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Abstract

It is a theorem of Ribet that an abelian variety defined over a number field K has only
finitely many torsion points with values in the maximal cyclotomic extension field Kcyc of K.
Recently, Rössler and Szamuely generalized Ribet’s theorem in terms of the étale cohomology
with Q/Z-coefficients of a smooth proper variety. In this paper, we show that the same
finiteness holds even after replacing Kcyc with the field obtained by adjoining to K all roots
of all elements of a certain subset of K. Furthermore, we give some new examples of TKND-
AVKF fields; the notion of TKND-AVKF is introduced by Hoshi, Mochizuki and Tsujimura,
and TKND-AVKF fields are expected as one of suitable base fields for anabelian geometry.
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1 Introduction

Let K be a number field (= a finite extension field of the field of rational numbers Q). The
Mordell-Weil theorem asserts that the group A(K) of K-rational points of an abelian variety A
over K is finitely generated. In particular, the torsion subgroup of A(K) is finite. We consider
the finiteness of the L-rational torsion subgroup A(L)tor of A for an algebraic extension L of K
of infinite degree. Motivated by Mazur’s celebrated paper [Ma], Imai [Im] and Serre [Se] proved
independently that, for any prime p, the group A(L)tor is finite if L is the cyclotomic Zp-extension
field of K. Moreover, Ribet showed in the appendix of [KL] that the same finiteness holds also
for the case where L is the maximal cyclotomic extension field Kcyc of K. If L is the maximal
abelian extension field Kab of K, then it is a result of Zarhin [Za] that A(L)tor is finite if and only
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if any non-zero K-simple subvariety of A is not of CM-type over K. (Here, we say that a K-simple
abelian variety X is of CM-type over K if EndK(X) ⊗Z Q is a number field of degree 2 dimX.)
On the other hand, as an essentially non-abelian extension field case result, Bogomolov showed
in [Bo] that A(L)tor is finite if the intersection of L and Kab has finite degree over K. It is also
an interesting observation by Zhang [Zh] that A(L)tor is finite if L is the composite of K and the
maximal totally real subfield of Q.

Let us explain our results. We denote by Primes the set of prime numbers. We denote by
GF the absolute Galois group of a field F (⊂ Q). For a subset S of F , we denote by S1/∞ ⊂ Q
the set of all roots of all elements of S and, for any prime p, denote by S1/p∞ ⊂ Q the set of
all p-power roots of all elements of S. For any algebraic variety X over a number field K, we
denote by hi(X) the i-th Betti number of the topological space X(C) (which is independent of the
choice of an embedding K ↪→ C), and also set XK := X ⊗K K. Recently, Rössler and Szamuely
[RS] generalized Ribet’s theorem above in terms of the étale cohomology with Q/Z-coefficients of
a smooth proper variety. Our first main theorem below is motivated by their works.

Theorem 1.1 (= A part of Theorem 2.9). Let K be a number field and p0 the maximal prime
ramified in the maximal abelian subextension K0 in K/Q (we set p0 := 1 if K0 = Q). Let h > 0 be
an integer and ∆ a finitely generated subgroup of K×, and set

M := K(∆1/p∞
,K1/q∞ | p, q ∈ Primes, p ≤ max{h+ 1, p0} < q).

Let i be an odd integer, j an integer and X a smooth proper geometrically connected algebraic
variety over K with hi(X) ≤ h. Then, the group Hi

ét(XK ,Q/Z(j))GM is finite.

Note that the twist j above does not really play a role in the statement since GM fixes all roots
of unity. Now we consider the case where X = A is an abelian variety. As is explained in the
Introduction of [RS], the torsion subgroup A(M)tor of A(M) is isomorphic to H1

ét(A
∨
K
,Q/Z(1))GM

where A∨ is the dual abelian variety of A. Therefore, we have the following.

Corollary 1.2. Let the notations K, p0 and ∆ be as in Theorem 1.1 and g > 0 an integer. Set

M ′ := K(∆1/p∞
,K1/q∞ | p, q ∈ Primes, p ≤ max{2g + 1, p0} < q).

Then, for any abelian variety A over K of dimension ≤ g, the torsion subgroup A(M ′)tor of A(M
′)

is finite.

The fieldsM andM ′ above contain Kcyc (moreover, they contain K(∆1/∞)). Hence our results
are refinements of Ribet [KL] and Rössler-Szamuely [RS]. However, it should be remarked that our
proofs rely on their results; we reduce proofs to the case of maximal cyclotomic extension fields.

Here is an immediate consequence of our results: For a number field K with integer ring
OK , the torsion subgroup A(K((O×

K)1/∞))tor of A(K((O×
K)1/∞)) is finite for any abelian variety

over K. (In fact, ∆ := O×
K is finitely generated by Dirichlet’s unit theorem, and K((O×

K)1/∞)
is contained in M ′ appeared in Corollary 1.2 for every g.) So it seems quite natural to ask the
following question: “Is the torsion subgroup A(K(K1/∞))tor of A(K(K1/∞)) finite for any abelian
variety A over K?” Now we do not have an answer to this question, but instead, we will show that
the field K(K1/∞) satisfies an important property “TKND-AVKF”.

The methods of the proof of our theorems give some contribution to anabelian geometry.
Hoshi, Mochizuki and Tsujimura showed in [HMT] (the semi-absolute version of) the anabelian
Grothendieck conjecture for higher dimensional (≥ 2) configuration spaces associated to hyperbolic
curves of genus 0 over TKND-AVKF fields contained in Q. (The notion of TKND-AVKF is defined
by some smallness or vanishingness for subgroups consisting of divisible elements of certain multi-
plicative groups or Mordell-Weil groups; see Definition 3.1.) Moreover, in [Tsu3], Tsujimura also
showed the (relative) birational version of the anabelian Grothendieck conjecture for smooth curves
over TKND-AVKF fields of characteristic 0 with a certain mild condition. So TKND-AVKF fields
should be considered as one of suitable base fields for anabelian geometry. However, the definition
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of a TKND-AVKF field seems to be a little bit “strange” (at least for the authors) and thus it may
be not so easy to understand their characters. From such a viewpoint, it would be important to
study examples or properties of TKND-AVKF fields. As typical examples, finitely generated fields
over prime fields are TKND-AVKF; these fields are in the original situation that Grothendieck
considered. In addition, it is an interesting observation of Tsujimura that every subfield of the
maximal cyclotomic extension field Kcyc of a number field K is also TKND-AVKF (cf. [Tsu1, the
proof of Theorem 3.1 and Remark 3.4.1]). Tsujimura furthermore showed in [Tsu2] that, if K is a
number field and p is a prime, then the field K(p1/∞) is a TKND-AVKF field. Here, we give new
examples of TKND-AVKF fields, and some of them give refinements of above results. Recall that
a finite field extension is solvable if the Galois group of its Galois closure is solvable.

Theorem 1.3. Let K be any one of the followings:

(a) K is the composite field of all solvable extensions of degree ≤ d over a given number field.
Here, d is a positive integer.

(b) K is the composite field of all finite extensions of degree ≤ 4 over a given number field.

(c) K is a finite extension of Q(µpnp | p ∈ Primes) where (np)p∈Primes is a family of positive
integers.

Then, any subfield of K(K1/∞) is TKND-AVKF. In particular, Kcyc is TKND-AVKF.

We also give a criterion of a TKND-AVKF property for the maximal abelian extension field of
a number field. Here, we say that a number field is a CM field if it is a totally imaginary quadratic
extension of a totally real number field.

Theorem 1.4 (= Corollary of Theorem 3.8). Let K be a number field and Kab the maximal
abelian extension field of K. Then Kab is TKND-AVKF if and only if K does not contain a CM
field.

Acknowledgments. The authors would like to express their sincere gratitude to Yuichiro Taguchi
for useful discussions and comments on the arguments of Section 2. They thank also Shota Tsu-
jimura for explaining us his results [Tsu3]. The first author is supported by JSPS KAKENHI
Grant Numbers JP22KJ1291 and JP24K16890. The second author is supported by JSPS KAK-
ENHI Grant Number JP19K03433.

Notation: For any perfect field F , we denote by GF the absolute Galois group of F (for a given
algebraic closure F of F ). We denote by µn(F ) the set of n-th roots of unity in F , µp∞(F ) :=⋃

m≥0 µpm(F ) for any prime p and µ∞(F ) :=
⋃

n≥1 µn(F ). We denote by F cyc the maximal

cyclotomic extension field F (µ∞(F )) of F , and also denote by F ab the maximal abelian extension
field of F . For a subset S of F , we denote by S1/∞ ⊂ F the set of all roots of all elements of S
and, for any prime p, denote by S1/p∞ ⊂ F the set of all p-power roots of all elements of S. It
should be remarked that, if S contains nonzero elements of F , then we have µ∞(F ) ⊂ F (S1/∞)
and µp∞(F ) ⊂ F (S1/p∞

).
We denote by Primes the set of prime numbers. For any prime p, we denote by χp (resp. χ̄p)

the p-adic cyclotomic character (resp. the mod p cyclotomic character) defined over an appropriate
Galois group in the context.

2 Finiteness and vanishing of cohomologies

The goal in this section is to show Theorems 1.1 and 1.2. Before proofs, we give some preliminary
results. Especially, Proposition 2.3 is the most important key tool for our proofs, which is essentially
given by Kubo and Taguchi [KT].
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2.1 Some remarks on Kummer theory and Kubo-Taguchi’s methods

We start with some elementary properties.

Proposition 2.1. Let p be a prime, F a perfect field of characteristic 6= p and S a subset of F .
(1) Assume F ⊃ µp∞(F ). Then, F (S1/p∞

) is a pro-p abelian extension of F .
(2) Assume F ⊃ µp∞(F ). Let ∆ be a finitely generated subgroup of F× and ∆tor the torsion
subgroup of ∆. Then, Gal(F (∆1/p∞

)/F ) is isomorphic to Zd
p for some d ≤ rank ∆/∆tor.

(3) Let F ′ be a Galois extension of F with F ′ ⊃ µp∞(F ). Set G := Gal(F ′(S1/p∞
)/F ) and

H := Gal(F ′(S1/p∞
)/F ′). Then, we have στσ−1 = τχp(σ) for σ ∈ G and τ ∈ H.

Remark 2.2. The extension F ′(S1/p∞
)/F ′ in (3) is a pro-p abelian extension by (1) so that there

exists a natural Z×
p -action on its Galois group H. Thus the χp(σ)-th power τχp(σ) of τ in (3) is

well-defined.

Proof. Throughout the proof, we may assume that S is not empty.
(1) First we note that the group Gal(F (S1/p∞

)/F ) is naturally regarded as a closed subgroup
of

∏
s∈S Gal(F (s1/p

∞
)/F ). Furthermore, it follows from Kummer theory that Gal(F (s1/p

∞
)/F ) is

isomorphic to {0} or Zp if s is an p-divisible element of F× or not, respectively. Now the result
follows.

(2) Set δ := rank ∆/∆tor and take lifts x1, . . . , xδ ∈ ∆ of a basis of the free abelian group

∆/∆tor. It is not difficult to check that the field F (∆1/p∞
) is the composite of F (x

1/p∞

i ) for
all 1 ≤ i ≤ δ. Thus the group Gal(F (∆1/p∞

)/F ) is naturally regarded as a closed subgroup of∏δ
i=1 Gal(F (x

1/p∞

i )/F ). Since each Gal(F (x
1/p∞

i )/F ) is isomorphic to {0} or Zp, we obtain the
desired result.

(3) It suffices to show that, for n > 0, σ ∈ G, τ ∈ H and any non-zero x ∈ F with xp
n ∈ S, it

holds that στσ−1(x) = τχp(σ)(x). Let ζ ∈ F be a primitive pn-th root of unity. Since S is a subset
of F , for any ρ ∈ G, we see that ρ(x) = ζc(ρ)x with some integer c(ρ). We give some remarks

for c(ρ). First, we have x = ρρ−1(x) = ζχp(ρ)c(ρ
−1)+c(ρ)x and thus ζχp(ρ)c(ρ

−1)+c(ρ) = 1. Next, if
ρ ∈ H, we see ρn(x) = ζnc(ρ)x for n ∈ Z, and this equality holds also for n ∈ Zp by continuity.

Form these remarks, for σ ∈ G and τ ∈ H, we find στσ−1(x) = στ(ζc(σ
−1)x) = σ(ζc(σ

−1)+c(τ)x) =

ζχp(σ)(c(σ
−1)+c(τ))+c(σ)x = ζχp(σ)c(σ

−1)+c(σ) · ζχp(σ)c(τ)x = τχp(σ)(x) as desired.

We give a slight refinement of Kubo and Taguchi [KT, Lemma 2.2], which plays an important
role in the next section. Here we recall that, for a field E and an E-representation V of a group
G, we say that G acts unipotently on V if all the eigenvalues of the σ-action on V are 1 for any
σ ∈ V .

Proposition 2.3. Let G be a profinite group and H a closed normal abelian subgroup of G. Assume
the following hypothesis:

(H) There exist an integer c > 1 and σ0 ∈ G such that, for any τ ∈ H, it holds that σ0τσ
−1
0 = τ c.

Let d be a positive integer. Let E be a topological field and V a continuous E-linear representation
of G of dimension ≤ d. We set

m := lcm{cr − 1 | 1 ≤ r ≤ d}

where c is (any choice of) the constant in (H). Then the following hold.
(1) Hm acts unipotently on V .
(2) There exists an open normal subgroup H ′ of H such that H ′ acts unipotently on V .
(3) Assume that H is pro-p for some prime p. If we denote by m(p) the p-part of m, then Hm(p)

acts unipotently on V .
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Proof. Replacing V with V ⊕ Ed−dimV , we may assume dimV = d. Take any τ ∈ H and let
λ1, . . . , λd be the eigenvalues of the τ -action on V . By (H), we have an equality {λ1, . . . , λd} =
{λc1, . . . , λcd} as multisets of d-elements. In other words, the c-th power map gives a permutation
on the multiset {λ1, . . . , λd}. Hence, for any 1 ≤ i ≤ d, there exists an integer 1 ≤ r ≤ d such that
λc

r

i = λi. By definition of m, we have λmi = 1 for any i. This shows (1). If furthermore H is pro-p,

the fact that λi is a root of unity implies that λi has a p-power order. Thus we obtain λ
m(p)
i = 1

for any i. This shows (3). It suffices to show (2). Since H is abelian, if we take a finite extension
E′ of E large enough, the semisimplification of the restriction of V ⊗E E

′ to H is a direct sum of
characters H → E′×. It follows from (1) that each character has values in the set of m-th roots of
unity. In particular, each character factors through a finite quotient of H. This shows (2).

We often use the following “trace version” of the Brauer-Nesbitt theorem.

Theorem 2.4 ([CR, 30.16] or [Wi, Theorem 2.4.6 and Remark 2.4.7 (iv)]). Let G be a group and
E a field. Let V and V ′ be finite dimensional semi-simple E-representations of G. Assume that
charE = 0 or charE > Max{dimE V, dimE V

′}. If Tr(σ | V ) = Tr(σ | V ′) for any σ ∈ G, then we
have V ' V ′.

Corollary 2.5. Let G be a group, E a field and V a finite dimensional non-zero E-representation
of G. Assume that charE = 0 or charE > dimE V , and also assume that G acts unipotently on
V . Then, any irreducible G-stable subquotient of V is of dimension one with trivial G-action. In
particular, we have V G 6= 0.

Proof. Set d := dimE V and denote by V ss the semi-simplification of V . Since we have Tr(σ |
V ss) = Tr(σ | Ed) (= d) for any σ ∈ G, we obtain V ss ' Ed by Theorem 2.4. Since any irreducible
G-stable subquotient of V is isomorphic to a composition factor of V ss, the result follows.

2.2 Proof of Theorem 1.1

Proposition 2.6. Let p be a prime. Let K be a field of characteristic 0 such that χp(GK) is open
in Z×

p . Let L be a Galois extension of K with L ⊃ µ∞(K), and set M := L(K1/∞). Let E be
an algebraic extension of Qp and V a finite dimensional continuous E-representation of GK which
satisfies the following property; for each finite extension L′ of L, it holds that V GL′ = 0. Then, we
have V GM = 0.

Proof. By continuity of GK-action on V , there exist a finite extension E0/Qp contained in E and
a continuous E0-representation V0 of GK such that V ' V0 ⊗E0 E. Thus we may assume that
E is a finite extension of Qp. Assume that V GM is not zero. We set Lq := L(K1/q∞) for any
prime q. It follows from Proposition 2.1 (1) and L ⊃ µq∞(K) that Lq is a pro-q extension of
L. In particular, for any prime q 6= p, we have Lq ∩ Lp = L. We also set H ′

p := Gal(M/Lp)
and G := Gal(M/K). Since M is the composite of all Lq for all primes q, we have H ′

p ↪→∏
q ̸=p Gal(LqLp/Lp) '

∏
q ̸=p Gal(Lq/L), which in particular shows that H ′

p is pro-prime-to-p.

Now we consider a natural G-action on V GM coming from the GK-action on V GM . Let O be the
integer ring of E. By continuity of a Galois action, there exists an O-lattice L in V GM which
is stable under the G-action. Let ρ : G → GLO(L) ' GLt(O) be the continuous homomorphism
obtained by the G-action on L where t = dimE V

GM . Set p′ := p or p′ := 4 if p 6= 2 or p = 2,
respectively. Let U be the kernel of the restriction to H ′

p of the composite of ρ and the projection
GLt(O) → GLt(O/p′O). Then U is an open subgroup of H ′

p and ρ(U) has values in the kernel
of the projection GLt(O)→ GLt(O/p′O). Since this kernel is pro-p but H ′

p is pro-prime-to-p, we

find that ρ(U) is trivial. If we denote by L̃p the finite subextension in M/Lp corresponding to U ,

we obtain V GM = V
GL̃p . Since L is a Galois extension of K, we can take a finite extension L′

of L so that L′ is a Galois extension of K and L̃p ⊂ L′
p where L′

p := L′(K1/p∞
). We consider

V
GL′

p ( 6= 0) as a representation of Gal(L′
p/K). Take σ0 ∈ Gal(L′

p/K) such that c := χp(σ0) is
an integer > 1. (Such σ0 exists since χp(GK) is open in Z×

p .) By Proposition 2.1 (3), we have
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σ0τσ
−1
0 = τ c for any τ ∈ Gal(L′

p/L
′). Thus it follows from Proposition 2.3 (2) that there exists a

finite extension L′′ of L′ contained in L′
p such that Gal(L′

p/L
′′) acts unipotently on V

GL′
p . Thus

V GL′′ = (V
GL′

p )Gal(L′
p/L

′′) is not zero by Corollary 2.5 but this contradicts the assumption on
V .

Proposition 2.7. Let K be a field of characteristic 0 such that χp(GK) is open in Z×
p for every

prime p. Let L be a Galois extension of K with L ⊃ µ∞(K). Let {Eℓ}ℓ∈Primes be a family
of algebraic extensions Eℓ of Fℓ, and let W = {Wℓ}ℓ∈Primes be a family of finite dimensional
continuous Eℓ-representations Wℓ of GK satisfying the following property.

(H1) For each finite extension L′ of L, it holds that W
GL′
ℓ = 0 for all but finitely many primes `.

Let µ,C > 0 be integers. Assume that the following conditions hold:

(H2) χ̄p(GK) ⊃ (F×
p )

µ for every prime p > µC.

(H3) dimEℓ
Wℓ < C for all but finitely many primes `.

Let ∆ be a finitely generated subgroup of K×. We set

M := L(∆1/p∞
,K1/q∞ | p, q ∈ Primes, p ≤ µC < q).

Then, we have WGM

ℓ = 0 for all but finitely many primes `.

Remark 2.8. (1) Consider the case where K is a number field. We denote by p0 the maximal
prime ramified in the maximal abelian extension K0 of Q contained in K (we set p0 := 1 if K = Q).
Then, we have χ̄p(GK) = F×

p for every prime p > p0. (In fact, χ̄p(GK) is equal to F×
p if and only

if K0 ∩Q(µp) = Q, and this is satisfied if p is unramified in K0.)
(2) Let K be a subfield of Q and K0/Q the maximal abelian subextension of K/Q. Assume that
the following condition holds:

- There exist integers µ, ν > 0 such that the absolute ramification index of any finite place of
K0 above any prime p > ν is a divisor of µ.

Then, it follows χ̄p(GK) ⊃ (F×
p )

µ for every prime p > ν. (In fact, the quotient F×
p /χ̄p(GK) is

isomorphic to Gal(Q(µp) ∩K0/Q) and the order of this Galois group is a divisor of µ if p > ν.)

Proof of Proposition 2.7. By continuity of GK-action on Wℓ, we may assume that Eℓ is a finite
field for each `. Denote by ∆tor the torsion subgroup of ∆. Throughout the proof, we may assume
∆ 6= ∆tor. First we define some notations: Denote by δ > 0 the rank of the free abelian group
∆/∆tor. For any prime p, we set

Lp :=

{
L(∆1/p∞

) if p ≤ µC ,
L(K1/p∞

) if p > µC.

It follows from Proposition 2.1 (1) and L ⊃ µp∞(K) that Lp is a pro-p extension of L. Note that
the field M is the composite of all Lp where p ranges all primes. Denote by pi the i-th prime, that
is, p1 = 2 < p2 = 3 < p3 = 5 < · · · . For i ≥ 1, let us denote by L(i) the composite of all Lpj

for
all 1 ≤ j ≤ i, and set L(0) := L for convenience. Summary, we have

L = L(0) ⊂ L(1) ⊂ · · · ⊂ L(i) = Lp1Lp2 · · ·Lpi ⊂ · · · ⊂M =

∞⋃
j=1

L(j).

Since L is a Galois extension of K, we see that Lp, L(i) and M are also Galois extensions of K.
With above notations, let us start the proof of the proposition. Let ` be any prime such that

` ≥ C > dimEℓ
Wℓ and WGM

ℓ is not zero. The goal is to show that such ` must be bounded above
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by some constant depending only on W,K, L,∆, µ and C. Let s be any integer which satisfies
the properties that ps > µC and ps is strictly larger than the maximal prime divisor of the order
of GLC(Eℓ). The Galois group Gal(M/K) acts on WGM

ℓ . Since Gal(M/L(s)) is prime-to-pi for

any 1 ≤ i ≤ s and GLEℓ
(WGM

ℓ ) is (non-canonically) isomorphic to a subgroup of GLC(Eℓ) by

C > dimEℓ
Wℓ, we find that Gal(M/L(s)) acts trivially on WGM

ℓ . Thus we have WGM

ℓ = W
GL(s)

ℓ ,
which is not zero and is equipped with a natural Gal(L(s)/K)-action. Now we define an integer
t (< s) by pt ≤ µC < pt+1;

p1 = 2 < p2 = 3 < · · · < pt ≤ µC < pt+1 < · · · < ps.

STEP 1. We show that W
GL(t)

ℓ is not zero. Suppose that pi > µC and W
GL(i)

ℓ is not zero.
(Of course this holds for i = s.) Set G := Gal(L(i)/K) and H := Gal(L(i)/L(i−1)). The group G

acts on W
GL(i)

ℓ . Since χpi
(G) is open in Z×

pi
and χ̄pi

(G) ⊃ (F×
pi
)µ by pi > µC and (H2), there

exists an integer ci > 1 such that ci mod pi generates the cyclic group (F×
pi
)µ and ci = χpi

(σi)

for some σi ∈ G. In particular, we have σiτσ
−1
i = τ ci for τ ∈ H by Proposition 2.1 (3). Now we

note that cri − 1 is prime to pi for 1 ≤ r < C. (In fact, if we denote by ni the order of ci mod pi,
then we have C ≤ pi−1

µ ≤ pi−1
gcd{µ,pi−1} = ni.) Since H is a closed normal subgroup of G and also is

pro-pi abelian by Proposition 2.1 (2), it follows from Proposition 2.3 (3) that H acts unipotently on

W
GL(i)

ℓ . This gives the fact that W
GL(i−1)

ℓ = (W
GL(i)

ℓ )H is not zero by ` > dimEℓ
Wℓ and Corollary

2.5. Repeating above arguments from the case i = s to the case i = t + 1, we obtain the desired
result.

STEP 2. Assume thatW (i) :=W
G

Li
(i)

ℓ is not zero for some 1 ≤ i ≤ t and some finite extension
Ki of K, where Li

(i) := KiL(i). (By STEP 1, we are in this situation if we set i = t and Kt = K.)

Under this assumption, we show that W (i− 1) :=W
G

L
i−1
(i−1)

ℓ is not zero by choosing a certain finite
extension Ki−1 of Ki depending only on i,Ki, L,∆ and C. Here, Li−1

(i−1) := Ki−1L(i−1).

(In the rest of the proof, if a notation X is determined only by some given elements ∗1, ∗2, . . . ,
then we often write X = X〈∗1, ∗2, . . . 〉.) Set Gi := Gal(Li

(i)/K
i) and Hi := Gal(Li

(i)/L
i
(i−1)) where

Li
(i−1) := KiL(i−1). The group Gi acts on W (i). Since Hi is abelian, the semi-simplification of the

restriction ofW (i)⊗Eℓ
Fℓ toHi is isomorphic to Fℓ(ψ1)⊕Fℓ(ψ2)⊕· · · for some continuous characters

ψi : Hi → F×
ℓ . Fix a choice of an integer c = c〈pi,Ki〉 = c〈i,Ki〉 > 1 such that c ∈ χpi

(GKi).
(Such c exists since χpi(GKi) is open in Z×

pi
.) If we denote by m = m〈pi, c, C〉 = m〈i,Ki, C〉

the pi-part of lcm{cr − 1 | 1 ≤ r < C}, it follows from Proposition 2.1 (3) and Proposition 2.3
(3) that Hm

i acts unipotently on W (i). This implies that each ψj has values in the set of m-

th roots of unity in F×
ℓ . Since Hi is isomorphic to Zδi

pi
for some δi ≤ δ by Proposition 2.1 (2),

there exist only finitely many open subgroups of Hi of index ≤ m. Hence, the intersection H ′
i

of all such open subgroups of Hi is of finite index in Hi. By construction, each ψj is trivial on

H ′
i and thus we find that H ′

i acts unipotently on W (i). In particular, W (i)H
′
i is not zero by

` > dimEℓ
Wℓ and Corollary 2.5. Let us denote by N/Li

(i−1) the finite subextension in Li
(i)/L

i
(i−1)

corresponding to H ′
i. Since Li

(i) = KiL(∆1/p∞
j | 1 ≤ j ≤ i) and Li

(i−1) = KiL(∆1/p∞
j | 1 ≤

j ≤ i − 1), we find that N is determined depending only on Ki, L, p1, . . . , pi, ∆ and m, namely,
N = N〈Ki, L, p1, . . . , pi,∆,m〉 = N〈i,Ki, L,∆, C〉. By construction of N , we know that WGN

ℓ (=

W (i)H
′
i) is not zero. Choose a finite extension Ki−1 of Ki so that N = Ki−1Li

(i−1) = Li−1
(i−1). Then

W
G

L
i−1
(i−1)

ℓ is not zero. Since we may choose Ki−1 depending only on i,Ki, L,∆ and C, we obtain
the desired result.

STEP 3. By STEP 1 and STEP 2, we obtain a sequence of finite extensions

K = Kt ⊂ Kt−1 ⊂ Kt−2 ⊂ · · · ⊂ K1 ⊂ K0
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(in M) depending only on t,K, L,∆ and C, with the property that W
G

Li
(i)

ℓ is not zero for any

0 ≤ i ≤ t. Here, Li
(i) := KiL(i). In particular, W

GL′
ℓ is not zero where L′ := L0

(0) = K0L. We
should remark that, since t is uniquely determined by the condition pt ≤ µC < pt+1, one may
say that the above field extensions are determined by K,L,∆, µ and C. By (H1), there exists a
constant B = B〈W, L′〉 such that ` < B. Since the construction of L′ depends only on K,L,∆, µ
and C, we obtain the desired condition ` < B = B〈W,K, L,∆, µ, C〉.

For a subfield K of Q, we say that K is of uniformly bounded ramification indexes if there exists
an integer ν > 0 such that the absolute ramification index of any finite place of K is at most ν.
Clearly, any number field is of uniformly bounded ramification indexes. Moreover, if we denote by
Q(d)ab the composite of all abelian extensions of Q of degree ≤ d for a given d, we find that Q(d)ab
is of uniformly bounded ramification indexes (see Proposition 2.13 below). We recall that hi(X)
is the i-th Betti number of the topological space X(C) for any algebraic variety X over K (which
is independent of the choice of an embedding K ↪→ C). It is well-known that hi(X) coincides with
the Qℓ-dimension of the étale cohomology Hi

ét(XK ,Qℓ) since there exists a (natural) isomorphism
Hi

ét(XK ,Qℓ) ' Hi
sing(X(C),Q)⊗Q Qℓ where Hi

sing(X(C),Q) is the singular cohomology of X(C).
We also recall that XK := X ⊗K K.

Now we are ready to prove Theorem 1.1. In fact, we can prove the following refined statement.

Theorem 2.9. Let K be a subfield of a finite extension of Qcyc with uniformly bounded ramification
indexes. Let X be a smooth proper geometrically connected algebraic variety over K. Let i > 0 be
an odd integer.
(1) There exists a constant D > 0, depending only on K and hi(X), which satisfies the following
property: Let ∆ be a finitely generated subgroup of K×. We set

M := K(∆1/p∞
,K1/q∞ | p, q ∈ Primes, p ≤ D < q).

Then, the group Hi
ét(XK ,Q/Z(j))GM is finite for any j.

(2) If we set D as follows, then D satisfies the property in (1). Here, K0 is the maximal abelian
subextension in K/Q.

(2-1) D = µ(hi(X) + 1). Here, µ > 0 is any integer such that the absolute ramification index of
any finite place of K0 above any prime p > µ(hi(X) + 1) is a divisor of µ. (Such µ exists
since K is of uniformly bounded ramification indexes).

(2-2) D = max{hi(X) + 1, p0} if K is a number field. Here, p0 is the maximal prime ramified in
K0 (we set p0 := 1 if K0 = Q).

Proof. First we claim that there exists a constant `0 = `0(X, i) depending only on X and i with
the property that dimFℓ

Wℓ = hi(X) for any prime ` > `0 where Wℓ := Hi
ét(XK ,Fℓ(j)). This

should be well-known to experts but we include an explanation for the sake of completeness.
For any prime `, the group Wℓ is finite and the Zℓ-module Hi

ét(XK ,Zℓ(j)) is finitely generated.
Furthermore, there exists a constant `0 = `0(X, i) depending only on X and i that the torsion
subgroup of Hi

ét(XK ,Zℓ(j)) and Hi+1
ét (XK ,Zℓ(j)) are trivial for any prime ` > `0 by a result of

Gabber [Ga]. The Zℓ-rank of Hi
ét(XK ,Zℓ(j)) coincides with the Qℓ-dimension of Hi

ét(XK ,Qℓ(j)),
which is just the i-th Betti number hi(X) of X(C). Note that we have an exact sequence 0 →
Hi

ét(XK ,Zℓ(j))/` → Wℓ → Hi+1
ét (XK ,Zℓ(j))[`] → 0 of GK-modules coming from the long exact

sequence associated with the multiplication-by-` map. Thus, for ` > `0, we have dimFℓ
Wℓ =

dimFℓ
Hi

ét(XK ,Zℓ(j))/` = rankZℓ
Hi

ét(XK ,Zℓ(j)) = hi(X). Hence the claim follows.
Proofs for the cases (2-1) and (2-2) proceed in parallel. We define some notations in each cases.

Let µ > 0 and C > 0 be as follows.

• Under the consideration of (2-1), let µ be as in (2-1) and C := hi(X) + 1.

• Under the consideration of (2-2), set µ := 1 and C := max{hi(X) + 1, p0}.
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In both cases, we have D = µC. Set L := Kcyc. Let M be the field as in the theorem, that is,
M = L(∆1/p∞

,K1/q∞ | p, q ∈ Primes, p ≤ D < q).
We proceed the proof of the theorem with above notations. By Proposition 2.1 of [RS], it

suffices to show

(A) Hi
ét(XK ,Qℓ(j))

GM = 0 for all primes `, and

(B) Hi
ét(XK ,Fℓ(j))

GM = 0 for all but finitely many primes `.

Here we remark that χp(GK) is open in Z×
p for every prime p since K is of uniformly bounded

ramification indexes. Set V := Hi
ét(XK ,Qℓ(j)) andM∞ := K(K1/∞). Since L is a finite extension

of Qcyc, it follows from Proposition 3.1 of [RS] that V GL′ = 0 for any finite extension L′/L. Thus
we obtain V GM∞ = 0 by Proposition 2.6, which shows (A) since M is a subfield of M∞. For
the proof of (B), it is enough to check that the conditions (H1), (H2) and (H3) appeared in
Proposition 2.7 are satisfied under our situation with additional notation W := {Wℓ}ℓ∈Primes =
{Hi

ét(XK ,Fℓ(j))}ℓ∈Primes. However, it is not difficult to check them; (H1) is a consequence of
Proposition 3.4 of [RS], (H2) follows from Remark 2.8 and (H3) is clear by the claim above.

Here is an immediate consequence of Theorem 2.9.

Corollary 2.10. Let K be a subfield of a finite extension of Qcyc with uniformly bounded ram-
ification indexes. Let {∆p}p∈Primes be a family of finitely generated subgroups ∆p of K×. We
set

M := K(∆1/p∞

p | p ∈ Primes).

Let X be a smooth proper geometrically connected algebraic variety over K. Then, the group
Hi

ét(XK ,Q/Z(j))GM is finite for any odd i and any j.

The result below is an immediate consequence of Proposition 2.6 (see the argument of (A) in
the proof of Theorem 2.9).

Theorem 2.11. Let K be a subfield of a finite extension of Qcyc with uniformly bounded ramifi-
cation indexes. We set

M := K(K1/∞).

Let X be a smooth proper geometrically connected algebraic variety over K. Then, we have
Hi

ét(XK ,Qℓ(j))
GM = 0 for any odd i, any j and any prime `.

Remark 2.12. The condition that “K is of uniformly bounded ramification indexes” cannot be
simply removed from the statement of Theorem 2.11.

For example, we consider the case where K = Q(µp∞ | p ∈ Primes) = Qcyc and set M :=
K(K1/∞) (= Q((Qcyc)1/∞)). Put K0 = Q(

√
−1), which is a subfield of K. The elliptic curve

E : y2 = x3 + x has j-invariant 1728 and EndC(E) is isomorphic to the integer ring Z[
√
−1] of K0.

As is explained in [Si, Example 5.8], we know that Kab
0 coincides with the field K0(Etor) generated

by K0 and all the torsion points of E. On the other hand, since any finite abelian extension of
Kcyc

0 (= Qcyc) is contained in Kcyc
0 ((Kcyc

0 )1/n) for some n > 1 by Kummer theory, we know that
Kab

0 ⊂ K
cyc
0 ((Kcyc

0 )1/∞) =M . Therefore, we find that E(M)[`∞] is infinite for any prime `. This
is equivalent to say that H1

ét(EK ,Qℓ(1))
GM , which is isomorphic to the GM -fixed part of the `-adic

rational Tate module Vℓ(E) of E, is not zero for any prime `.

As a final topic in this section, we study abelian extensions of Q which are of uniformly bounded
ramification indexes. For any integer d > 0, we denote by Q(d)ab the composite of all abelian
extensions of Q of degree ≤ d. In addition, for any prime p, we denote by Qp(d)ab the composite
field of all abelian extensions of Qp of degree ≤ d.

Proposition 2.13. (1) Q(d)ab is of uniformly bounded ramification indexes.
(2) If K is an abelian extension of Q, then K is of uniformly bounded ramification indexes if and
only if K is a subfield of Q(d)ab for some d.
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Proof. (1) It suffices to show that there exists a constant δd which depends only on d such that, for
any prime p, we have [Qp(d)ab : Qp] ≤ δd (In fact, for any embedding ι : Q ↪→ Qp, the composite
field of ι(Q(d)ab) and Qp is contained in Qp(d)ab. Remark that this also implies that the absolute
ramification index of any finite place of Q(d)ab above p is a divisor of that of Qp(d)ab). By local
class field theory, there exists a bijection between the set of abelian extensions of Qp of degree ≤ d
and the set of index ≤ d subgroups of Q×

p /(Q×
p )

d!. It is easy to check that there exists a constant
cd, depending only on d, such that the cardinality of the latter set is less than cd. Therefore,
setting δd := dcd , we obtain the desired result.

(2) By (1), it suffices to show “only if” part. Let d be the least common multiple of the absolute
ramification indexes of all finite places of K, which is finite by assumption on K. The goal is to
show that K is a subfield of Q(d)ab. Take any α ∈ K. Denote by S the set of rational primes
which are ramified in Q(α) and also denote by QS the maximal abelian extension of Q unramified
outside S. We have a natural isomorphism

Gal(QS/Q)
∼−→

∏
p∈S

Z×
p

via cyclotomic characters; we identify Gal(QS/Q) with
∏

p∈S Z×
p . Let Fp be the maximal unram-

ified subextension of QS/Q at p ∈ S and put Ip = Gal(QS/Fp). Note that Ip = Z×
p and these

are the inertia subgroup of Gal(QS/Q) at p. Put I ′p = Gal(QS/Fp(α)) for each p ∈ S. We define
the subextension M of QS/Q by Gal(QS/M) =

∏
p∈S I

′
p, and also define Mq the subextension

of QS/Q by Gal(QS/Mq) = I ′q ×
∏

p∈S,p ̸=q Ip for any q ∈ S. Since Gal(Mq/Q) is isomorphic to
Iq/I

′
q, we see [Mq : Q] = [Fq(α) : Fq] and these are equal to the absolute ramification index of

Q(α) at q ∈ S, which is a divisor of d. Since M is the composite of all Mq for q ∈ S, we have
Q(α) ⊂M ⊂ Q(d)ab. Therefore, we obtain K ⊂ Q(d)ab as desired.

Example 2.14. Let K = Q(d)ab. It follows from the Kronecker-Weber theorem that K is a
subfield of Qcyc, and hence K satisfies the required conditions in Theorem 2.9. If we denote by
ep(d) the absolute ramification index of Qp(d)ab for any prime p, then the absolute ramification
index of any finite place of K above p is a divisor of ep(d). Hence one can verify that a constant
µ in Theorem 2.9 (2-1) can be chosen as

µ = e(d) := lcm{ep(d)}p∈Primes,p ̸=2.

The constant e(d) is finite since K is of uniformly bounded ramification indexes, and e(d) = 1 if
and only if d = 1. For example, if d = 2 (thus K = Q(

√
m | m ∈ Z)), then we have e(2) = 2 since

Qp(2)ab = Qp2(
√
p) for any odd prime p. Here, Qp2 is the quadratic unramified extension of Qp.

3 TKND-AVKF fields

In this section, we study TKND-AVKF property for some fields and we show Theorems 1.3 and
1.4 in the Introduction. Following [Tsu1, Definition 3.3] and [HMT, Definition 6.6], we first recall
some notions.

Definition 3.1. Let F be a field of characteristic 0 and p a prime. We denote by F×p∞
and

F×∞ the set of p-divisible elements of F× and the set of divisible elements of F×, respectively;
F×p∞

=
⋂

n≥1(F
×)p

n

and F×∞ =
⋂

n≥1(F
×)n. We denote by Fdiv the field obtained by adjoining

to Q the divisible elements of the multiplicative groups of finite extension fields of F , that is,
Fdiv :=

⋃
E Q(E×∞) where E(⊂ F ) ranges all finite extensions of F .

(1) We say that F is TKND (=“torally Kummer-nondegenerate”) if the extension F/Fdiv is of
infinite degree.
(2) We say that F is AVKF (=“abelian variety Kummer-faithful”) if, for every finite extension E
of F and every abelian variety A over E, the set of divisible elements of A(E) is zero, that is,⋂

n≥1

nA(E) = 0.
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(3) We say that F is TKND-AVKF if F is both TKND and AVKF.
(4) We say that F is ×µ-indivisible (resp. p-×µ-indivisible) if F×∞ ⊂ µ∞(F ) (resp. F×p∞ ⊂
µ∞(F )). We say that F is stably ×µ-indivisible (resp. stably p-×µ-indivisible) if any finite extension
field of F is ×µ-indivisible (resp. p-×µ-indivisible).
(5) We say that F is µp∞-finite if µp∞(F ) is finite. We say that F is stably µp∞-finite if any finite
extension field of F is µp∞ -finite.

Remark 3.2. By considering the Weil restrictions of abelian varieties over a field F , one verifies
immediately that F is AVKF if and only if the set of divisible elements of A(F ) is zero for every
abelian variety A over F .

For various properties of the above notions, it will be helpful to the readers to refer [HMT, §6].
It should be remarked that the following implications hold:

stably p-×µ-indivisible +3

��

stably ×µ-indivisible +3

��

TKND

p-×µ-indivisible +3 ×µ-indivisible

3.1 A criterion of TKND property

We study some criterion on TKND property.

Proposition 3.3. Let K be a field of characteristic 0 containing µ∞(K) and L a Galois extension
of K. Assume that K is stably p-×µ-indivisible for some prime p.
(1) We have Ldiv ⊂ L.
(2) Let M be a subfield of L such that L is algebraic over M . If L 6= K, then M is TKND.

Proof. Admitting (1), we show (2). We have Mdiv ⊂ Ldiv ⊂ L ⊂ K = M . By L 6= K and
the Artin-Schreier theorem, we obtain that the extension K/L is of infinite degree. Hence the
extension M/Mdiv is also of infinite degree, which implies that M is TKND. Thus it suffices to
show (1). Let E be a finite extension of L, and α ∈ E×∞. It suffices to show that α ∈ L. By
replacing E by the Galois closure of E/K (which is finite over L), we assume that E is Galois over
K. Let K1 be the Galois closure of K(α)/K. Fix a prime p such that K is stably p-×µ-indivisible.
In this proof, we set µ∞ := µ∞(K) to simplify notation.

It follows from the assumption on K that K1 is p-×µ-indivisible. Therefore, if α ∈ K×p∞

1 ,

then α ∈ µ∞ ⊂ L. In the following, we assume that α 6∈ K×p∞

1 . Set M1 := K1(α
1/p∞

) (so,
Gal(M1/K1) ' Zp). Since Gal(E/K1L) is finite, we have M1 ⊂ K1L. Let M2 be the field
corresponding to M1 under the natural isomorphism Gal(K1L/K1) ' Gal(L/K1 ∩ L), and set
K2 := K1 ∩ L. Then we have the following commutative diagram:

0 // H1(Gal(M1/K1),Zp) // H1(GK1
, Zp) =: (K̂×

1 )p // H1(GM1
,Zp) =: (M̂×

1 )p

0 // H1(Gal(M2/K2),Zp) //
?�

≃

O

H1(GK2
, Zp) =: (K̂×

2 )p

?�

O

// H1(GM2
, Zp) =: (M̂×

2 )p,
?�

O

where the horizontal sequences are exact. Note that the middle (resp. right) vertical arrow is
injective since K1 (resp. M1) is finite over K2 (resp. M2). Note also that µ∞ ⊂ K1, and hence

(K̂×
1 )p ' lim←−

n

K×
1 /(K

×
1 )p

n

, and so on. Let fα be the (nontrivial) element of (K̂×
1 )p determined by

α. Since the image of fα in (M̂×
1 )p is 1, it holds that fα ∈ (K̂×

2 )p ⊂ (K̂×
1 )p.
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On the other hand, since K1 and K2 are p-×µ-indivisible, we have the following commutative
diagram:

0 // µ∞ // K×
2

//
� _

�

(K̂×
2 )p� _

�

0 // µ∞ // K×
1

// (K̂×
1 )p,

where the horizontal sequences are exact. Therefore, we have the following inclusions of Gal(K1/K2)-
modules:

K×
2 /µ∞� _

�

� � / (K̂×
2 )p� _

�

K×
1 /µ∞

� � / (K̂×
1 )p.

Moreover, by considering the long exact sequence associated to 0 → µ∞ → K×
1 → K×

1 /µ∞ → 0,
we obtain

0→ K×
2 /µ∞ → (K×

1 /µ∞)Gal(K1/K2) → H1(Gal(K1/K2), µ∞) = Hom(Gal(K1/K2),Q/Z).

Now, fα ∈ K×
1 /µ∞ ⊂ (K̂×

1 )p since the natural morphism K×
1 → (K̂×

1 )p factors through K×
1 /µ∞,

and fα ∈ (K̂×
2 )p ⊂ (K̂×

1 )
Gal(K2/K1)
p . So, fα ∈ (K×

1 /µ∞)Gal(K1/K2), and hence fdα ∈ K×
2 /µ∞,

where d := [K1 : K2]. This shows that there exists ζ ∈ µ∞ satisfying ζαd ∈ K×
2 . However, since

µ∞ ⊂ K2, α
d is an element of K2 ⊂ L. Consider the following commutative diagram:

0 // L×∞
� _

�

// L× //� _

�

L̂× := lim←−n
L×/(L×)n = H1(GL, Ẑ)� _

�
0 // E×∞ // E× // Ê× := lim←−n

E×/(E×)n = H1(GE , Ẑ),

where the horizontal sequences are exact. (The injectivity of right vertical arrow follows from the
condition that E/L is a finite extension and µ∞ ⊂ L.) Since α ∈ E×∞, the image of α, hence also

the image of αd, in Ê× is 1. Therefore, we have αd ∈ L×∞. As µ∞ ⊂ L, this shows that α ∈ L,
as desired.

We say that a field k is sub-p-adic if it is a subfield of a finitely generated extension of Qp. More
generally, we say that a field k is generalized sub-p-adic if it is a subfield of a finitely generated
extension of Q̂ur

p , where Q̂ur
p is the completion of the maximal unramified extension field of Qp.

Example 3.4. (1) Let k be a field of characteristic 0 and K := kcyc. Suppose that k is both stably
µp∞ -finite and stably p-×µ-indivisible for a prime p (e.g., k is generalized sub-p-adic (cf. Lemma
D (iii) of [Tsu1])). Then, by Lemma D (iv) of [Tsu1], K is stably p-×µ-indivisible. In particular,
K is stably p-×µ-indivisible for every prime p if k is a number field.

(2) Let d > 0 be an integer and denote by Q(d) the composite of all number fields of degree
≤ d. Then, any subfield k of Q(d) is both stably µp∞ -finite and stably p-×µ-indivisible for every
prime p, and hence K is stably p-×µ-indivisible for every prime p. In fact, for any prime p, if we
fix an embedding Q ↪→ Qp, then kQp is a finite extension of Qp. In particular, k is sub-p-adic.

Example 3.5. (1) Let F be a number field. If GF has a nontrivial finite subgroup H (e.g., F = Q),

the fixed field F
H

of H is real closed (note that H is necessarily of order 2). Therefore, as in [Tsu2,

Remark 1.1.3], F
H

is not TKND.
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(2) Let K be a complete discrete valuation field whose residue characteristic is 0. Then K is
not TKND (cf. [Tsu3, Remark 1.4.2]). Indeed, there exist a subfield k of the ring of integers of K
which is isomorphic to the residue field of K (via the natural surjection from the ring of integers
to the residue field), and a uniformizer t of K such that K = k((t)). Let K be an algebraic closure
of K and k the algebraic closure of k in K. To verify the above assertion, it suffices to verify the
following:

(a) For any positive integer n and any n-th root tn ∈ K of t, tn belongs to Kdiv.

(b) For any α ∈ k, α belongs to Kdiv.

Assertion (a) follows immediately from the fact that 1 + tn is divisible in K(tn)
×. Assertion (b)

follows immediately from (a) and the fact that 1 + αt is divisible in K(α)×.

Example 3.6. In Proposition 3.3, the condition that L is Galois over K is crucial. Let F be a
number field, p a prime and σ ∈ GF an element such that the closure 〈σ〉 of the subgroup generated
by σ in GF is isomorphic to Zp. (For example, let p be a nonarchimedean prime of F with residue
characteristic p, and Fp the field corresponding to the decomposition subgroup of GF associated to
p (determined up to conjugacy). Then Fp is isomorphic to the henselization of F with respect to p
(see, e.g., [BLR, §2.3, Proposition 11]), and GFp

is identified with the absolute Galois group of the
completion of F at p. Any nontrivial element σ of the “wild inertia subgroup” of GFp

satisfies the

above condition.) We claim that the extension L of F corresponding to 〈σ〉 satisfies L · Ldiv = L,
and, in particular, Ldiv 6⊂ L. (Note that, this, together with Proposition 3.3, shows that there
exist no algebraic extensions K of F satisfying the conditions given in Proposition 3.3 over which
L is Galois.)

For any nonnegative integer n, we denote by Ln the intermediate field of L/L such that [Ln :
L] = pn. Note that, for any prime ` 6= p and any nonnegative integer n, L×

n is `-divisible. To verify
the above claim, it suffices to verify the following:

For any nonnegative integer n, L×∞
n+1 \ L×

n is not empty.

Let us verify this assertion. Let n be a nonnegative integer. Here, we claim that L×
n+1/L

×
n · L×∞

n+1

is finite. Indeed, by considering the long exact sequence associated to the short exact sequence

1 // µ∞ // L×∞
n+1

// L×∞
n+1/µ∞ // 1 of Gal(Ln+1/Ln)-modules, we obtain the follow-

ing exact sequence:

H1(Gal(Ln+1/Ln), µ∞) // H1(Gal(Ln+1/Ln), L
×∞
n+1)

// H1(Gal(Ln+1/Ln), L
×∞
n+1/µ∞).

Since H1(Gal(Ln+1/Ln), µ∞) (' Hom(Gal(Ln+1/Ln), Q/Z)) is finite and L×∞
n+1/µ∞ is uniquely

divisible (hence cohomologically trivial (cf. [NSW, Proposition 1.6.2])), H1(Gal(Ln+1/Ln), L
×∞
n+1)

is also finite. Moreover, by considering the long exact sequence associated to the short exact se-

quence 1 // L×∞
n+1

// L×
n+1

// L×
n+1/L

×∞
n+1

// 1 of Gal(Ln+1/Ln)-modules, we obtain

the following exact sequence:

1 // L×
n /L

×∞
n

// (L×
n+1/L

×∞
n+1)

Gal(Ln+1/Ln) // H1(Gal(Ln+1/Ln), L
×∞
n+1)

// 1.

(Here, note that (L×∞
n+1)

Gal(Ln+1/Ln) = L×∞
n since Ln+1/Ln is finite.) This shows that the subgroup

L×
n /L

×∞
n of (L×

n+1/L
×∞
n+1)

Gal(Ln+1/Ln) is of finite index.
On the other hand, since Ln+1 contains all roots of unity, it holds that H1(GLn+1

, Zp) '
lim←−
m

L×
n+1/(L

×
n+1)

pm

. The kernel of the natural homomorphism L×
n+1 → lim←−

m

L×
n+1/(L

×
n+1)

pm

is

L×p∞

n+1 , and this coincides with L×∞
n+1. Moreover, since GLn

is abelian, the action of Gal(Ln+1/Ln) on

H1(GLn+1
, Zp) is trivial. In particular, we have (L×

n+1/L
×∞
n+1)

Gal(Ln+1/Ln) = L×
n+1/L

×∞
n+1. There-

fore, L×
n+1/L

×
n · L×∞

n+1 = (L×
n+1/L

×∞
n+1)/(L

×
n /L

×∞
n ) is finite. This completes the proof of the above

claim.
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Now, let us consider the following exact sequence:

1 // L×∞
n+1/L

×∞
n

// L×
n+1/L

×
n

// L×
n+1/L

×
n · L×∞

n+1
// 1.

Since L×
n+1/L

×
n is infinite, L×∞

n+1/L
×∞
n (= L×∞

n+1/(L
×
n ∩L×∞

n+1)) is also infinite. In particular, L×∞
n+1 \

L×
n is not empty, as desired.
However, the authors at the time of writing do not know whether L is TKND or not (cf.

Remark 3.7).

Remark 3.7. Let F be a field of characteristic 0. We say that F is Kummer-faithful (resp. torally
Kummer-faithful) if, for every finite extension F ′ of F and every semi-abelian variety (resp. every
torus) A over F ′, the set of divisible elements of A(F ′) is zero, that is,⋂

n≥1

nA(F ′) = 0.

Note that (torally) Kummer-faithful fields are TKND. Let K be a number field and e a positive
integer. For σ = (σ1, · · · , σe) ∈ Ge

K , set K(σ) to be the fixed field of σ in K, and K[σ] to be
the maximal Galois subextension of K in K(σ). It is known that, any finite extension of K[σ] is
Kummer-faithful for almost all σ ∈ Ge

K (in terms of the (normalized) Haar measure). (See [Oh1,
Corollary 1] and [Oh2] for the case where e ≥ 2, and [AT, Theorem 5.3] for the general case).
Moreover, if e ≥ 2, any finite extension of K(σ) is Kummer-faithful for almost all σ ∈ Ge

K (cf.
[AT, Theorem 5.2]).

These results show that “almost all” of the algebraic extensions of number fields are TKND.
However, these results do not imply that the field L constructed in Example 3.6 is TKND since
(the wild inertia subgroups of) the decomposition subgroups of primes are measure zero sets.

3.2 TKND-AVKF property for maximal abelian extension fields of num-
ber fields

Let K be a number field and Kab (⊂ Q) the maximal abelian extension field of K. It is shown
in Proposition 1.2 of [Tsu2] that Kab is stably ×µ-indivisible, and in particular, Kab is TKND.
On the other hand, we also know that Kab (= Qcyc) is AVKF if K = Q but Kab is not AVKF if
K = Q(

√
−1) (cf. [Tsu2, Proposition 2.6]). Thus it depends on the choice of a number field K

whether Kab is AVKF or not. We give an explicit criterion for this phenomena.

Theorem 3.8. Let K be a number field and Kab the maximal abelian extension field of K. Then
the following are equivalent.

(1) K does not contain a CM field.

(2) For every abelian variety A over K, A(Kab)tor is finite.

(3) Kab is AVKF.

The goal in this section is to show the above theorem. Note that Theorem 1.4 is an immediate
consequence of Theorem 3.8 since Kab is always TKND.

Before a proof of Theorem 3.8, basically following [Sh2, §3, §5 and §8], we recall some results
related with CM-type of abelian variety with complex multiplication. In the following, if A is an
abelian variety defined over a field k of characteristic zero, we denote by Endk(A) the ring of
k-endomorphisms of A and set Endk(A)

0 := Endk(A)⊗Z Q. We say that A is k-simple if it has no
abelian k-subvariety other than {0} and itself, and also we say that A is simple if A is k̄-simple.

Let F be a number field of degree 2g and A a g-dimensional abelian variety over C. Suppose that
an injective ring homomorphism θ : F ↪→ EndC(A)

0 is given. The abelian variety A is isomorphic
to a g-dimensional complex torus; we fix an isomorphism A(C) ' Cg/D where D is a lattice in

14



Cg. Let λ be an element of EndC(A). The map λ corresponds to a linear map Λ: Cg → Cg

such that Λ(D) ⊂ D. With respect to a given coordinate-system of Cg, Λ is represented by a
matrix S ∈ Mg(C). The mapping λ 7→ S can be uniquely extended to a ring homomorhism
EndC(A)

0 →Mg(C), which is called the analytic representation of EndC(A)
0. We abuse notation by

writing S for the analytic representation. Furthremore, since Λ as above preserves D, Λ restricted
to D defines a map D → D and it is represented by a matrix M ∈ M2g(Z) with respect to
a given basis of D. The mapping λ 7→ M can be uniquely extended to a ring homomorhism
EndC(A)

0 →M2g(Q), which is called the rational representation of EndC(A)
0. We abuse notation

by writing M for the rational representation. By definition, one can check that M (as a C-
representation) is equivalent to the direct sum of S and its complex conjugate S̄. Now let us
denote by ϕ1, . . . , ϕ2g all the Q-algebra embeddings from F into C. It follows from [Sh2, §5.1,
Lemma 1] that the representation M restricted to F is equivalent to the direct sum of ϕ1, . . . , ϕ2g.
Hence, by reordering subscripts, we find that S restricted to F is equivalent to the direct sum
of ϕ1, . . . , ϕg, and S̄ restricted to F is equivalent to the direct sum of ϕg+1, . . . , ϕ2g, which is
the direct sum of the complex conjugates ϕ̄1, . . . , ϕ̄g of ϕ1, . . . , ϕg. Setting Φ := {ϕ1, . . . , ϕg},
we say that (A, θ) is of type (F ; Φ). If we denote by ΓF = {ϕ1, . . . , ϕ2g} the set of all Q-algebra
embeddings from F into C and set Φ̄ := {ϕg+1, . . . , ϕ2g} = {ϕ̄1, . . . , ϕ̄g}, then we observe that we
have ΓF = Φ

⋃
Φ̄ and Φ

⋂
Φ̄ = ∅.

Definition 3.9. Let F be a number field of degree 2g and Φ a set of g-distinct Q-algebra em-
beddings from F into C. We say that (F ; Φ) is a CM-type if there exist a g-dimensional abelian
variety A over C and an injective ring homomorphism θ : F ↪→ EndC(A)

0 such that (A, θ) is of
type (F ; Φ).

Here we remark that, it is a theorem of Oort [Oo] that A as in the above definition always has a
model over some number field. Thus we can choose A as an abelian variety defined over Q. (With
this choice of A, note that we have EndC(A)

0 = EndQ(A)
0.)

Let F be a number field of degree 2g and Φ a set of g-distinct Q-algebra embeddings from F
into C. It is shown in [Sh2, §5.2, Theorem 1] that (F ; Φ) is a CM-type if and only if F contains a
CM field K with the property that, for any choice of elements ϕ 6= ψ in Φ, it holds ϕ|K 6= ψ̄|K .
It is also shown in [Sh2, §6.1, Corollary of Theorem 2] that any two abelian varieties of the same
CM-type are isogenous to each other. We say that a CM-type (F ; Φ) is primitive if the abelian
varieties of that type are simple.

Let (F ; Φ) be a CM-type. We set

F ∗ := Q

∑
φ∈Φ

ϕ(x) | x ∈ F

 .

If we denote by F ′ the Galois closure of F/Q, it clearly holds that F ∗ is a subfield of F ′. We denote
by ΦF ′ the set of the elements of Gal(F ′/Q) inducing some ϕ ∈ Φ on F and also denote by Φ∗

the set of all Q-algebra embeddings of F ∗ into C obtained from the elements of {σ−1 | σ ∈ ΦF ′}.
Then, it is known that (F ∗; Φ∗) is a primitive CM-type (cf. [Sh2, §8.3, Proposition 28]).

Definition 3.10. We say that (F ∗; Φ∗) is the reflex of (F ; Φ).

The reflex satisfies various interesting properties; see [Sh2, §8] for more information. For our
proof of Theorem 3.8, we use the following properties:

• If (F ; Φ) is a primitive CM-type, then (F ; Φ) coincides with the reflex of its reflex.

• Let (A, θ) be of CM-type (F ; Φ) and k ⊂ C a subfield. Assume that (A, θ) is defined over k,
that is, A is defined over k and θ(F ) ⊂ Endk(A)

0. Then we have k ⊃ F ∗.

Proof of Theorem 3.8. Consider the following property:

(3)′ For every abelain variety A over K, the set of divisible elements of A(Kab) is zero.
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We show implications (1)⇒ (2)⇒ (3)′ ⇒ (3)⇒ (1).
First we show (1) ⇒ (2). Suppose that there exists an abelian variety A over a number field

K such that A(Kab)tor is infinite. Choosing K-simple abelian varieties A1, . . . , Ar over K such
that A is K-isogenous to the product A1 × · · · × Ar, we see that Ai(K

ab)tor is infinite for some i.
Thus we may assume that A is K-simple. It follows from [Za, Theorem 1] that F := EndK(A)0 is
a number field of degree 2 dimA. Let θ be the natural inclusion map F ↪→ EndQ(A)

0 and (F ; Φ)
the CM-type associated with (A, θ). Since every element of θ(F ) is defined over K, it follows from
[Sh2, §8.5, Proposition 30] that K contains the reflex field of (F ; Φ), which in particular shows
that K contains a CM field. Thus we obtained (1)⇒ (2).

The implication (2)⇒ (3)′ follows from [OT, Proposition 2.4] immediately; see also Lemma 3.13
in the next section. (Here, we recall that number fields are AVKF by the Mordell-Weil theorem.)

We show (3)′ ⇒ (3). Assume (3)′. Let L be a finite extension of Kab and A an abelian
variety over L. We want to show that the set of divisible elements of A(L) is zero. If we denote
by B the Weil restriction ResL/Kab(A) of A, then B is an abelian variety over Kab and we have

A(L) = B(Kab). Take a finite extension K ′ of K contained in Kab such that B is defined over K ′,
and denote by C the Weil restriction ResK′/K(B) of B. Then C is an abelian variety over K and
we find

C(Kab) = B(K ′ ⊗K Kab) =
∏
σ

Bσ(Kab) ⊃ B(Kab) = A(L),

where σ ranges over the K-algebra embeddings of K ′ into Kab and Bσ = B⊗K′,σ K
ab is the base

change of B to Kab with respect to σ. By (3)′, we conclude that the set of divisible elements of
A(L) is zero as desired.

Finally we show (3)⇒ (1). Assume that K contains a CM field. The goal is to show that Kab

is not AVKF. Replacing K by a subfield, we may assume that K is a minimal CM field in the sense
that all the non-trivial subfields of K are not CM fields. Take any CM-type (K; Φ). We claim that
the CM-type (K; Φ) is primitive. Let us denote by (A, θ) an abelian variety over Q of CM-type
(K; Φ) and denote by B a non-zero simple abelian Q-subvariety of A. Then, K0 := EndQ(B)0 is a
CM field of degree 2 dimB and also we may naturally regard K0 as a subfield of K (cf. [La, Chapter
1, Theorem 3.3]). Since K is a minimal CM field, we have K0 = K. This gives dimA = dimB
and thus A is isogenous to B, which implies the fact that A is simple. Thus the claim follows.
Let (K∗; Φ∗) be the reflex of (K; Φ) and set g := [K∗ : Q]/2. We remark that, since (K; Φ) is
primitive, the reflex (K∗∗; Φ∗∗) of (K∗; Φ∗) coincides with (K; Φ). Let (A, θ) be a g-dimensional
abelian variety over Q of type (K∗; Φ∗). Since A is simple, the homomorphism θ : K∗ ↪→ EndQ(A)

0

is an isomorphism of fields. Take any polarization C of A, defined over Q, and consider the triple
(A, C, θ). As is explained in [Sh1, p. 216, after the proof of Theorem 7.44], there exist a number
field K ′ contained in (K∗∗)ab = Kab and a triple (A′, C′, θ′) defined over K ′ such that (A, C, θ) is
isomorphic to (A′, C′, θ′) over Q and all the torsion points of A′ are defined over (K∗∗)ab = Kab.
Since any non-zero torsion element of A′ is a non-zero divisible element of A′(Kab), we conclude
that Kab is not AVKF as desired.

3.3 “Kummer-type” construction of TKND-AVKF fields

In this section, we give a “Kummer-type” construction of TKND-AVKF fields (cf. Proposition
3.15 and Corollary 3.16) and give a proof of Theorem 1.3 in the Introduction. It may be helpful
to rewrite our results in terms of notions appearing in anabelian geometry. Following [HMT,
Definition 6.1], we introduce some notions.

Definition 3.11. Let F be a field.
(1) We say that F is AV-tor-finite if, for every finite extension E of F and every abelian variety A
over E, it holds that A(E)tor is finite.
(2) Let p be a prime. We say that F is p∞-AV-tor-finite if, for every finite extension E of F and
every abelian variety A over E, it holds that A(E)[p∞] is finite.
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Number fields are AV-tor-finite by the Mordell-Weil theorem. More generally, sub-p-adic fields
are AV-tor-finite (cf. [OT, Proposition 2.9]). Ribet’s theorem [KL] implies that kcyc is AV-tor-finite
for any number field k.

Remark 3.12. (1) Any subfield of an AV-tor-finite field (resp. a p∞-AV-tor-finite field) is also
AV-tor-finite (resp. p∞-AV-tor-finite).
(2) By considering the Weil restrictions of abelian varieties, one verifies immediately that a field F
is AV-tor-finite (resp. p∞-AV-tor-finite) if and only if A(F )tor (resp. A(F )[p

∞]) is finite for every
abelian variety A over F .

Lemma 3.13. Let A be an abelian variety over a field K and L an algebraic extension of K.
Consider the following conditions.

(a) The set of divisible elements of A(L) is zero.

(b) The set of divisible elements of A(L)tor is zero.

(c) A(L)[`∞] is finite for any prime `.

Then we have (a) ⇒ (b) ⇔ (c). If K is AVKF and L is a Galois extension of K, then we have
(a)⇔ (b)⇔ (c).

Proof. The same proof as that of [OT, Proposition 2.4] proceeds.

Here is an immediate consequence of Lemma 3.13.

Corollary 3.14. Let L be a Galois extension of an AVKF field of characteristic 0. Then, L is
AVKF if and only if L is p∞-AV-tor-finite for every prime p.

Proposition 3.15. Let K be a field of characteristic 0. Let L be a Galois extension of K with
L ⊃ µ∞(K) and set M := L(K1/∞).
(1) Assume that χp(GK) is open in Z×

p for a prime p. If L is p∞-AV-tor-finite, then any subfield
of M is also p∞-AV-tor-finite.
(2) Assume that χp(GK) is open in Z×

p for every prime p. If L is AVKF, then any subfield of M
is also AVKF.

Proof. The assertion (2) immediately follows from (1) and Corollary 3.14. We show (1). Let A be
an abelian variety over M . It suffices to show A(M)[p∞] is finite. Take any finite extension K1 of

K contained in M so that A is defined over K1. We set L1 := LK1 and M1 := L1(K
1/∞
1 ). We

see that χp(GK1
) is open in Z×

p and L1 is p∞-AV-tor-finite. Hence, if we denote by V the rational

p-adic Tate module Qp ⊗Zp
lim←−n

A[pn] of A, then it holds that V GM1 = 0 by Proposition 2.6. This

implies A(M1)[p
∞] is finite. Since M is a subfield of M1, we have done.

By applying Proposition above repeatedly, we can obtain (TKND-)AVKF criterions for certain
types of fields extensions.

Corollary 3.16. Let K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kn = K be field extensions in Q. Consider the
following conditions:

(i) χp(GK) is open in Z×
p for every prime p.

(i)’ For any prime p, the absolute ramification index of some finite place of K above p is finite.

(ii) Kcyc
0 is AVKF.

(iii) Ki ⊂ Ki−1(K
1/∞
i−1 ) for any i.

Then, we have the followings.
(1) If (i), (ii) and (iii) hold, then any subfield of K(K1/∞) is AVKF.
(2) If (i)′, (ii) and (iii) hold, then any subfield of K(K1/∞) is TKND-AVKF.
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Remark 3.17. The assumption (i) in the theorem above holds if the absolute ramification index
of any finite place of the maximal abelian subextension of K/Q is finite.

Proof. First we show (1). Note that, for each prime p and each i, χp(GKi
) is open in Z×

p by (i).

It follows from (ii) and Proposition 3.15 that K0(K
1/∞
0 ) is AVKF. In addition, if Ki−1(K

1/∞
i−1 )

is AVKF for some i, then Kcyc
i (⊂ Ki−1(K

1/∞
i−1 )) is also AVKF, which implies that Ki(K

1/∞
i ) is

also AVKF by Proposition 3.15. By induction, we obtain the fact that Kn(K
1/∞
n ) = K(K1/∞) is

AVKF. Next we show (2). It suffices to show that K(K1/∞) is TKND. By (i)’, we know that K is a
generalized sub-p-adic field for any prime p. It follows from Lemma D (iii) of [Tsu1] that K is both
stably p-×µ-indivisible and stably µp∞ -finite for every prime p. By Lemma D (iv) of loc. cit., Kcyc

is stably p-×µ-indivisible for every prime p. Now we remark that K(K1/∞) is not algebraically
closed (since it is AVKF). Therefore, we conclude that K(K1/∞) is TKND by Proposition 3.3.

Proof of Theorem 1.3. First we consider the case (c). It suffices to show the assertion in the case
where K = k(µpnp | p ∈ Primes) for some number field k, and in this case the result follows
immediately by applying Corollary 3.16 with K0 = k ⊂ K1 = K (note that (ii) in the corollary
follows from the result of Ribet [KL]).

We can reduce a proof of the case (b) to the case (a) since any group of order < 60 is solvable.
Thus it suffices to show the theorem in the case (a). We fix a positive integer d and a number
field k. Let K be the composite field of all solvable extensions of degree ≤ d over k. The goal is to
show that K(K1/∞) is TKND-AVKF. Put d′ := d!. We denote by K ′ the composite of all finite
extension fields k′ over k with the following properties:

(i) [k′ : k] ≤ d′, and

(ii) For some m ≥ 0, k′/k admits a finite subextensions k = k′0 ⊂ k′1 ⊂ · · · ⊂ k′m = k′ such that
each k′i/k

′
i−1 is abelian. (We say that k′/k is of length ≤ m if k′ satisfies this situation.)

We have K ⊂ K ′ since the degree of the Galois closure of a degree d field extension is at most d′.
Hence, it suffices to show that K ′(K ′1/∞) is TKND-AVKF. Replacing k by a finite extension, we
may assume that k contains all d′!-th roots of unity. We denote by K ′

i the composite of all finite
extension fields k′ over k such that both [k′ : k] ≤ d′ and k′ is of length ≤ i. By definition, we
have the following field extensions;

k = K ′
0 ⊂ K ′

1 ⊂ K ′
2 ⊂ · · · ⊂ K ′

d′ = K ′.

By a similar manner as Example 3.4, we see that the absolute ramification index of any finite place
of K ′ is finite. The field (K ′

0)
cyc = kcyc is AVKF by the theorem of Ribet [KL]. Furthermore, it

follows from Kummer theory that K ′
i ⊂ K ′

i−1(K
′
i−1

1/∞) for each i (here we note that k contains

all d′!-th roots of unity). Therefore, we conclude that K ′(K ′1/∞) is TKND-AVKF by Corollary
3.16.

Let vp be the p-adic valuation normalized by vp(p) = 1.

Corollary 3.18. Let K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂
⋃∞

n=1Kn = K be field extensions in Q. Assume
that the following conditions hold:

(i) K0 is a number field and Ki/Ki−1 is an abelian extension with finite exponent for each i.

(ii) For any prime p, the extension Ki/Ki−1 is prime-to-p for any i large enough.

Then, K(K1/∞) is TKND-AVKF.

Remark 3.19. We cannot remove the assumption (ii) from the statement of Corollary 3.18. Let
E be an elliptic curve defined over a number field k such that Endk(E) ⊗Z Q is a CM field and
denote by Ki = k(E[pi]) the extension field of k obtained by adjoining all torsion points of E killed
by pi. One sees that the assumption (i) is satisfied for {Ki}i but (ii) is not satisfied. The field
K :=

⋃
iKi is TKND (by Proposition 3.3 and the fact that kcyc (⊂ K) is stably p-×µ-indivisible

for any prime p) but is not AVKF.
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Proof of Corollary 3.18. In this proof, we set µn := µn(Q) for any integer n > 0 to simplify
notation. By assumptions, there exists a family {ci}i≥1 of non-negative integers ci such that
Gal(Ki/Ki−1) is of exponent ci for each i and, for any prime p, p does not divide ci for any i
large enough. For the proof, we may assume that each Ki is a Galois extension of K0. (Indeed,

if we denote by K̃i/K0 the Galois closure of Ki/K0, then K̃i is the composite of all σ(Ki) for

all σ ∈ GK0 and thus we have injections Gal(K̃i/K̃i−1) ↪→
∏

σ∈GK0
Gal(σ(Ki)K̃i−1/K̃i−1) ↪→∏

σ∈GK0
Gal(σ(Ki)/σ(Ki−1)), which implies the fact that K̃i/K̃i−1 is an abelian extension with

exponent ci for each i.) In particular, K is a Galois extension of K0.

STEP 1. We show that χp(GK) is open in Z×
p for any prime p. Assume that χp(GK) is not

open. Set p′ := p or p′ := 4 if p 6= 2 or p = 2, respectively. Replacing Ki(µp′) with Ki, we may
furthermore assume that K0 contains µp′ . Since K contains µp′ , the field K contains all p-power
roots of unity. Take an integer n large enough such that

vp([K0(µpn) : K0]) >

∞∑
j=1

vp(cj). (3.1)

(Note that the right hand side of (3.1) is finite by the assumption (ii).) Since K0 contains µp′ , the
Galois group Gal(K0(µpn)/K0) is cyclic of p-power order; we put [K0(µpn) : K0] = pm. We also
take an integer i large enough such that Ki contains µpn . Take an element σ ∈ Gal(K/K0) such
that its restriction σ̄ to K0(µpn) generates Gal(K0(µpn)/K0). By the assumption (i), we find that
σc1c2···ci fixes Ki and thus σ̄c1c2···ci is trivial. Since the order of σ̄ is pm, we see that pm divides
c1c2 · · · ci but this contradicts (3.1).

STEP 2. We show that Ki(K
1/∞
i ) is AVKF for any i ≥ 1 (thus Kcyc

i is also AVKF). Put

c = c1c2 · · · ci and K̂j = Kj(µc) for 1 ≤ j ≤ i. The field extensions K̂0 ⊂ K̂1 ⊂ K̂2 ⊂ · · · ⊂ K̂i

satisfy the property that K̂j/K̂j−1 is an abelian extension with exponent cj for each j. Since K̂j−1

contains µcj , it follows from Kummer theory that K̂j ⊂ K̂j−1(K̂
1/cj
j−1 ) for each j. Furthermore,

χp(GK̂i
) is open in Z×

p by STEP 1 and K̂cyc
0 is AVKF by the theorem of Ribet [KL]. Hence we

obtain that K̂i(K̂
1/∞
i ) is AVKF by Corollary 3.16. This in particular implies that Ki(K

1/∞
i ) is

also AVKF as desired.

STEP 3. We show that K(K1/∞) is AVKF. It suffices to show that Kcyc is AVKF by STEP
1 and Proposition 3.15 (2). Here we recall that K is now a Galois extension of K0. Hence Kcyc

is a Galois extension of an AVKF field K0. By Remark 3.12 (2) and Corollary 3.14, it is enough
to prove that A(Kcyc)[p∞] is finite for any abelian variety A over Kcyc and any prime p. Now
we assume that A(Kcyc)[p∞] is infinite for some prime p. Then the GKcyc -fixed part V GKcyc of
the rational p-adic Tate module V := (lim←−n

A[pn]) ⊗Zp
Qp is not zero. Let g be the dimension

of A and choose a finite subextension K ′
0 of Kcyc/K0 such that A is defined over K ′

0. Then the
Qp-dimension of V GKcyc is at most 2g and the Galois group Gal(Kcyc/K ′

0) acts continuously on
V GKcyc . By continuity of a Galois action, there exists a Zp-lattice L in V GKcyc which is stable under
the Gal(Kcyc/K ′

0)-action. The Gal(Kcyc/K ′
0)-action on L is given by a continuous homomorphism

ρ : Gal(Kcyc/K ′
0) → GLZp

(L) ' GLt(Zp) for some t ≤ 2g. Take an integer i large enough such
thatKi contains K

′
0, and that Gal(Kcyc/Kcyc

i ) is pro-prime to the order of GLt(Z/p′Z) and p (such
i exists by the assumption (ii)). Then the restriction to Gal(Kcyc/Kcyc

i ) of the composite of ρ and
the projection GLt(Zp)→ GLt(Z/p′Z) has trivial image. Thus ρ restricted to Gal(Kcyc/Kcyc

i ) has
values in the kernel of the projection GLt(Zp)→ GLt(Z/p′Z). Since this kernel is pro-p, we obtain
the fact that ρ restricted to Gal(Kcyc/Kcyc

i ) must be trivial. This implies that V GKcyc = V
GK

cyc
i .

Thus V
GK

cyc
i is not zero by the assumption that A(Kcyc)[p∞] is infinite but this contradicts the

fact proved in STEP 2 that Kcyc
i is AVKF.

STEP 4. We end the proof by proving that K(K1/∞) is TKND. Similar to the proof of
Corollary 3.16 (2), we follow Tsujimura’s results [Tsu1]. By STEP 1, we know that K is stably
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µp∞ -finite. Furthermore, since K is a Galois extension of K0 and K0 is stably p-×µ-indivisible, it
follows from Lemma D (v) of [Tsu1] that K is stably p-×µ-indivisible. By Lemma D (iv) of loc.
cit. (or Example 3.4), we find that Kcyc is also stably p-×µ-indivisible. On the other hand, we
know that K(K1/∞) is not algebraically closed since it is AVKF. By Proposition 3.3, we conclude
that K(K1/∞) is TKND.

Example 3.20. Let k be a number field and {cp}p∈Primes a family of non-negative integers cp. Let
K be the composite of all finite abelian extensions k′ of k with the property that vp([k

′ : k]) ≤ cp
for any prime p. Then K(K1/∞) is TKND-AVKF.

This can be checked as follows: Let pi be the i-th prime, that is, p1 = 2 < p2 = 3 < p3 = 5 < · · · .
Consider the field extensions K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂

⋃∞
n=1Kn = K∞ defined inductively so that

K0 = k and Ki is the composite of all abelian extensions over Ki−1 of degree dividing p
cpi
i .

Corollary 3.18 asserts that K∞(K
1/∞
∞ ) is TKND-AVKF. Since K is a subfield of K∞, the result

follows.

We end this paper with an AV-tor-finite analogue of Proposition 3.15.

Proposition 3.21. Let K be a field of characteristic 0 such that both χp(GK) is open in Z×
p for

every prime p and, for some integer µ > 0, χ̄p(GK) ⊃ (F×
p )

µ for all but finitely many primes p. Let

L be a Galois extension of K with L ⊃ µ∞(K). Let {∆p}p∈Primes be a family of finitely generated
subgroups ∆p of K×. We set

M := L(∆1/p∞

p | p ∈ Primes).

If L is AV-tor-finite, then any subfield of M is also AV-tor-finite.

Proof. Let A be an abelian variety over M . It follows from Proposition 3.15 that A(M)[`∞]
is finite for every prime `. (Note that AV-tor-finite fields are `∞-AV-tor-finite for every prime
`.) Thus it suffices to show that A(M)[`] = 0 for all but finitely many primes `. Take any
finite extension K1 of K contained in M so that A is defined over K1. We set L1 := LK1 and
M1 := L1M = L1(∆

1/p∞

p | p ∈ Primes). We see that χp(GK1) is open in Z×
p and L1 is AV-tor-

finite. Furthermore, putting d = [K1 : K], it follows that χ̄p(GK1
) ⊃ (F×

p )
dµ for all but finitely

many primes p. (In fact, we have χ̄p(GK)d ⊂ χ̄p(GK1) since the index of χ̄p(GK)/χ̄p(GK1) is
[K(µp) ∩K1 : K] which is a divisor of d.) On the other hand, putting g = dimA, we know that
Wℓ := A[`] is a 2g-dimensional Fℓ-representation of GK1

. Applying Proposition 2.7, we find that

W
GM1

ℓ = 0, equivalently A(M1)[`] = 0, for all but finitely many primes `. Since M is a subfield of
M1, we finish a proof.
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