCp(t)
dt

of GK-modules with the rule that t appears dt-times.
Let V be any p-adic representation of GK and D := D∗

st(V ) the
filtered (φ,N)-module as above. For a rational number α, denote byDα

the slope α part of D associated with the action of the Frobenius of D.
We have D = ⊕α∈QDα. It can be seen αdα ∈ Z, where dα := dimK0Dα.

Definition 2.27. The Newton polygon of V is the polygon associ-
ated with the rational numbers α such that Dα ̸= 0 with the rule that
α appears dα-times.

Denote by w1 ≤ w2 ≤ · · · ≤ wn all the tame inertia weights of a
p-adic representation V (cf. Definition 2.3).
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Definition 2.28. The tame inertia polygon of V is the polygon
P (t1, t2, . . . , tn), where ti := wi/e for 1 ≤ i ≤ n.

The above three polygons associated with V have remarkable relations.

Proposition 2.29 ([Fo1], [CS]). Suppose that V is semistable.
(1) The Newton polygon of V lies above the Hodge polygon of V and
these polygons end up at the same point.
(2) Suppose er < p− 1. Then the tame inertia polygon of V lies above
the Hodge polygon of V and these polygons end up at the same point.
(3) Suppose er < p − 1. Let (hi)i=1,...,n, (αi)i=1,...,n, (ti)i=1,...,n be in-
creasing sequences associated with the Hodge polygon, the Newton poly-
gon and the tame inertia polygon of V , respectively. Take an integer
1 ≤ j ≤ n. If hi = αi for 1 ≤ i ≤ j, then ti = hi = αi for 1 ≤ i ≤ j.

If V is semistable and the Hodge polygon of V is a line, then it
is well-known that V |I is isomorphic to a Tate twist of Q⊕n

ℓ . We are
interested in the case where the tame inertia polygon of V is a line,
that is, V is of uniform tame inertia weight w for some integer w.
Note that V is of uniform tame inertia weight w if and only if the
action of IK on a residual representation of V , with a suitable choice of
basis, has the upper-triangular form of diagonal components θw1 because

θ1+p+···+ph−1

h = θ1 for any integer h ≥ 0. If er < p − 1 and V is
semistable with Hodge-Tate weights in [0, r] and is of uniform tame
inertia weight w, then 0 ≤ w ≤ er by Theorem 2.24. For such V , we
see w ∈ (e/n)Z∩Z by Proposition 2.29 (2). If V is semistable with all
the Hodge-Tate weights h, then V (−h)|IK is trivial and thus V (−h) is
of uniform tame inertia weight 0.

Example 2.30 (The case where e = 1 and V is crystalline). Sup-
pose e = 1. Let V be an n-dimensional crystalline p-adic representa-
tion of GK with Hodge-Tate weights in [0, p− 1). Then the Fontaine-
Laffaille theory ([FL]) implies that the Hodge-Tate weights of V coin-
cide with the tame inertia weights of V . Hence, for a finite-dimensional
crystalline p-adic representation V of GK with Hodge-Tate weights in
[0, p− 1), the following are equivalent:

(1) V is of uniform tame inertia weight w;
(2) V is of all the Hodge-Tate weights w;
(3) I acts on V (−w) trivially.
If the Hodge polygon or the Newton polygon of a semistable p-adic

representation V of GK is a line, then V is crystalline. In fact, under
some assumptions, an analogous result holds for the case where the
tame inertia polygon of V is a line.

Proposition 2.31. Suppose er < p−1. Let V be an n-dimensional
semistable p-adic representation of GK with Hodge-Tate weights in
[0, r]. Assume that V is of uniform tame inertia weight. Then V is
crystalline in any one of the following case:
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(1) r ≤ 1.
(2) n = 2 and r ≤ 2.
(3) n = 2 and e is odd.
(4) n = 3, r ≤ 2 and e is coprime to 3.

Proof. It is enough to prove that N = 0 on D := D∗
st(V ). De-

note by φ the Frobenius operator of D. For simplicity, we denote by
PH(V ), PN(V ) and PT (V ) the Hodge polygon, the Newton polygon and
the tame inertia polygon associated with V , respectively. We denote by
w the uniform tame inertia weight of V . Note that we have 0 ≤ w ≤ er
and w ∈ (e/n)Z ∩ Z by Theorem 2.24 and Proposition 2.29 (2).

First we suppose the condition (1) holds. If w = 0, then Proposition
2.29 implies that PN(V ) is the line of slope 0 and thus N = 0 (it follows
from the relationN(Dα) ⊂ Dα−1 for any α ∈ Q). Thus we may suppose
w ̸= 0. Now assume N ̸= 0. In this case there is an integer s such that
s and s+1 are parts of slopes of PN(V ). We see s > 0 by the condition
w ̸= 0 and Proposition 2.29. Moreover, Proposition 2.29 (1) implies
that PH(V ) has a slope s′ such that s′ ≥ s + 1. Hence we see that
PH(V ) has a slope greater than 1. This contradicts the assumption
r ≤ 1.

Next we suppose the condition (2) holds and w > 0. Then we have
w = e/2, e, 3e/2 or 2e. Suppose w = e/2 or e. Since PT (V ) ends up at
the coordinate (2,1) or (2,2), we see that all the possibilities of PN(V )
are P (0, 1), P (0, 2) or a line. If PN(V ) = P (0, 1) or P (0, 2), Proposition
2.29 shows that PH(V ) and PT (V ) are of the form P (0, ∗). This is a
contradiction. Hence PN(V ) is a line and this implies N = 0. Suppose
w = 3e/2. Then we see PH(V ) = P (1, 2). Thus PN(V ) is P (1, 2) or
the line of slope 3/2 by Proposition 2.29 (1). Hence Proposition 2.29
(3) implies that PN(V ) must be the line of slope 3/2 and therefore,
we see N = 0. Suppose w = 2e and N ̸= 0. Clearly PN(V ) is not a
line and hence PN(V ) = P (t, 4 − t) for some integer 0 ≤ t ≤ 1. Since
N(Dα) ⊂ Dα−1 for any α ∈ Q and N ̸= 0, we have D(4−t)−1 = Dt.
Thus t = 3/2. This is a contradiction and we obtain N = 0.

Suppose we are in the condition (3). In this case we see w ∈ (e/2)Z∩
Z = eZ and PN(V ) = P (u, 2w/e − u) for some integer 0 ≤ u ≤ w/e.
Assume N ̸= 0. Then we haveD2w/e−u−1 = Du and thus u = w/e−1/2.
This is a contradiction.

Finally, suppose we are in the condition (4). Then w ∈ (e/3)Z∩Z =
eZ. If w = 0, then the assertion (1) implies V is crystalline. Suppose
w = e. Since PT (V ) ends up at the coordinate (3, 3), we see that all the
possibilities of PN(V ) are P (0, 3/2, 3/2), P (0, 0, 3), P (0, 1, 2), P (1, 1, 1)
and P (1/2, 1/2, 2). If PN(V ) = P (0, 3/2, 3/2), P (0, 0, 3) or P (0, 1, 2),
we know that PH(V ) is of the form P (0, ∗, ∗) by Proposition 2.29 (1).
Hence Proposition 2.29 (3) implies that PT (V ) must be also of the
form P (0, ∗, ∗), however, this is a contradiction. If PN(V ) = P (1, 1, 1)
or P (1/2, 1/2, 2), then N = 0 because N(Dα) ⊂ Dα−1 for any α ∈
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Q. Assume w/e ≥ 2. Since PT (V ) ends up at the point (3, 3w/e),
Proposition 2.29 (2) and the condition r ≤ 2 implies that PH(V ) must
be P (2, 2, 2). Thus PN(V ) is a line. This implies N = 0. �

We finish this section with raising the question below:

Question 2.32. Suppose er < p − 1. Let V be a semistable p-
adic representation of GK with Hodge-Tate weights in [0, r]. If V is of
uniform tame inertia weight, then is V crystalline?



CHAPTER 3

Abelian varieties

In this chapter, we recall some basic notions related with abelian
varieties. At this moment, we can say that abelian varieties are classical
objects by an appearance of the word motive. However, these are very
important objects to study in algebraic number theory even now, and
there exist various curious unsolved conjectures.

Definition 3.1. (1) A group scheme A over a scheme S is an
abelian scheme over S if A is smooth and proper with geometrically
irreducible fibers over S. If S is the spectrum of a field F , an abelian
scheme over S is called an abelian variety defined over F . In particular,
an elliptic curve is an abelian variety of dimension one.
(2) A torus T over a scheme S is a commutative group scheme over S
such that locally on Sfppf (equivalently, Sét or Sfpqc) it is isomorphic to
the product of finitely many copies of the multiplicative group scheme
Gm. A split torus is an S-scheme which is isomorphic to the product
of finitely many copies of the multiplicative group over S.
(3) A group scheme G over a scheme S is a semi-abelian scheme if A
is smooth separated commutative group scheme over S with geometri-
cally connected fibers, such that the fiber Gs := G×S Spec(k(s)) is an
extension of an abelian variety As by a torus Ts for each s ∈ S, that
is, 0→ Ts → Gs → As → 0 is exact.

Definition 3.2. Let F be a field, v a discrete valuation of F , Ov

the integer ring of v and Fv the residue field of v. Let A be an abelian
variety over F .
(1) We say that A has good reduction (resp. semistable reduction) at v
if there exists an abelian scheme (resp. semi-abelian scheme) Av over
Spec(Ov) such that A is isomorphic to Av ⊗Ov Spec(F ) over F . If A
has good reduction (resp. semistable reduction) at an extension of v
to a finite algebraic extension of F , we say that A has potentially good
reduction (resp. potentially semistable reduction) at v.
(2) Let the notation be as in (1) and assume A has good reduction.
We call Ã := Av ⊗Ov Spec(Fv) the reduction of the abelian variety A
at v. Note that Ã is also an abelian variety over Fv. A reduction Ã
of an abelian variety A is uniquely determined by A, up to canonical
isomorphism.

Let A be an abelian variety over a field F with dimension d. Let
p ≥ 0 be the characteristic of F . It is well known that there are

37
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canonical isomorphisms

A(F sep)[ℓn] ≃ (Z/ℓnZ)2d

for any prime ℓ ̸= p (cf. [GM], Prop. 5.11). If ℓ = p > 0,

A(F sep)[pn] ≃ (Z/pnZ)f

for some integer 0 ≤ f = f(A) ≤ d, which is also independent of n and
f(A) is called the p-rank of A. If two abelian varieties A and B over
F are isogenous, then we have f(A) = f(B). (cf. [GM], Prop. 5.22).

For any prime ℓ, consider the projective system

A(F sep)[ℓ]
[ℓ]← A(F sep)[ℓ2]

[ℓ]← · · · [ℓ]← A(F sep)[ℓn]
[ℓ]← A(F sep)[ℓn+1]

[ℓ]← · · · .

Definition 3.3. For any prime number ℓ, put

Tℓ(A) = lim←−
n

A(F sep)[ℓn],

with respect to the above projective system. We call Tℓ(A) the Tate
module of A. We also denote the module Tℓ(A)⊗Zp Qp by Vℓ(A).

The Tate module Tℓ(A) is a free Zℓ-module of finite rank, and
equipped with a continuous action of GF . If ℓ ̸= p, the Zℓ-rank of
Tℓ(A) is 2d, whereas if ℓ = p > 0, the Zℓ-rank of Tℓ(A) can be taken to
any number among 0 to d. Note that there exists an isomorphism

Tℓ(A) ≃ Hr
ét(AF̄ ,Qℓ)

∨

as Qℓ[GF ]-modules.

Definition 3.4. (1) An abelian variety A of dimension d over a
field F of characteristic p is ordinary if f(A) = d, that is,

A(F sep)[pn] = (Z/pnZ)⊕d.

(2) Let A be an abelian scheme over a valuation ring O and F the
residue field of O with characteristic p > 0. We call A is ordinary if
its special fiber A×O F is ordinary.
(3) Let F be a field, v a discrete valuation of F , and Ov the valuation
ring of v with residual characteristic p > 0. Let A be an abelian variety
over F which has good reduction at v and Av the abelian scheme over
Ov with its generic fiber A. We say that A has ordinary good reduction
at v if Av is ordinary.

For an abelian variety A over a field F , we can consider A∨ := Pic0A
as an abelian variety over F , which is called the dual abelian variety of
A. About the dual abelian variety, following are well-known:

(1) The dimension of A∨ is the same as the dimension of A.
(2) The abelian varieties A and A∨ are isogenous over F̄ .
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(3) For any prime number ℓ, there is a canonical isomorphism

A∨[ℓn] ≃ A[ℓn]∨

as F -group schemes, where A[ℓn]∨ is the Cartier dual of A[ℓn].
Hence if ℓ is different from the characteristic of F , we see that

Tℓ(A
∨) ≃ Tℓ(A)

∨(1)

as GF -modules.

The next proposition is well-known, which is called the criterion of
Néron-Ogg-Shafarevich.

Proposition 3.5 ([ST], Thm. 1). Let F be a field, v a discrete
valuation of F and Fv a residue field of F at v. For any abelian variety
A over F , the following properties are equivalent.

(1) A has good reduction at v.
(2) A(F sep)[m] is unramified at v for all m prime to characteristic

char(Fv) of Fv.
(3) There exist infinitely many integersm, which is prime to char(Fv),

such that A(F sep)[m] is unramified at v.
(4) The Tate module Tℓ(A) is unramified at v for some (all) primes

ℓ ̸= char(Fv).

It is well-known that there exist only finitely many number fields
with bounded degree and given ramification set (Hermite-Minkowski
Theorem). An analogous result on the above fact for abelian varieties
is known.

Theorem 3.6 ([Fa]). Let K be a finite extension of Q and S a
finite set of finite places of K. Then there exists only finitely many
K-isomorphism classes of abelian varieties which have good reduction
outside S.

Let A be a g-dimensional abelian variety over a field F . We denote
by EndF (A) the ring of F -endomorphisms of A. Let E be a finite
extension of Q of degree 2g, and let i : E → Q ⊗Z EndF (A) be a ring
homomorphism. We call the pair (A, i) an abelian variety with complex
multiplication by E over the field F .

Proposition 3.7 ([ST], Section 4, Corollary 2). Let A be an
abelian variety with complex multiplication over a field F . Let ρA,ℓ

be the representation GF → GL(Tℓ(A)) defined by the Tate-module of
A. Then ρA,ℓ is abelian.

Let K be a finite extension of Q. Let A be an abelian variety over
K. Suppose that the representation ρA,ℓ : GF → GL(Tℓ(A)) defined
by the Tate-module of A is abelian. Then the representation ρA,ℓ is
Q-rational, semisimple and locally algebraic, and thus, by Theorem
1.17, we see that ρA,ℓ arises from an algebraic homomorphism ϕ : Sm →
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GL2g defined over Q (see Section 2.4). Since ρA,ℓ′ is isomorphic to the
representation ϕℓ′ arising from ϕ for all prime numbers ℓ′, we have that
ρA,ℓ′ is abelian for any prime ℓ′. Therefore, we obtain the following.

Proposition 3.8. Let K be a finite extension of Q. Let A be an
abelian variety over K. For any prime number ℓ, we denote by ρA,ℓ

the ℓ-adic representation of GK defined by the Tate-module of A. Then
ρA,ℓ is abelian for some prime number ℓ if and only if ρA,ℓ is abelian
for all prime numbers ℓ.



CHAPTER 4

Modular curves

In this chapter, we are interested in a study of a structure of the set
of rational points on elliptic curves. For this study, modular curves have
been used by many mathematicians. The points of a modular curve
parametrize isomorphism classes of elliptic curves, together with some
additional structure. Let N ≥ 2 be a positive integer. It is known that
there exist smooth irreducible affine curves Y0(N) and Y1(N) defined
over Q which are coarse moduli spaces Y0(N) and Y1(N) for elliptic
curves with Γ0(N)- and Γ1(N)-structures, respectively. In fact, Y1(N)
is a fine moduli scheme for N ≥ 5. For any finite extension K of Q,
we regard K-rational points of Y0(N) and Y1(N) as follows:

• Y0(N)(K) := {(E,C) | E is an elliptic curve over K, and
C ⊂ E(K̄) is a GK-stable cyclic
subgroup of order N }.

• Y1(N)(K) := {(E,P ) | E is an elliptic curve over K, and
P ∈ E(K) is a point of order N}.

We denote by Xi(N) the compactification of Yi(N) for each i and we
call Xi(N) a modular curve of level N for each i. Points on Xi(N) r
Yi(N) are called cusps. The K-rational points on modular curves, in
particular non-cuspidal points, have been studied by many mathemati-
cians. Related with the non-existence of rational points on Y0(N), the
following are well-known:

Theorem 4.1. (1) ([Ma], Theorem 1) Let ℓ be a prime number.
Then Y0(ℓ)(Q) is empty except for ℓ = 2, 3, 5, 7, 11, 17, 19, 37, 43, 67, 163.
(2) ([Mo], Theorem B) Let K be a quadratic field which is not an
imaginary quadratic field of class number one. Then Y0(ℓ)(K) is not
empty only for finitely many prime numbers ℓ.

Study of the non-existence of rational points on Y1(N) is related
with the study of the torsion part E(K)tor of E(K).

Conjecture 4.2 (Torsion conjecture for abelian varieties). If A is
a g-dimensional abelian variety over a number field K, then ♯A(K)tor
is bounded by a constant N(g,K) depending only on g and K.

Conjecture 4.3 (Strong torsion conjecture for abelian varieties).
If A is a g-dimensional abelian variety over a number field K of degree
d, then ♯A(K)tor is bounded by a constant N(g, d) depending only on g
and d.

41



42 4. MODULAR CURVES

Theorem 4.4 ([Me]). Conjecture 4.3 holds for g = 1. Moreover,

we can choose N(1, d) as N(1, d) = d3d
2
.

We state a strengthening of Merel’s result, due to Oesterlé.

Theorem 4.5 ([Oe]). If E is an elliptic curve defined over a num-
ber field K of degree d, and E(K) has a point of prime order ℓ, then
ℓ ≤ (1 + 3d/2)2.



CHAPTER 5

Rasmussen-Tamagawa Conjecture

The Shafarevich Conjecture, which is now proved by Faltings, is
well-known as a conjecture on the finiteness of certain abelian varieties
over a number field. In 2008, Rasmussen and Tamagawa [RT] conjec-
tured the finiteness of abelian varieties with constrained prime power
torsion, in the spirit of the Shafarevich Conjecture.

Throughout this section, we denote by K a finite extension of Q
and ℓ a prime number.

1. Statement

Let K(µℓ) be the smallest field containing K and all ℓ-th roots of
unity. We denote by K̃ℓ the maximal pro-ℓ extension of K(µℓ) which
is unramified away from ℓ.

Definition 5.1. Let g ≥ 0 be an integer. We denote by A(K, g, ℓ)
the set of K-isomorphism classes of abelian varieties A over K of di-
mension g which satisfy the following equivalent conditions:

(1) K(A[ℓ∞]) ⊂ K̃ℓ;
(2) The abelian variety A has good reduction outside ℓ and the

extension K(A[ℓ])/K(µℓ) is an ℓ-extension.

The equivalence of the above conditions follows from the criterion of
Néron-Ogg-Shafarevich (see Proposition 3.5). The set A(K, g, ℓ) is fi-
nite because of the Shafarevich Conjecture. Rasmussen and Tamagawa
conjectured that this set is empty for any ℓ large enough:

Conjecture 5.2 ([RT], Conjecture 1). The set A(K, g) := {(A, ℓ) |
[A] ∈ A(K, g, ℓ), ℓ : prime number} is finite, that is, the set A(K, g, ℓ)
is empty for any prime ℓ large enough.

We call this conjecture the Rasmussen-Tamagawa Conjecture.

2. Structure lemma

We shall recall a lemma proved by Rasmussen and Tamagawa (cf.
[RT], Lemma 3). Let G be a topological group with a normal pro-
ℓ open subgroup N , such that the quotient ∆ = G/N is isomorphic
to a subgroup of F×

ℓ . Because N is pro-ℓ, we see that N has trivial
image under any character ψ : G→ F×

ℓ . Hence, there always exists an
induced character ψ̄ : ∆ → F×

ℓ . Let χ : G → F×
ℓ be a character such
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that the induced character χ̄ is an injection ∆ ↪→ F×
ℓ . Finally, let V̄

be a finite dimensional Fℓ-vector space of dimension n on which G acts
continuously.

Lemma 5.3. Let the notation be as above. Then the vector space V̄
has a filtration of G-modules

{0} = V̄0 ⊂ V̄1 ⊂ · · · ⊂ V̄n−1 ⊂ V̄n = V̄

such that V̄k has dimension k for each 1 ≤ k ≤ n. Furthermore,
for each 1 ≤ k ≤ n, the G-action on the space V̄k/V̄k−1 is given by
g.v̄ = χ(g)ak · v̄ for some ak ∈ Z, 0 ≤ ak < #∆.

Proof. First we note that, for any positive integerm which divides
ℓ − 1, there exists the only one subgroup Cm of F×

ℓ of order m. If we
denote by δ a generator of ∆, then χ(δ) generates C∆ := C♯∆. We
prove the Lemma by induction on n. Since any character ψ : G → F×

ℓ

factors through ∆ and thus has values in C∆ =< χ(δ) >, we obtain
ψ(δ) = χa(δ) for some integer a and hence we have ψ = χa. This finish
the proof in the case n = 1. Assume the results holds for Fℓ-vector
space of dimension n−1, and let V̄ be an Fℓ-vector space of dimension
n.

Consider the action of N on V̄ , which necessarily factors through
some finite ℓ-group N0. Hence, the N -orbits of V̄ must all have order
a power of ℓ and so the subspace V̄ N of fixed points is non-trivial
(V̄ N = {0} implies ℓ divides ♯V̄ − 1, which is impossible). Further,
because N is normal in G, we have that V̄ N is G-stable, and so a
well-defined action of ∆ on V N is induced. Fix a basis for V̄ N , and let
ρ : ∆→ GL(V̄ N) be the associated representation. PutA be the matrix
corresponding to ρ(δ). Since δ♯∆ = 1, we see that the eigenvalues of A
have values in C∆. Hence A has an eigenvector w̄ with some eigenvalue
λ ∈ C∆. Since C∆ is generated by χ(δ), there exists an integer a such
that λ = χa(δ). Because ρ is a representation induced by the G-action
on V̄ , we see that, under the G-action on V̄ , G acts on w̄ ∈ V̄ by the
formula g.w̄ := χa(g) · w̄ for any g ∈ G. Therefore, W̄ :=< w̄ > is a
1-dimensional G-stable subspace of V̄ and G acts on W̄ via χa. There
is an induced G-action on V̄ /W̄ , which has dimension n − 1. By the
induction hypothesis, there exists a filtration of G-modules

{0} = V̄0 ⊂ V̄1 ⊂ · · · ⊂ V̄n−1 ⊂ V̄n−1 = V̄ /W̄

such that V̄k has dimension k for each 1 ≤ k ≤ n − 1. Furthermore,
for each 1 ≤ k ≤ n, the G-action on the space V̄k/V̄k−1 is given by
g.v̄ = χ(g)ak · v̄ for some ak ∈ Z. By the Brauer-Nesbitt theorem, we
have that V̄ itself have a desired filtration as above.

�
Corollary 5.4. Let A be a g-dimensional abelian variety over K.

Then [A] ∈ A(K, g, ℓ) if and only if A satisfies the following: The
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abelian variety A has good reduction outside ℓ and A[ℓ] has a filtration
of GK-modules

{0} = V̄0 ⊂ V̄1 ⊂ · · · ⊂ V̄2g−1 ⊂ V̄2g = A[ℓ]

such that V̄k has dimension k for each 1 ≤ k ≤ 2g. Furthermore,
for each 1 ≤ k ≤ 2g, the GK-action on the space V̄k/V̄k−1 is given by
g.v̄ = χℓ(g)

ak · v̄ for some ak ∈ Z.

3. Known results

Theorem 5.5 ([RT], Theorem 2 and 4). The Rasmussen-Tamagawa
Conjecture holds under any one of the following conditions:

(i) K = Q and g = 1.
(ii) K is a quadratic number field other than the imaginary qua-

dratic fields of class number one and g = 1.

Proof. Take (E, ℓ) ∈ A(K, 1). By Corollary 5.4, the group of
ℓ-torsion points E[ℓ] of E has a GK-stable subspace of dimension 1,
which is of course cyclic of order ℓ. Recall that Y0(N) denotes the
moduli space (over Z[1/N ]) for isomorphism classes of pairs (E0, C0),
where E0 is an elliptic curve, and C0 is a cyclic subgroup of E0 of order
N . Then (E, ℓ) corresponds to a class [(E,C)] ∈ Y0(ℓ)(K). If K is a
number field as in the statement of this theorem, then it is known that
Y0(ℓ)(K) is empty for ℓ large enough (cf. Theorem 4.1). �





CHAPTER 6

Non-existence of Galois representations

Let ℓ be a prime number and K a number field. In this chapter,
we show the non-existence of certain semistable ℓ-adic Galois repre-
sentations of the absolute Galois group GK of K by using remarkable
results on the tame inertia weights due to Caruso. Fix non-negative
integers n, r and w, and a prime number ℓ0 ̸= ℓ. Put • := (n, ℓ0, r, w).
We consider the set RepQℓ

(GK)
• of isomorphism classes of certain ℓ-

adic representations of GK (Definition 6.4 (2)). The set RepQℓ
(GK)

•

has some relations with the dual of Hw
ét(XK̄ ,Qℓ), where X is a proper

smooth scheme over K which has semistable reduction everywhere and
has good reduction at a place of K above ℓ0. Our main result in this
chapter is

Theorem 6.1 (= Theorem 6.8). Suppose that w is odd or w > 2r.
Then there exists an explicit constant C depending only on K,n, ℓ0, r
and w such that RepQℓ

(GK)
• is empty for any prime number ℓ > C

which does not split in K.

We prove this theorem by a relation between tame inertia weights and
Frobenius weights (Proposition 6.11). Our result gives an application to
a special case of the Rasmussen-Tamagawa Conjecture (see the previous
chapter).

1. Geometric and filtration conditions

We define the set of representations we mainly consider throughout
this chapter. We fix non-negative integers n, r, w and w̄, and a prime
number ℓ0 different from ℓ. Let χ̄ℓ be the mod ℓ cyclotomic character.
Take an n-dimensional ℓ-adic representation V ofGK and denote by V̄ a
residual representation of V . Note that V̄ is not uniquely determined (it
depends on a choice of a GK-stable lattice), but the required property
or the numbers computed from V̄ does not depend on the choice of
V̄ . Now we consider the following geometric conditions (G-1), (G-2),
(G-2)′ and (G-3), and filtration conditions (F-1) and (F-2):

(G-1) For any place λ of K above ℓ, the representation V |Gλ
is

semistable and has Hodge-Tate weights in [0, r].
(G-2) For some place v0 of K above ℓ0, the representation V is

unramified at v0 and the characteristic polynomial det(T −
Frv0 |V ) has rational integer coefficients. Furthermore, there
exist non-negative integers w1(V ), w2(V ), . . . , wn(V ) such that
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w1(V ) + w2(V ) + · · · + wn(V ) ≤ w̄ and, for every embedding
Q̄ℓ ↪→ C, the roots of the above characteristic polynomial have

complex absolute values q
w1(V )/2
v0 , q

w2(V )/2
v0 , . . . , q

wn(V )/2
v0 .

(G-2)′ The condition (G-2) holds and w1(V ) = w2(V ) = · · · =
wn(V ) = w.

(G-3) For any finite place v of K not above ℓ, the action of Iv on V̄
is unipotent.

(F-1) The representation V̄ has a filtration of GK-modules

{0} = V̄0 ⊂ V̄1 ⊂ · · · ⊂ V̄n−1 ⊂ V̄n = V̄

such that V̄k has dimension k for each 1 ≤ k ≤ n.
(F-2) The condition (F-1) holds. Moreover, for each 1 ≤ k ≤ n, the

GK-action on the quotient V̄k/V̄k−1 is given by g.v̄ = χ̄ak
ℓ (g)v̄

for some 0 ≤ ak ≤ ℓ− 2.

If an ℓ-adic representation V satisfies the condition (F-1), then we say
that V is of residually Borel. If n = 2, then (F-1) is equivalent to the
condition that V̄ is reducible.

Example 6.2. Suppose w ≤ r. Let X be a proper smooth scheme
over K which has everywhere semistable reduction and has good re-
duction at some places of K above ℓ0. Then the dual Hw

ét(XK̄ ,Qℓ)
∨

of the w-th ℓ-adic étale cohomology group of X satisfies the geometric
conditions (G-1), (G-2)′ and (G-3).

Proposition 6.3. Let X be a proper smooth scheme over K and
w an odd integer. Denote by SX the finite set of prime numbers p such
that X has bad reduction at some place of K above p. Then, there
exists a finite extension L of K such that, for any ℓ /∈ SX , the ℓ-adic
representation Hw

ét(XL̄,Qℓ) of GL is semistable at all finite places.

In particular, we have the following: Let X and L be as above. Fix
a prime number ℓ0 /∈ SX and take a prime number ℓ such that ℓ ̸= ℓ0
and ℓ /∈ SX . Then Hw

ét(XL̄,Qℓ)
∨ satisfies (G-1), (G-2)′ and (G-3) as a

representation of GL.

Proof of Proposition 6.3. For any algebraic extension K ′ of
K, denote by SX,K′ the set of places of K ′ which is above one of the
prime numbers in SX . Take any place v ∈ SX,K . By de Jong’s alter-
ation theorem ([dJ], Theorem 6.5), there exist a finite extension K ′

v

of Kv, a proper strictly semistable scheme Yv over OK′
v
and a mor-

phism Yv → X compatible with Spec(OK′
v
) → Spec(OKv) such that

the morphism f : Yv → XOK′
v
induced by the above morphism is an

étale alteration (see also [Ts1], Theorem A3). Here OKv and OK′
v
are

integer rings of Kv and K ′
v, respectively, and X is a proper flat model

of XKv over OKv . Such a model always exists by the compactifica-
tion theorem of Nagata. Take any prime number ℓ′. If we denote by
f∗ and f

∗ the induced homomorphisms Hw
ét(Yv

K̄′
v
,Qℓ′)→ Hw

ét(XK̄v
,Qℓ′)
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and Hw
ét(XK̄v

,Qℓ′) → Hw
ét(Yv

K̄′
v
,Qℓ′) respectively, then the map f∗ ◦ f∗

is the multiplication by deg(f). In particular, the map f ∗ is injec-
tive. Thus we may consider that Hw

ét(XK̄′
v
,Qℓ′) is a sub-representation

of Hw
ét(Yv

K̄′
v
,Qℓ′). Now take a finite extension K(v) of K and a place

w(v) of K(v) above v such that K(v)w(v) = K ′
v, where K(v)w(v) is

the w(v)-adic completion of K(v). The existence of K(v) and w(v) is
an easy consequence of [La], Section II, Section 2, Proposition 4. We
denote by L the Galois closure, over K, of the field generated by all
K(v). Here v runs through all the places of K in SX,K . Now we take a
prime number ℓ /∈ SX . It suffices to show that the ℓ-adic representation
Hw

ét(XL̄,Qℓ) of GL is everywhere semistable. Take any finite place wL

of L. If wL /∈ SX,L, then X has good reduction at wL and in particular
Hw

ét(XL̄,Qℓ) is semistable at wL. Suppose wL ∈ SX,L. We denote the
restriction of wL to K by v. Take Yv and the place w(v) of K(v) as
above. Furthermore, we take a place w′

L of L above w(v). Since the
action of Iw′

L
is unipotent on Hw

ét(Yv
L̄
,Qℓ), we have that the action of

Iw′
L
on Hw

ét(XK̄ ,Qℓ) is unipotent, too. Since the inertia subgroup Iw′
L

conjugates with IwL
by the element of GK , we see that the action of

IwL
on Hw

ét(XK̄ ,Qℓ) is also unipotent, that is, Hw
ét(XL̄,Qℓ) is semistable

at wL. This finishes the proof. �
Definition 6.4. Put ◦ := (n, ℓ0, r, w̄) and • := (n, ℓ0, r, w).

(1) We denote by RepQℓ
(GK)

◦
cycl (resp. RepQℓ

(GK)
•
cycl) the set of isomor-

phism classes of n-dimensional ℓ-adic representations V of GK which
satisfy (G-1), (G-2) and (F-2) (resp. (G-1), (G-2)′ and (F-2)).
(2) We denote by RepQℓ

(GK)
◦ (resp. RepQℓ

(GK)
• ) the set of isomor-

phism classes of n-dimensional ℓ-adic representations V of GK which
satisfy (G-1), (G-2), (G-3) and (F-1) (resp. (G-1), (G-2)′, (G-3) and
(F-1)).

Clearly, we have

RepQℓ
(GK)

◦
cycl ⊂ RepQℓ

(GK)
◦

∪ ∪
RepQℓ

(GK)
•
cycl ⊂ RepQℓ

(GK)
•,

where • = (n, ℓ0, r, w) and ◦ = (n, ℓ0, r, w̄) for any nw ≤ w̄.
Our main concern in this chapter is the following question:

Question 6.5. Does there exist a constant C which depends on K
and • (or ◦ ) such that the sets defined in Definition 6.4 are empty for
ℓ > C? If the answer is positive, how can we evaluate such a constant
C?

Remark 6.6 (Trivial case). Take a representation V ∈ RepQℓ
(GK)

•.
By (G-2)′, the complex absolute value of the determinant of Frv0 act-

ing on V is q
nw/2
v0 and this must be an integer. From this fact, if n
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and w are odd and the extension K/Q is Galois of an odd degree, then
RepQℓ

(GK)
• is empty for any prime ℓ ̸= ℓ0. As this example, there

exist lots of pairs of (K, •) (resp. (K, ◦)) such that RepQℓ
(GK)

• (resp.
RepQℓ

(GK)
◦) is empty for a prime ℓ (large enough). We hope to know

“non-trivial cases” of the emptiness of the sets given in Definition 6.4.

2. Main theorems

We denote by d, dK and h+K the extension degree of K over Q, the
discriminant of K and the narrow class number of K, respectively. Put
M := max{nr, w̄/2} and

cn :=

{
(

n
n/2 ) if n is even,

(
n

(n−1)/2 ) if n is odd.

Clearly this is equal to max{( n
m ) | 0 ≤ m ≤ n}. Now we put

ε1 := dM, ε2 := dε1, ε′1 := dh+KM, ε′2 := dε′1,

C1 := C1(d, •) := 2cnℓ
ε1
0 , C2 := C2(d, •) := 2cnℓ

ε2
0 ,

C ′
1 := C ′

1(K, •) := 2cnℓ
ε′1
0 , C ′

2 := C ′
2(K, •) := 2cnℓ

ε′2
0 .

The following are our main results.

Theorem 6.7. The set RepQℓ
(GK)

•
cycl is empty under any one of

the following situations:

(a) w is odd, ℓ - dK and ℓ > C1;
(b) w is odd, the extension K/Q has odd degree and ℓ > C2;
(c) w > 2r, ℓ - dK and ℓ > C1;
(d) w > 2r and ℓ > C2;
(e) w and n are odd, and ℓ > C2.

Theorem 6.8. If ℓ does not split in K, then the set RepQℓ
(GK)

•

is empty under any one of the following situations:

(a) w is odd, ℓ - dK and ℓ > C ′
1;

(b) w is odd, the extension K/Q has odd degree and ℓ > C ′
2;

(c) w > 2r, ℓ - dK and ℓ > C ′
1;

(d) w > 2r and ℓ > C ′
2;

(e) w and n are odd, and ℓ > C ′
2.

It is useful to give the following definition for the proofs of the above
theorems.

Definition 6.9. Let λ be a place of K above ℓ and V an ℓ-adic
representation of GK . The tame inertia weights of V at λ is the tame
inertia weights of V |Gλ

(cf. Definition 2.3). For an integer 0 ≤ w < ℓ−1,
we say that V is of uniform tame inertia weight w at λ if V |Gλ

is of
uniform tame inertia weight w (cf. Definition 2.4).

The following two propositions play an essential role for our main
results.
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Proposition 6.10. Any ℓ-adic representation V in the set RepQℓ
(GK)

◦
cycl

has tame inertia weights eλw1(V )/2, eλw2(V )/2, . . . , eλwn(V )/2 at any
place λ of K above ℓ under any one of the following situations:

(a) ℓ - dK and ℓ > C1;
(b) ℓ > C2.

Proposition 6.11. Suppose that ℓ is a prime number which does
not split in K. Any ℓ-adic representation V in the set RepQℓ

(GK)
◦

has tame inertia weights eλw1(V )/2, eλw2(V )/2, . . . , eλwn(V )/2 at the
unique place λ of K above ℓ under any one of the following situations:

(a) ℓ - dK and ℓ > C ′
1;

(b) ℓ > C ′
2.

To prove these propositions, we need the following lemma:

Lemma 6.12. Let s, t1, t2, . . . , tn and u be non-negative integers such
that 0 ≤ s ≤ u and 0 ≤ tk ≤ ru for all k. Let V be an n-dimensional
ℓ-adic representation of GK which satisfies (G-2). Decompose det(T −
Frv0 |V ) =

∏
1≤k≤n(T − αk). If the set {αs

1, α
s
2, . . . , α

s
n} coincides with

the set {qt1v0 , q
t2
v0
, . . . , qtnv0} in F̄ℓ and ℓ > 2cnℓ

dMu
0 , then {αs

1, α
s
2, . . . , α

s
n} =

{qt1v0 , q
t2
v0
, . . . , qtnv0}. In particular, we obtain

{sw1(V )/2, sw2(V )/2, . . . , swn(V )/2} = {t1, t2, . . . , tn}.

Proof. We basically follow the proof by the method which has
been pointed out by Rasmussen and Tamagawa. Let us denote by
Sm(x1, x2, . . . , xn) the elementary symmetric polynomial of degree m
with n-indeterminates x1, x2, . . . , xn for 0 ≤ m ≤ n, that is,∏

1≤k≤n

(T − xk) =
∑

0≤m≤n

Sm(x1, x2, . . . , xn)T
n−m.

For any 0 ≤ m ≤ n, the condition (G-2) implies that Sm(α1, α2, . . . , αn)
is a rational integer for all m and hence Sm(α

s
1, α

s
2, . . . , α

s
n), which is a

symmetric polynomial of α1, α2, . . . , αn, is also a rational integer. On
the other hand, we have

|Sm(α
s
1, α

s
2, . . . , α

s
n)| ≤

∑
1≤s1<···<sm≤n

(q
(ws1 (V )+···+wsm (V ))/2
v0 )s

≤
∑

1≤s1<···<sm≤n

(qw̄/2
v0

)s = ( n
m ) (qw̄/2

v0
)s ≤ cnℓ

dMu
0

and

|Sm(q
t1
v0
, qt2v0 , . . . , q

tn
v0
)| ≤

∑
1≤s1<···<sm≤n

q
ts1+···+tsm
v0

≤
∑

1≤s1<···<sm≤n

qnruv0
= ( n

m ) qnruv0
≤ cnℓ

dMu
0
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by (G-2), where | · | is the complex absolute value. Since we have
Sm(α

s
1, α

s
2, . . . , α

s
n) ≡ Sm(q

t1
v0
, qt2v0 , . . . , q

tn
v0
) mod ℓ and ℓ > 2cnℓ

dMu
0 , we

obtain
Sm(α

s
1, α

s
2, . . . , α

s
n) = Sm(q

t1
v0
, qt2v0 , . . . , q

tn
v0
)

for all m. Therefore, we have the desired result. �
Now we start the proofs of Proposition 6.10 and 6.11. Take any

representation V which is an element of the set RepQℓ
(GK)

◦ and denote

a residual representation of V by V̄ . Then the representation V̄ has a
filtration of GK-modules

{0} = V̄0 ⊂ V̄1 ⊂ · · · ⊂ V̄n−1 ⊂ V̄n = V̄

such that V̄k has dimension k for each 1 ≤ k ≤ n. We denote by
ψk : GK → F×

ℓ the character corresponding to the action of GK on
the quotient V̄k/V̄k−1 for each 1 ≤ k ≤ n. Take any place λ of K

above ℓ. By Theorem 2.24, we obtain ψk = θ
bk,λ
1,v on Iλ for some integer

0 ≤ bk,λ ≤ eλr, where θ1,λ : Iλ → F×
ℓ is the fundamental character of

level one at λ. Take a place λ0 ofK above ℓ0 as in (G-2) and decompose
det(T − Frλ0|V ) =

∏
k(T − αk). Then, we see

{α1, α2, . . . , αn} = {ψ1(Frλ0), ψ2(Frλ0), . . . , ψn(Frλ0)} (∗)
in F̄ℓ.

Proof of Proposition 6.10. Assume that V is an element of
the set RepQℓ

(GK)
◦
cycl. Then we may suppose ψk = χ̄ak

ℓ for any k by

(F-2). The relation χ̄ak
ℓ = θ

bk,λ
1,λ on Iλ implies θeλak1,λ = θ

bk,λ
1,λ and thus

eλak ≡ bk,λ mod ℓ − 1. Hence we have χ̄eλak
ℓ = χ̄

bk,λ
ℓ on GK and thus

the set {αeλ
1 , α

eλ
2 , . . . , α

eλ
n } coincides with the set {qb1,λλ0

, q
b2,λ
λ0

, . . . , q
bn,λ

λ0
}

in F̄ℓ by (∗). By Lemma 6.12, we have

{eλw1(V )/2, . . . , eλwn(V )/2} = {b1,λ, . . . , bn,λ}

if ℓ > 2cnℓ
dMeλ
0 . Since eλ ≤ d and eλ = 1 if ℓ - dK , we have the desired

result. �
Proof of Proposition 6.11. We note that each ψk is unrami-

fied away from ℓ by (G-3). Now we assume that any one of the following
conditions (A) or (B) holds:

(A) ℓ - dK ;
(B) No additional assumptions.

Setting b′k := bk,λ/eλ ∈ Q, we have 0 ≤ b′k ≤ r. We note that, if we put

D :=

{
1 under (A),
d under (B),

then we see D/eλ ∈ Z. Since ψk = θ
bk,λ
1,λ on Iλ, we see that ψeλ

k χ̄
−bk,λ
ℓ is

trivial on Iλ and thus (ψeλ
k χ̄

−bk,λ
ℓ )D/eλ = ψD

k χ̄
−b′kD

ℓ is also trivial on Iλ.
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Since the characters ψk and χ̄ℓ are unramified away from ℓ, this implies

that ψD
k χ̄

−b′kD

ℓ is unramified at all finite places of K (recall that ℓ does
not split in K). By class field theory, it follows

ψ
Dh+

K
k = χ̄

b′kDh+
K

ℓ

on GK . Recall that h+K is the narrow class number of K. Thus

we have that the set {αDh+
K

1 , α
Dh+

K
2 , . . . , α

Dh+
K

n } coincides with the set

{qb
′
1Dh+

K
λ0

, q
b′2Dh+

K
λ0

, . . . , q
b′nDh+

K
λ0

} in F̄ℓ by (∗). Now we assume ℓ > 2cnℓ
dDh+

KM
0 .

Then we have

{Dh+Kw1(V )/2, . . . , Dh+Kwn(V )/2} = {b′1Dh+K , . . . , b
′
nDh

+
K}

by Lemma 6.12. Our result comes from this equation. �

Proofs of Theorem 6.7 and 6.8. We only prove Theorem 6.7
because we can prove Theorem 6.8 by the same way. Suppose that
there exists an ℓ-adic Galois representation V which is contained in
RepQℓ

(GK)
•
cycl and take a residual representation V̄ of V . If we assume

one of the situations (a) and (b) given in Proposition 6.10, then V̄ is
of uniform tame inertia weight eλw/2 at any place λ of K above ℓ, and
thus eλw/2 must be a rational integer. Moreover, by Theorem 2.24,
it follows that the tame inertia weight eλw/2 is between 0 and eλr.
However, if we assume any one of the conditions (a), (b), (c) and (d),
then eλw is odd for some λ or eλw/2 > eλr. This is a contradiction.
The rest of the assertion related with (e) follows from the fact ([CS],
Theorem 1) that the sum of all the tame inertia weights of V at λ must
be divisible by eλ. �

Remark 6.13. To remove the special assumption “ℓ does not split
in K” in Theorem 6.8 is impossible in general because there exists
such an example, which is pointed out by Akio Tamagawa: Let E
be an elliptic curves over K with complex multiplication over K by
an imaginary quadratic field F := Q ⊗Z EndK(E) ⊂ K. Then E is
potential everywhere good reduction and thus we may suppose E has
everywhere good reduction over K. Put Fℓ := Qℓ ⊗Q F , which is a
semisimple Qℓ-algebra. It is well-known that Fℓ acts faithfully on the
Tate-module Vℓ(E) of E and thus Vℓ(E) has a natural structure of 1-
dimensional Fℓ-vector space. If ℓ splits in F , the decomposition Fℓ ≃
Qℓ×Qℓ induces a decomposition of Vℓ(E) as a sum of 1-dimensionalGK-
stable ℓ-adic representations. For such odd prime ℓ, it is easy to check
that Vℓ(E) is an element of the set RepQℓ

(GK)
•, where • = (2, 2, 1, 1).

3. Applications

We give some applications of our results. We use same notation as
in the previous section.
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3.1. Rasmussen-Tamagawa Conjecture. We consider the semistable
reduction case of Conjecture 5.2.

Definition 6.14. (1) We denote by A(K, g, ℓ)st the set of K-
isomorphism classes of abelian varieties in A(K, g, ℓ) with semistable
reduction everywhere.
(2) We denote by A(K, g, ℓ0, ℓ)st the set of K-isomorphism classes of
abelian varieties A over K with semistable reduction everywhere, of
dimension g, which satisfy the following condition: The abelian variety
A has good reduction at some places of K above ℓ0 and A[ℓ] has a
filtration of GK-modules

{0} = V̄0 ⊂ V̄1 ⊂ · · · ⊂ V̄2g−1 ⊂ V̄2g = A[ℓ]

such that V̄k has dimension k for each 1 ≤ k ≤ 2g.

Clearly, we see A(K, g, ℓ)st ⊂ A(K, g, ℓ0, ℓ)st since ℓ ̸= ℓ0. The set
A(K, g, ℓ)st is finite, however, the set A(K, g, ℓ0, ℓ)st may be infinite.
The Rasmussen-Tamagawa Conjecture implies that A(K, g, ℓ)st will be
empty for a prime ℓ large enough.

Take an abelian variety A which is in the set A(K, g, ℓ)st (resp.
A(K, g, ℓ0, ℓ)st). Then the Tate module Vℓ(A) of A is an element of
the set RepQℓ

(GK)
•
cycl (resp. RepQℓ

(GK)
• ) with • = (2g, 2, 1, 1) (resp.

• = (2g, ℓ0, 1, 1)) for any ℓ > 2 (resp. ℓ > ℓ0). Consequently, we obtain
the following results as corollaries of Theorem 6.7 and 6.8:

Corollary 6.15. The set A(K, g, ℓ)st is empty under any one of
the following situations:

(a) ℓ - dK and ℓ > 2δ1
(
2g
g

)
, where δ1 := 2dg + 1;

(b) The extension K/Q has odd degree and ℓ > 2δ2
(
2g
g

)
, where

δ2 := 2d2g + 1.

Corollary 6.16. Suppose that ℓ does not split in K. The set
A(K, g, ℓ0, ℓ)st is empty under any one of the following situations:

(a) ℓ - dK and ℓ > 2ℓ
δ′1
0

(
2g
g

)
, where δ′1 := 2dgh+K;

(b) The extension K/Q has odd degree and ℓ > 2ℓ
δ′2
0

(
2g
g

)
, where

δ′2 := 2d2gh+K.

Remark 6.17. Rasmussen and Tamagawa have shown the finite-
ness of the set A(K, g)st by using the result of [Ra] instead of Theorem
2.24 (unpublished). Our main results in this paper are motivated by
their work.

3.2. ℓ-torsion points of elliptic curves. We consider the fol-
lowing classical question:

Question 6.18. Does there exist a constant cK, which depends only
on K, such that for any semistable elliptic curve E defined over K with-
out complex multiplication over K, the representation in its ℓ-torsion
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points E[ℓ] is irreducible whenever ℓ > cK? Furthermore, if the answer
is positive, how can we evaluate such a constant cK?

By Mazur’s results on a moduli of rational points of modular curve
X0(N) ([Ma]), it is known that cQ = 7. If K is a quadratic field, then
the existence of cK is known and moreover, if the class number of K
is 1, then the explicit calculation of cK is given by Kraus [Kr1]. By
combining results on Merel ([Me]) and Momose ([Mo]), Kraus showed
the existence of cK for a number field K which does not contain an
imaginary quadratic field of class number 1 ([Kr2]). Moreover, Kraus
defined the good condition “(C)” associated with K in op. cit, such
that the existence and the explicit value of cK is known if K satisfies
this condition.

The following is easy consequence of Corollary 6.16 under the case
g = 1.

Corollary 6.19. Let E be an elliptic curve over K with every-
where semistable reduction. Let ℓE be the minimal prime number p such
that E has good reduction at some finite places of K above p. Suppose
ℓ does not split in K. Then E[ℓ] is irreducible under any one of the
following conditions:

(a) ℓ - dK and ℓ > 4ℓ
δ′′1
E , where δ′′1 := 2dh+K;

(b) The extension K/Q has odd degree and ℓ > 4ℓ
δ′′2
E , where δ′′2 :=

2d2h+K.

We remark that the above corollary is valid even if E has complex
multiplication over K.

3.3. étale cohomology groups. For any semistable elliptic curve
E over Q, Serre proved the following ([Se4], Section 5.4, Proposition
21, Corollary 1): Let ℓE be the minimal prime number p such that E

has good reduction at p. Then E[ℓ] is irreducible if ℓ > (1 + ℓ
1/2
E )2.

As a corollary of Theorem 6.8, we can slightly generalize this fact
to étale cohomology groups of odd degree.

Corollary 6.20. Let X be a proper smooth scheme over K with
semistable reduction everywhere and w an odd integer. Let bw(X) be a
w-th Betti number of X and ℓX the minimal prime number p such that
X has good reduction at some places of K above p. Then there exists
a constant C depending only on bw(X) and ℓX such that for any prime
number ℓ > C which does not split in K, the étale cohomology group
Hw

ét(XK̄ ,Qℓ) is not of residually Borel. More precisely, if ℓ does not
split in K, Hw

ét(XK̄ ,Qℓ) is not of residually Borel under any one of the
following conditions:

(a) ℓ - dK and ℓ > 2cbw(X)ℓ
∆1
X , where ∆1 := bw(X)dh+Kw;

(b) The extension K/Q has odd degree and ℓ > 2cbw(X)ℓ
∆2
X , where

∆2 := bw(X)d2h+Kw.
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Proof. Putting • := (bw(X), ℓX , w, w), we see that the dual of
Hw

ét(XK̄ ,Qℓ) is contained in the set RepQℓ
(GK)

•. Applying Theorem
6.8, we obtain the desired result. �

For any proper smooth scheme X over K, there exists a finite ex-
tension L over K such that Hw

ét(XL̄,Qℓ) is semistable everywhere as a
representation of GL for almost all ℓ by Proposition 6.3. For this L,
we see that Hw

ét(XL̄,Qℓ)
∨ satisfies (G-1), (G-2) and (G-3) as a repre-

sentation of GL. Thus if we can obtain the explicit description of L, it
seems to be natural to hope that we may be able to obtain the anal-
ogous result of Corollary 6.20 for an arbitrary proper smooth scheme
X (which may not have semistable reduction everywhere). However,
there are some problems for this consideration. For example,

(a) it is very difficult to determine such an L in general.
(b) in general, a number field L which is a Galois extension of Q

has infinitely many prime numbers which are non-split in L if
and only if L is a cyclic extension of Q (by Chebotarev’s den-
sity theorem). Hence Theorems 6.7 and 6.8 are not effective
for representations of a non-cyclic Galois extension L of Q.

For an abelian variety X over K, Raynaud’s criterion of semistable
reduction ([Gr], Proposition 4.7) implies that X has semistable reduc-
tion everywhere over L := K(X[3], X[5]). However this L may not be
a cyclic extension of Q in general.



CHAPTER 7

Abelian case of the Rasmussen-Tamagawa
Conjecture

In this chapter, we study the abelian case of the Rasmussen-Tamagawa
Conjecture (Conjecture 5.2). We use the same notation as in Chapter
6. Denote by A(K, g, ℓ)ab the set of K-isomorphism classes of abelian
varieties A in A(K, g, ℓ) which satisfy the condition that K(A[ℓ∞]) is
an abelian extension of K. In fact, we define possibly an infinite set
A′(K, g, ℓ)ab in Section 2 which contains A(K, g, ℓ)ab, and prove that
it is empty for any prime ℓ large enough.

Theorem 7.1. The set A′(K, g, ℓ)ab is empty for any prime ℓ large
enough.

In particular, the set A(K, g, ℓ)ab is also empty for any prime ℓ large
enough. The key to the proof of the above theorem is to construct a
compatible system of Galois representations with a strong condition by
using the Weil Conjecture, Faltings’ trick in his proof of the Shafarevich
Conjecture and Raynaud’s criterion of semistable reduction.

1. Structures of compatible systems

Let E be a finite extension of Q. For a finite place λ of E, we
denote by ℓλ the prime number below λ, Eλ the completion of E at
λ and Fλ the residue field of λ. Choose an algebraic closure F̄λ of

Fλ. Put χλ : GK

χℓλ−→ Z×
ℓλ
↪→ E×

λ and χ̄λ : GK

χ̄ℓλ−→ F×
ℓλ
↪→ F×

λ , where
χℓλ and χ̄ℓλ are the ℓλ-adic cyclotomic character and the mod ℓλ cyclo-
tomic character, respectively. For a representation ρ̄λ : GK → GLn(Fλ)
with abelian semisimplification, Schur’s lemma shows that (ρ̄λ)

ss ⊗ F̄λ

conjugates to the direct sum of n characters, where the subscript “ss”
means the semisimplification, and we call these n characters characters
associated with ρ̄λ. For a λ-adic representation ρλ, we denote by ρ̄λ
a residual representation of ρλ (for a chosen lattice). Note that the
isomorphism class of (ρ̄λ)

ss is independent of the choice of a lattice by
the Brauer-Nesbitt theorem.

Recall that we always suppress the notion of “defect set” and “ram-
ification set” of compatible systems (Section 4 of Chapter 1).

Theorem 7.2. Let (ρλ)λ be an E-rational strictly compatible system
of n-dimensional geometric semisimple λ-adic representations of GK.

57
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Suppose that there exists an infinite set Λ of finite places of E which
satisfies the following:

(1) For any λ ∈ Λ, there exists a place v of K above ℓλ such that
(a) ρλ is semistable at v.
(b) there exist integers w1 ≤ w2 which are independent of the

choice of λ ∈ Λ such that the Hodge-Tate weights of ρλ|Gv

are in [w1, w2].
(2) For any λ ∈ Λ, (ρ̄λ)

ss is abelian and any character associated
with ρ̄λ has the form εχ̄a

λ, where a is an integer and ε : GK →
F̄×
λ is a character unramified at all places of K above ℓλ.

(3) The Artin conductor of (ρ̄λ)
ss is bounded independently of the

choice of λ ∈ Λ.

Then there exist integers m1,m2, . . . ,mn and a finite extension L of
K such that, for any λ, the representation ρλ is isomorphic to χm1

λ ⊕
χm2
λ ⊕ · · · ⊕ χ

mn
λ on GL.

Proof. By replacing Λ with its infinite subset, we may suppose
that ℓλ does not divide the discriminant of K and ℓλ > n for any λ ∈ Λ.
Furthermore, we may assume that, for any λ ∈ Λ and a finite place v
of K above ℓλ as in the condition (1), the Hodge-Tate weights of ρλ|Gv

viewed as a Qℓλ-representation are positive and bounded independently
of the choice of λ ∈ Λ. By the condition (3), there exists an ideal n of
OK such that, for any λ ∈ Λ, the Artin conductor outside ℓλ of (ρ̄λ)

ss

divides n. If we denote by ψ a character associated with (ρ̄λ)
ss for

λ ∈ Λ and decompose ψ = εχ̄a where ε is as in the condition (2), then
the Artin conductor outside ℓλ of ε also divides n. Hence, replacing the
field K with the strict ray class field of K associated with n, we may
replace the condition (2) with the following condition (2)′:

(2)′ For any λ ∈ Λ, (ρ̄λ)
ss is abelian and any character associated

with ρ̄λ has the form χ̄a
λ.

Now take any λ ∈ Λ. Let χ̄
aλ,1
λ , χ̄

aλ,2
λ , . . . , χ̄

aλ,n
λ be all the characters as-

sociated with ρ̄λ. By the condition (2)′ and ℓλ > n, the representation
(ρ̄λ)

ss conjugates to the direct some of n characters (over Fλ) of the form
χ̄a
λ, which has values in F×

ℓλ
. Hence if we regard the Fλ-representation

ρ̄λ as an Fℓλ-representation, its semisimplification is of a diagonal form
whose diagonal components are the copies of χ̄

aλ,1
ℓλ

, χ̄
aλ,2
ℓλ

, . . . , χ̄
aλ,n
ℓλ

. Fur-
thermore, it is a direct summand of the semisimplification of a residual
representation of ρλ viewed as a Qℓλ-representation. Therefore, by
Caruso’s result on an upper bound for tame inertia weights (cf. Theo-
rem 2.24) and the condition (1), there exists a constant C > 0, which
is independent of the choice of λ ∈ Λ, and an integer 0 ≤ bλ,i ≤ C such
that

(♯) bλ,i ≡ aλ,i mod ℓλ − 1

for any i (recall that ℓλ does not divide the discriminant of K). Now
we claim that the set {bλ,1, bλ,2, . . . , bλ,n} is independent of the choice
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of λ ∈ Λ large enough. Denote by S the ramification set of (ρλ)λ.
Take a v0 /∈ S and decompose det(T − ρλ(Frv0)) =

∏n
j=1(T − αv0,j).

By conditions (2)’ and (♯), we have the congruence
∏n

j=1(T − αv0,j) ≡∏n
j=1(T−q

bλ,j
v0 ) in F̄λ[T ]. If ℓλ is large enough (note that Λ is an infinite

set), then we obtain that this congruence is in fact an equality in E[T ]:∏n
j=1(T−αv0,j) =

∏n
j=1(T−q

bλ,j
v0 ). Therefore, the set {bλ,1, bλ,2, . . . , bλ,n}

is independent of the choice of λ ∈ Λ with ℓλ large enough. This
proves the claim. We denote {bλ,1, bλ,2, . . . , bλ,n} by {m1,m2, . . . ,mn}
for such a λ ∈ Λ. By the compatibility of (ρλ)λ, we obtain the equation
det(T − ρλ(Frv)) =

∏n
j=1(T − q

mj
v ) for any λ and v /∈ Sℓλ (recall Sℓλ :=

S ∪ {places of K above ℓλ}, Section 4 of Chapter 1). Therefore, the
representation ρλ is isomorphic to χm1

λ ⊕ χm2
λ ⊕ · · · ⊕ χmn

λ . By the
compatibility of (ρλ)λ, this finishes the proof. �

Corollary 7.3. Let (ρ̄λ)λ be an E-rational strictly compatible sys-
tem of abelian semisimple mod λ representations of GK. Suppose that,
for infinitely many finite places λ of E, any character associated with
ρ̄λ has the form εχ̄a

λ, where ε : GK → F̄×
λ is a character unramified at

all places of K above ℓλ. Then there exist a finite extension L of K
and integers m1,m2, . . . ,mn such that, for all finite places λ of E, the
representation ρ̄λ is isomorphic to χ̄m1

λ ⊕ χ̄
m2
λ ⊕ · · · ⊕ χ̄

mn
λ on GL.

Proof. By Theorem 1.21, we know that there exist a finite exten-
sion E ′ of E and an E ′-rational abelian semisimple compatible system
(ρλ′)λ′ of λ′-adic representations of GK which arises from Hecke char-
acters such that (ρλ′)λ′ is a lift of (ρ̄λ)λ, that is, ρ̄λ′ is isomorphic to
ρ̄λ ⊗ Fλ′ for any λ and any finite place λ′ of E ′ above λ. By Corollary
1.22, the compatible system (ρλ′)λ′ satisfies all the assumptions (1),
(2) and (3) in Theorem 7.2, and consequently we obtain the desired
result. �

Corollary 7.4. Let (ρλ)λ be an E-rational strictly compatible sys-
tem of n-dimensional semisimple λ-adic representations of GK. Sup-
pose that

(i) (ρ̄λ)
ss is abelian for almost all λ;

(ii) for infinitely many λ, any character associated with (ρ̄λ)
ss has

the form εχ̄a
λ, where ε : GK → F×

λ is a character unramified at
all places of K above ℓλ.

Then there exist integers m1,m2, . . . ,mn and a finite extension L of
K such that, for any λ, the representation ρλ is isomorphic to χm1

λ ⊕
χm2
λ ⊕ · · · ⊕ χ

mn
λ on GL.

Proof. The result follows immediately by applying Corollary 7.3
to the compatible system ((ρ̄λ)

ss)λ. �
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Let λ and λ′ be finite places of K of different residual characteris-
tics. Let ρλ be an E-rational n-dimensional semisimple λ-adic repre-
sentations of GK with ramification set S. Suppose that there exists an
semisimple λ′-adic representation ρλ′ of GK such that

det(T − ρλ(Frv)) = det(T − ρλ′(Frv))

for any v /∈ Sℓλ ∪ Sℓλ′ . Considering Fontaine-Mazur’s “Main Conjec-
ture” (Conjecture 1.10), we hope that ρλ′ is crystalline for any finite
place v′ of K above ℓλ′

1. However to prove this hope seems not to be
easy. If ρλ is abelian, the hope is true by Theorem 1.16 and 1.17. If we
consider representations which is pure (cf. Chapter 1, Section 4), we
can improve the statement (1) of Theorem 7.2 as below. If the hope
is true, it is not difficult to prove the proposition below without the
assumption of pureness by the similar method of the proof of Theorem
7.2.

Proposition 7.5. Let (ρλ)λ be an E-rational strictly compatible
system of n-dimensional geometric semisimple λ-adic representations
of GK. Suppose that (ρλ)λ is pure. Suppose that there exists an infinite
set Λ of finite places of K which satisfies the following:

(1) For any λ ∈ Λ, there exists a place v of K above ℓλ such that
(a) there exists a constant C > 0 which is independent of the

choice of λ ∈ Λ such that [Iv : Lv(ρλ)] < C. Here Lv(ρλ)
is the inertial level of ρλ at v (see Section 2.4).

(b) there exist integers w1 ≤ w2 which are independent of the
choice of λ ∈ Λ such that the Hodge-Tate weights of ρλ|Gv

are in [w1, w2].
(2) For any λ ∈ Λ, (ρ̄λ)

ss is abelian and any character associated
with ρ̄λ has the form εχ̄a

λ, where ε : GK → F̄×
λ is a character

unramified at all places of K above ℓλ.
(3) For any λ ∈ Λ, the Artin conductor of (ρ̄λ)

ss is bounded inde-
pendently of the choice of λ ∈ Λ.

Then there exist an integer m and a finite extension L of K such that,
for any λ, the representation ρλ is isomorphic to (χm

λ )
⊕n on GL.

Proof. Most parts of the first paragraph of this proof will proceed
by the similar method as the proof of Theorem 7.2 and hence we will
often omit precise arguments. First we may assume that, for any λ ∈ Λ,

(2)′ any character associated with ρ̄λ has the form χ̄a
λ

and furthermore, ρλ|Gv has Hodge-Tate weights in [0, r] for any λ and
v as in the condition (1). Here r is a positive integer which is inde-
pendent of the choice of λ ∈ Λ. Suppose λ is a finite place in Λ. Let
χ̄
aλ,1
λ , χ̄

aλ,2
λ , . . . , χ̄

aλ,n
λ be all the characters associated with ρ̄λ. Taking a

1Because ρλ and ρλ′ shall come from an algebraic variety X and their ramifi-
cation set S shall be “bad primes” of X.
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finite place v as in the condition (1), there exists a finite extension Lw of
Kv such that ρλ|GLw

is semistable and [Lw : Kv] ≤ C. If we denote by
ew the absolute ramification index of Lw, then it follows ew ≤ C[K : Q]
and Theorem 2.24 implies that there exists an integer 0 ≤ b′λ,i ≤ ewr
which satisfies b′λ,i ≡ ewaλ,i mod ℓλ−1. Consequently, we see that there
exist integers e > 0 and D > 0, which are independent of the choice of
λ ∈ Λ and bλ,i ≡ eaλ,i mod ℓλ − 1 for some integer bλ,i ∈ [0, D]. Take
any v /∈ Sℓλ and decompose det(T − ρλ(Frv)) =

∏n
j=1(T − αv,j). Then,

by the similar arguments as the proof of Theorem 7.2, we can show

that
∏n

j=1(T − αe
v,j) =

∏n
j=1(T − q

bλ,j
v ) if we take λ ∈ Λ with ℓλ large

enough. Since (ρλ)λ is pure, we have
n∏

j=1

(T − αe
v,j) =

n∏
j=1

(T − qbv)

for some integer b. It follows from the compatibility of (ρλ)λ that the
above equation holds for any λ (which may not be in Λ) and v /∈ Sℓλ .

In the argument below, we use the method of the proof of Propo-
sition 1.2 of [KL]. Fix λ and denote it by λ0. Take a finite extension

K ′ of K such that there exists a continuous character χ
1/e
λ0

: GK′ → E×
λ0

which has values in the integer ring of Eλ0 and (χ
1/e
λ0

)e = χλ0 . Re-
place this K ′ with K. Then we know that, for any v /∈ Sℓλ0

, all the

roots of det(T − ρ′λ0
(Frv)) are roots of unity, where ρ′λ0

is the twist

of ρλ0 by (χ
1/e
λ0

)−b. Since there are only finitely many such roots of
unity, there are only finitely many possibilities for the characteris-
tic polynomial of Frv. Hence the function which takes g ∈ GK to
det(T − ρ′λ0

(g)) ∈ E[T ] is continuous and takes only finitely many val-
ues by Chebotarev’s density theorem. It follows that the set {g ∈ GK |
det(T − ρ′λ0

(g)) = (T − 1)n} is an open subset of GK , which contains

the identity map of K̄. Hence there exists a finite extension L of K
such that GL ⊂ {g ∈ GK | det(T − ρ′λ0

(g)) = (T − 1)n}. Then we

see that ρλ0 is isomorphic to ((χ
1/e
λ0

)b)⊕n on GL. Since ρλ0 is geometric,
we know that b/e =: m is an integer and we finish the proof by the
compatibility of (ρλ)λ. �

2. Notion and the proof of Theorem 7.1

2.1. Notion. We give precise definitions for the statement of The-
orem 7.1. Let K be a finite extension of Q and A an abelian variety
over K. Consider the following conditions:

(RTℓ) K(A[ℓ]) is an ℓ-extension of K(µℓ).
(RTℓ)

′ For some finite extension L of K which is unramified at all
places above ℓ, L(A[ℓ]) is an ℓ-extension of L(µℓ).

(RTred) The abelian variety A has good reduction away from ℓ over K.
(RTab) K(A[ℓ∞]) is an abelian extension of K.
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It is clear that (RTℓ) implies (RTℓ)
′. Note that, for a g-dimensional

abelian variety A over K, the isomorphism class [A] of A is contained
in A(K, g, ℓ) if and only if A satisfies (RTℓ) and (RTred) by the criterion
of Neron-Ogg-Shafarevich.

Definition 7.6. We define sets A(K, g, ℓ)ab and A′(K, g, ℓ)ab of
isomorphism classes of g-dimensional abelian varieties A over K as
follows:
(1) [A] ∈ A(K, g, ℓ)ab if and only if A satisfies (RTℓ), (RTred) and
(RTab).
(2) [A] ∈ A′(K, g, ℓ)ab if and only if A satisfies (RTℓ)

′ and (RTab).

Clearly, we have A(K, g, ℓ) ⊃ A(K, g, ℓ)ab ⊂ A′(K, g, ℓ)ab. The set
A(K, g, ℓ)ab is always finite but A′(K, g, ℓ)ab may be infinite2. Here
is a table of definitions and properties for cardinality about our sets
defined as above.

(RTℓ) (RTℓ)
′ (RTred) (RTab) cardinality

A(K, g, ℓ) ⃝ ⃝ ⃝ − finite
A(K, g, ℓ)ab ⃝ ⃝ ⃝ ⃝ finite
A′(K, g, ℓ)ab − ⃝ − ⃝ −

Here, the meaning of the notations are as follows: EveryK-isomorphism
class of A satisfies (RT∗) (or (RTℓ)

′) in the cases marked with ⃝. A
“finite” means that there exist only finitely many such isomorphism
class of abelian varieties in that case.

If we admit Conjecture 5.2, then we know that A(K, g, ℓ)ab is empty
for any prime ℓ large enough. In fact, we can show that A′(K, g, ℓ)ab
is empty for any prime ℓ large enough.

2.2. Proof of Theorem 7.1. First we study the structure of A[ℓ]
for an abelian variety A in A′(K, g, ℓ)ab. Let A be any g-dimensional
abelian variety over K. We denote by ρA,ℓ : GK → GL2g(Qℓ) (resp.
ρ̄A,ℓ : GK → GL2g(Fℓ)) the representation attached to the ℓ-adic Tate
module Tℓ(A) of A (resp. the set A[ℓ] of ℓ-torsion points of A). Consider
the following properties:

(RTst) (ρ̄A,ℓ)
ss conjugates to the direct sum of n characters which are

of the form χ̄a
ℓ .

(RTst)
′ (ρ̄A,ℓ)

ss is abelian and characters associated with ρ̄A,ℓ are of the
form εχ̄a

ℓ , where ε : GK → F̄×
ℓ is a continuous character which

is unramified at all places above ℓ.

Recall that the condition (RTℓ) is equivalent to the condition (RTst)
by Corollary 5.4. Hence the isomorphism class [A] of g-dimensional
abelian variety A over K is in A(K, g, ℓ) if and only if A satisfies the
condition (RTred) and (RTst).

2The author does not know an example such that A′(K, g, ℓ)ab is infinite.
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Lemma 7.7. Let A be a g-dimensional abelian variety over K. Sup-
pose that the abelian variety A satisfies the condition (RTab). Then A
satisfies the condition (RTℓ)

′ if and only if A satisfies the condition
(RTst)

′.

Proof. Suppose that an abelian variety A satisfies the condition
(RTab) and denote by ψ1, . . . , ψ2g characters associated with ρ̄A,ℓ. If
A satisfies (RTst)

′, then we have ψi = εiχ̄
ai
ℓ for some integer ai where

εi : GK → F̄×
ℓ is a continuous character which is unramified at all places

of K above ℓ. Let L be the composition field of all fields K̄ker εi for all
i. Then L is unramified at all places of K above ℓ. Since each ψi|GL(µℓ)

is trivial, we obtain (RTℓ)
′. Conversely, suppose that (RTℓ)

′ holds and
take a field L as in (RTℓ)

′. By Lemma 5.3, we know that each ψi|GL

is equal to χ̄ai
ℓ for some integer ai. Hence εi := ψi · χ̄−ai

ℓ : GK → F̄×
ℓ is

unramified at all places above ℓ and this implies (RTst)
′. �

We recall the following proposition, which is used in Faltings’ proof
of the Shafarevich Conjecture [Fa].

Proposition 7.8. There exists a finite set T of finite places of
K, depending only on K,E, S, n and λ, which satisfies the following
property:

(1) The intersection T ∩ Sℓλ is empty.
(2) If ρ and ρ′ are semisimple λ-adic representations GK → GLn(Eλ)

unramified outside S with Tr(ρ(Frv)) = Tr(ρ′(Frv)) for any
v ∈ T , then ρ and ρ′ are isomorphic.

Proof. We give a proof only in the case where E = Q for simplicity
(in general case, the proof proceeds in the same way).

First we define the set T as below. By the theorem of Hermite-
Minkowski, there exists a finite Galois extension L of K such that L
contains all the finite extensions K ′ of K which are unramified outside
Sℓ with [K ′ : K] ≤ ℓ2n

2
. By the Chebotarev density theorem, we can

choose a finite set T such that all the images of arithmetic Frobenii for
v ∈ T in Gal(L/K) generates Gal(L/K). Let ρ1 : GK → GL1(V1) ≃
GLn(Qℓ) and ρ1 : GK → GL2(V2) ≃ GLn(Qℓ) be representations such
that

Trρ1(Frv) = Trρ2(Frv) for any v ∈ T.
Take a GK-stable lattice Ti of Vi for each i. Put ρ12 := ρ1× ρ2 : GK →
GL(T1)×GL(T2). LetM be the sub Zℓ-module of EndZℓ

(T1)×EndZℓ
(T2)

which is generated by Im(ρ12), that is, M := Zℓ[Im(ρ12)]. Then M
has a natural action on Ti via the projection M → EndZℓ

(Ti). Since
EndZℓ

(T1)×EndZℓ
(T2) has rank 2n

2, we have thatM is a free Zℓ-module
of rank ≤ 2n2. Our goal is to show that

(∗) Tr(m | T1) = Tr(m | T2) for any m ∈M,
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and it is enough to prove that the above equality (∗) holds for genera-
tors ofM . Since the equality (∗) holds for any v ∈ T and m = ρ12(Frv),
we finish the proof if we prove that {ρ12(Frv) | v ∈ T} generates
M as a Zℓ-module. Denote by N the sub Zℓ-module of M which
is generated by {ρ12(Frv) | v ∈ T}. It is enough to show that the
image of N in M/ℓM generates M/ℓM by Nakayama’s lemma. Put

ρ̄12 : GK
ρ12→ M

Proj−→ M/ℓM . Note that ρ̄12 has values in (M/ℓM)×

and hence we have a homomorphism ψ : GK → (M/ℓM)× induced by

ρ̄12. Since ψ is unramified outside Sℓ and Im(ρ̄12) ≤ ℓdimFℓM/ℓM ≤ ℓ2n
2
,

we see that ψ factors through Gal(L/K). By this fact, we obtain
Im(ρ̄12) = {ρ̄12(Frv) | v ∈ T} ⊂M/ℓM and therefore, we obtain

M/ℓM = Fℓ[Im(ρ̄12)] = N.

This completes the proof. �

Corollary 7.9. Fix an integer w. The set of isomorphism classes
of semisimple n-dimensional ℓ-adic representations GK → GLn(Qℓ)
which are Q-integral with Frobenius weights ≤ w outside S, is finite.

Proof. Take a finite set T which appears in Proposition 7.8 under
the condition E = Q. For any v ∈ T and an ℓ-adic representation
GK → GLn(Qℓ) which is Q-integral with Frobenius weights ≤ w out-
side S, there are only finitely many possibilities for the trace Tr(ρ(Frv))
of Frv. Hence Proposition 7.8 implies the desired result. �

Proposition 7.10 (Raynaud’s criterion of semistable reduction,
[Gr], Proposition 4.7). Suppose A is an abelian variety over a field
F with a discrete valuation v, n is a positive integer not divisible
by the residue characteristic, and the points of A[n] are defined over
an extension of F which is unramified over v. If n ≥ 3 then A has
semistable reduction at v. In particular, if A is an abelian variety over
a number field K, then A has semistable reduction everywhere over
K(A[12]) = K(A[3], A[4]).

For an integer g > 0, put

Dg := ♯GSp2g(Z/12Z)
= ♯GSp2g(Z/3Z) · ♯GSp2g(Z/4Z).

This integer plays an important role in the following proof.

Corollary 7.11. Fix an integer g > 0. For any g-dimensional
abelian variety A over K, there exists a finite Galois extension L of K
such that [L : K] divides Dg and A has semistable reduction everywhere
over L.
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Proof. Since K(A[12]) is a Galois extension of K and [K(A[12]) :
K] divides3 Dg, the desired assertion follows from the last sentence of
Proposition 7.10. �

If ρ : GK → GL2g(Qℓ) is an abelian representation, then, for any in-
teger k, we denote by ρk the representation GK → GL2g(Qℓ) which
is defined by ρk(s) := (ρ(s))k for any s ∈ GK . With this notation,
combining the above corollaries, we obtain the following lemma which
plays an important role in the proof of Theorem 7.1 to construct a good
compatible system.

Lemma 7.12. Let g > 0 be an integer and ℓ0 a prime number.
Let Aℓ0 be the set of isomorphism classes of representations ρ : GK →
GL2g(Qℓ0) which are isomorphic to ρ

Dg

A,ℓ0
for some g-dimensional abelian

variety A over K such that K(A[ℓ∞0 ]) is an abelian extension of K.
Then Aℓ0 is finite.

Proof. If A is an abelian variety over K such that K(A[ℓ∞0 ]) is
an abelian extension of K, then A has potential good reduction every-

where. Thus it follows from Corollary 7.11 that the representation ρ
Dg

A,ℓ0
is unramified outside ℓ0 for any g-dimensional abelian variety A over
K such that K(A[ℓ∞0 ]) is an abelian extension of K. Take any finite
place v of K not above ℓ0. Take a finite Galois extension L of K such
that [L : K] divides Dg and that A has good reduction everywhere over
L. Let vL be a finite place of L above v and denote by f the extension
degree of FvL over Fv, where FvL and Fv are residue fields of vL and
v, respectively. Noting that L is a Galois extension of K and A has
good reduction everywhere over L, we see that Dg/f is an integer and
obtain the equation

det(T − ρDg

A,ℓ0
(Frv)) = det(T − (ρA,ℓ0(FrvL))

Dg/f ).

Since A has good reduction everywhere over L, the Weil Conjecture
implies that det(T − ρA,ℓ0(FrvL)) has rational integer coefficients and
hence so is det(T−(ρA,ℓ0(FrvL))

Dg/f ). Consequently, the representation

ρ
Dg

A,ℓ0
is Q-integral with Frobenius weight Dg/2 outside the set of finite

places of K above ℓ0. By Corollary 7.9, we have the desired result (note

that ρ
Dg

A,ℓ0
is semisimple). �

Proof of Theorem 7.1. First we note that, if an abelian variety
A over K satisfies (RTab), then ρA,ℓ′ is abelian for any prime number ℓ′

(cf. [Se3], Chapter III, Section 2.3, Corollary 1). Fix a prime number
ℓ0 and denote by Aℓ0 the set as in Lemma 7.12. Assume that there
exist infinitely many prime numbers ℓ such that A′(K, g, ℓ)ab is not

3The image of the representation ρA,n : GK → GL(A[n]) ≃ GL2g(Z/nZ) lands
inside GSp2g(Z/nZ) ⊂ GL2g(Z/nZ) thanks to the Galois-equivariance of the Weil
pairing.
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empty. For every such ℓ, we obtain the ℓ0-adic representation ρ
Dg

A,ℓ0
which is in the set Aℓ0 , where A is an abelian variety whose isomor-
phism class is in the set A′(K, g, ℓ)ab. By Lemma 7.12, we see that
there exists a representation ρℓ0 in Aℓ0 such that for infinitely many ℓ

and [A] ∈ A′(K, g, ℓ)ab, ρ
Dg

A,ℓ0
is isomorphic to ρℓ0 . By the Weil Conjec-

ture, the representation ρℓ0 extends to a Q-integral strict compatible
system (ρℓ)ℓ of 2g-dimensional abelian semisimple ℓ-adic representa-
tions of GK . Furthermore, for infinitely many prime numbers ℓ, the
characters associated with ρ̄ℓ are of the form εχ̄a

ℓ by Lemma 7.7, where
ε : GK → F̄×

ℓ is a continuous character which is unramified at all places
of K above ℓ. Applying Theorem 7.2 (or Corollary 7.4), we see that
there exist integers m1, . . . ,m2g and a finite extension L of K such
that ρℓ0 is isomorphic to χm1

ℓ0
⊕ χm2

ℓ0
⊕ · · · ⊕ χm2g

ℓ0
on GL. In particular,

for some prime number ℓ and [A] ∈ A′(K, g, ℓ)ab, ρ
Dg

A,ℓ0
is isomorphic

to χm1
ℓ0
⊕ χm2

ℓ0
⊕ · · · ⊕ χ

m2g

ℓ0
on GL. Therefore, looking at the eigen-

values of images of a Frobenius element (at some place) of ρ
Dg

A,ℓ0
and

χm1
ℓ0
⊕ χm2

ℓ0
⊕ · · · ⊕ χm2g

ℓ0
, we know that Dg/2 = m1 = m2 = · · · = m2g

by the Weil Conjecture. Since ρ
Dg

A,ℓ0
has Hodge-Tate weights 0 and Dg

at a place of L above ℓ0, this is a contradiction. �

3. Application to CM abelian varieties

Theorem 7.1 gives some implication for abelian varieties which have
complex multiplication. If an abelian variety A over K has complex
multiplication over K, then it is well-known that ρA,ℓ is abelian (cf.
[ST], Section 4, Corollary 2).

Lemma 7.13. Let A be an abelian variety over K of dimension g.
Suppose that there exists a finite extension L of K which satisfy the
following two properties:

(i) L ∩K(A[ℓ∞0 ]) = K for some prime ℓ0; and
(ii) the abelian variety A has complex multiplication over L.

Then ρA,ℓ is abelian for any prime ℓ.

Proof. The condition (i) implies that ρA,ℓ(GK) = ρA,ℓ(GL), which
is an abelian group by (ii). Thus ρA,ℓ0 is abelian and hence ρA,ℓ is
abelian for any prime ℓ (cf. [Se3], Chapter III, Section 2.3, Corollary
1). �

For example, the condition (i) is automatically satisfied if [L : K]
is prime to ♯GL2g(Fℓ0) = (ℓ2g0 − 1)(ℓ2g0 − ℓ) · · · (ℓ

2g
0 − ℓ

2g−1
0 ). Combining

Lemma 7.13 with Theorem 7.1, we obtain the following.

Corollary 7.14. The set of isomorphism classes [A] ∈ A(K, g, ℓ)
of abelian varieties A as in Lemma 7.13 is empty for any prime ℓ large
enough.
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