
7 直積測度
7.1 直積可測空間

• f が閉長方形K = [a, b]×[c, d]で連続な関数であるとき，[a, b]×[c, d]上の Riemann
積分における２重積分と累次積分の関係：

∫∫

K

f(x, y)dxdu =

∫ b

a

{∫ d

c

f(x, y)dy

}
dx =

∫ d

c

{∫ b

a

f(x, y)dx

}
dy

が成り立つ． R2 の長方形上の 2重積分は長方形の「面積」を baseに定義されて
いるものである．一方，累次積分は 1変数関数の積分を繰り返しているに過ぎず，
両者は全く異なるものといってよい．Lebesgue積分においてこのような関係を与
える定理が Fubiniの定理である．

• まず次の定義をしよう．

• (X,FX), (Y,FY ) を可測空間とする．このとき直積集合 X × Y を baseとする可
測空間を構成したい．Z = X × Y とおく．

• C ⊂ X × Y は C = A×B (A ∈ FX , B ∈ FY ) と表されるとき可測長方形という
ことにする．X × Y の可測長方形全体を I と表すことにする．このとき I を含
む最小の σ -加法族 σ[I] を FZ とおくとき，(Z,FZ) を (X,FX) と (Y,FY ) の直
積可測空間という．FZ を FX ×FY と書く．なお FX ×FY は FX と FY の単な
る直積ではないことに注意する（定義をもう一度確認せよ）．

• 2つの測度空間 (X,F , µX), (Y,FY , µY ) が与えられたとき，直積可測空間 (X ×
Y,FX×FY )にどのような測度を定義したらよいかが問題である．その準備を行う．

7.2 単調族
定義（単調族）! "
空でない集合 X の部分集合からなるある集合 T が

(i) E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ En+1 ⊂ · · · , En ∈ T ⇒
∞⋃

n=1

En ∈ T

(ii) E1 ⊃ E2 ⊃ · · · ⊃ En ⊃ En+1 ⊂ · · · , En ∈ T ⇒
∞⋂

n=1

En ∈ T

を満たすとき T は単調族であるという．さらに A ⊂ 2X を含む最小の単調族を
M[A] と表す．# $
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定理 7.1（単調族定理）! "
空でない集合 X の部分集合からなる A が有限加法族であるならば σ[A] = M[A]
が成り立つ．# $
証明 σ[A]は単調族の性質を満たすのでM[A] ⊂ σ[A]は明らかである．σ[A] ⊂ M[A]
を示す．そのためにはM[A] が A を含む σ-加法族であることを示せばよい．

• まずM[A] が σ-加法族の定義を満たすことを示そう．X ∈ A ⊂ M[A] は明らか
である．

• 次に A ∈ M[A] ならば Ac ∈ M[A] を示す．T1 = {A ∈ M[A] : Ac ∈ M[A]}(⊂
M[A]) とおく．A は有限加法族であるから明らかに A ⊂ T1 である．したがっ
て T1 が単調族であることを示せば M[A] の最小性により M[A] ⊂ T1 つまり
M[A] = T1 が成り立つ

• 実際 A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ An+1 ⊂ · · · , An ∈ T1 とする．M[A] は単調族であ
るから

∞⋃
n=1

An ∈ M[A] である．次に

( ∞⋃

n=1

An

)c

=
∞⋂

n=1

Ac
n

である．さらに Ac
1 ⊃ Ac

2 ⊃ · · · ⊃ Ac
n ⊃ Ac

n+1 ⊃ · · · であり，T1 の定義より
Ac

n ∈ M[A] である．再びM[A] は単調族であるから
∞⋂
n=1

Ac
n ∈ M[A] である．し

たがって
∞⋃
n=1

An ∈ M[A] ∈ T1が示された．また，A1 ⊃ A2 ⊃ · · ·An ⊃ An+1 ⊃ · · · ,

An ∈ T1 としても同様である．

• 次に A1, A2, · · · , An, · · · を An ∈ M[A] ならば
∞⋃
n=1

An ∈ M[A] を示す．

• Bl =
l⋃

n=1
An とおくと B1 ⊂ B2 ⊂ · · · ⊂ Bl ⊂ Bl+1 ⊂ · · · が成り立つ．このとき

∞⋃

l=1

Bl =
∞⋃

n=1

An

である（各自確認せよ）．したがって，各 l に対して Bl ∈ M[A] であることを示
せば，M[A] は単調族であるから

∞⋃

l=1

Bl =
∞⋃

n=1

An ∈ M[A]

が得られる．
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• 各 Bl が Bl ∈ M[A] を満たすことを示すためには

A,B ∈ M[A] ⇒ A ∪B ∈ M[A]

を示せば十分である．そのために A ∈ A を任意に固定して T2 = {B ∈ M[A] :
A ∪ B ∈ M[A]} とおく．A は有限加法族であるから A ⊂ T2 は明らかである．
T2 が単調族であることが示されれば T2 = M[A] が得られる．これより A ∈ A,
B ∈ M[A] ならば A ∪ B ∈ M[A] が得られる．

• 次に A ∈ M[A] を任意に固定して T3 = {B ∈ M[A] : A ∪ B ∈ M[A]} とおく．
先に示したことから A ⊂ T3 が成り立つ．したがって T3 が単調族であることが
示されれば T3 = M[A] が得られる．これより A ∈ M[A], B ∈ M[A] ならば
A ∪ B ∈ M[A] が得られる．!

問 7.1 T2, T3 が単調族であることを証明せよ．

• (X,FX), (Y,FY ) を可測空間とする．このとき X ×Y の有限個の可測長方形の共
通部分のない和集合であらわされる集合を直積可測空間 (X × Y,FX × FY ) の基
本集合とよぶことにし，基本集合全体を K で表そう．

命題 7.2! "
K は有限加法族である．# $
証明
(1) X ∈ FX , Y ∈ FY より X × Y ∈ K である．

(2) A× B, C ×D (A, D ∈ FX , B, D ∈ FY ) とすると

(A× B) ∩ (C ×D) = (A ∩ C)× (B ∩D) ∈ K

である．次に U =
n⋃

i=1
(Ai×Bi), V =

k⋃
j=1

(Cj×Dj) (それぞれ共通部分なし Ai, Ci ∈

FX , Bi, Di ∈ FY ) とする．このとき (2)より

U ∩ V =
n⋃

i=1

k⋃

j=1

{(Ai × Bi) ∩ (Cj ×Dj)} ∈ K（共通部分なし）

である．

(3) A ∈ FX , B ∈ FY に対して (A× B)c = (Ac × B) ∪ (A× Bc) ∪ (Ac × Bc) （共通
部分なし）であるので (A× B)c ∈ K である．

(4) C ∈ K を C =
n⋃

i=1
(Ai ×Bi) (共通部分なし，Ai ∈ FX , Bi ∈ FY (i = 1, . . . , n)) と

する．このとき Cc =
n⋂

i=1
(Ai × Bi)c である．(2), (3) より Cc ∈ K が成り立つ．
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(5) C, D ∈ K とする．このとき C ∪D = (C ∩Dc)∪D（共通部分のない和集合）で
ある．(2), (3)より C ∩Dc ∈ K である．したがって C ∪D ∈ K である．

• 定理 7.1，命題 7.2より次を得る：

命題 7.3! "
M[K] = σ[K] = FX × FY が成り立つ．# $

7.3 直積測度
• 直積可測空間に測度を定義するために，次の手順を踏む．

(1) 可測長方形 A× B に測度を定義する．
(2) X × Y において共通部分のない可測長方形の和集合（区間塊などとよばれ
る）で表される集合全体が有限加法族となることを示す．

(3) 上で定義した有限加法族上で (1)から有限加法的測度 λ を定義する．
(4) λ を (2)の有限加法族を含む最小の σ 加法族 FX × FY へ拡張する．

その中で (4)に必要なHopfの拡張定理を思い出そう．

（Hopfの拡張定理）! "
X を空でない集合，A ⊂ 2X を有限加法族，µ0 を A 上の有限加法的な集合関数と
する．このとき µ0 が σ[A] 上の測度に拡張されるための必要十分条件は µ0 が A
上で完全加法的であることである．さらに X が σ-有限であるならば拡張は一意で
ある．# $

7.3.1 可測集合の切り口
• E ⊂ X × Y に対して M の x における切り口を

Mx = {y ∈ Y : (x, y) ∈ M}

M の y における切り口を
My = {x ∈ X : (x, y) ∈ M}

で定義する．

• A × B に対して x ∈ A ならば (A × B)x = B, x /∈ A ならば (A × B)x = ∅ であ
る．同じく y ∈ B ならば (A× B)y = A, y /∈ B ならば (A× B)y = ∅ である．

問 7.2 M,Mn ⊂ X × Y (n = 1, 2, · · · )に対して次を示せ．
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(1) (M c)x = (Mx)c

(2)

( ∞⋃

n=1

Mn

)

x

=
∞⋃

n=1

(Mn)x

(3)

( ∞⋂

n=1

Mn

)

x

=
∞⋂

n=1

(Mn)x

命題 7.4! "
(X,FX), (Y,FY ) を可測空間，(X ×Y,FX ×FY ) をその直積可測空間とする．M ∈
FX × FY ならば Mx ∈ FY (∀x ∈ X), My ∈ FX (∀y ∈ Y )である．# $
証明 Mx についてのみ示せば十分である．

• N = {M ⊂ X × Y : Mx ∈ FY (∀x ∈ X)} とおき N が X × Y の可測長方形を全
て含む σ-加法族であることを示す．

• M = A× B (A ∈ FX , B ∈ FY ) とする．このとき Mx = B あるいは Mx = ∅ で
あるから x の如何にかかわらず Mx ∈ FY である．したがって N は X × Y の可
測長方形を全て含む．

• N は σ-加法族であることを示そう．まず X × Y ∈ N は明らかである．

• 次に M ∈ N ならば Mx ∈ FY である．FY は σ-加法族であるから (Mx)c ∈ FY

である．ところが上の問題より (M c)x = (Mx)c であるから (M c)x = (Mx)c ∈ FY

である．したがって M c ∈ N である．

• Mn ∈ N (n = 1, 2, · · · ) とすると
∞⋃
n=1

Mn ∈ N も上と同様に示せる．!

• 以上より N は X × Y の可測長方形を含む σ-加法族であることがわかったので
FX × FY の最小性からFX × FY ⊂ N を得る．つまり任意の M ∈ FX × FY に
対して M ∈ N つまり Mx ∈ N (∀x ∈ X) が成り立つ．

問 7.3 Mn ∈ N (n = 1, 2, · · · ) ならば
∞⋃
n=1

Mn ∈ N であることを示せ．
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7.3.2 直積測度の構成
命題 7.5! "
(X,FX , µX), (Y,FY , µY ) をそれぞれ測度空間とする．K を (X × Y,FX × FY ) の
基本集合全体とする．このとき M ∈ K に対して

(1) µY (Mx) は x の関数として FX-可測，µX(My) は y の関数として FY -可測で
あり

∫

X

µY (Mx)dµX =

∫

Y

µX(M
y)dµY

が成り立つ．

(2) λ(M) =

∫

X

µY (Mx)dµX =

∫

Y

µX(M
y)dµY とすると λ は K 上の有限加法的測

度である．# $
証明

(1) M =
n⋃

i=1
(Ai × Bi) （共通部分なし，Ai ∈ FX , Bi ∈ FY , i = 1, · · · , n）とする．こ

のとき

Mx =
n⋃

i=1

(Ai × Bi)x =
⋃

i:x∈Ai

Bi

である．この和集合は共通部分のない和集合である．実際 x ∈ Aiかつ x ∈ Aj (i )= j)
とすると Bi∩Bj )= ∅とし y ∈ (Bi∩Bj)とすると (x, y) ∈ (Ai×Bi)∩ (Aj×Bj) )= ∅
となり矛盾．同様にして My =

⋃
j:y∈Bj

Aj である．これより

µY (Mx) =
∑

i:x∈Ai

µY (Bi) =
n∑

i=1

µY (Bi)χAi(x),

µX(M
y) =

∑

j:y∈Bj

µX(Aj) =
n∑

j=1

µX(Aj)χBj(y)

これはそれぞれ (X,FX), (Y,FY ) における単関数であるので
∫

X

µY (Mx)dµX =
n∑

i=1

µY (Bi)µX(Ai),

∫

Y

µX(M
y)dµY =

n∑

j=1

µX(Aj)µY (Bj)

を得る．したがって求める等式を得る．
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(2) M ∩N = ∅ ならば Mx ∩Nx = (M ∩N)x = ∅ であるので

λ(M ∪N) =

∫

X

µY ((M ∪N)x)dµX

=

∫

X

µY (Mx ∪Nx)dµX =

∫

X

{µY (Mx) + µY (Nx)}dµX

=

∫

X

µY (Mx)dµX +

∫

X

µY (Nx)dµX = λ(M) + λ(N)

よって示された．!
命題 7.6! "
上で定義した λ は K の上で完全加法的である，つまり M =

∞⋃
n=1

Mn （共通部分な
し，Mn ∈ K）が M ∈ K ならば

λ(M) =
∞∑

n=1

λ(Mn)

が成り立つ．# $
証明

• Mx =
∞⋃

n=1

(Mn)x （共通部分なし）であるので測度の完全加法性から

µY (Mx) =
∞∑

n=1

µY ((Mn)x)

である．

• 問 4.3より

λ(M) =

∫

X

µY (Mx)dµX =
∞∑

n=1

∫

X

µY ((Mn)x)dµX =
∞∑

n=1

λ(Mn)

以上で示された．!
• 以上で λ はHopfの拡張定理の条件を全て満たすことがわかった．したがって λ
は σ[K] = FX × FY 上に拡張される．さらに (X,FX , µX), (Y,FY , µY ) がそれぞ
れ σ-有限であれば X × Y は上の λ について σ- 有限である．実際，

X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ Xn+1 ⊂ · · · , Xn ∈ FX , µX(Xn) < ∞, X =
∞⋃

n=1

Xn,

Y1 ⊂ Y2 ⊂ · · · ⊂ Yn ⊂ Yn+1 ⊂ · · · , Yn ∈ FY , µY (Yn) < ∞, Y =
∞⋃

n=1

Yn
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とすると

X1 × Y1 ⊂ X2 × Y2 ⊂ · · · ⊂ Xn × Yn ⊂ Xn+1 × Yn+1 ⊂ · · · ,

X × Y =
∞⋃

n=1

(Xn × Yn)

である．また，λ(Xn × Yn) = µX(Xn)µY (Yn) < ∞ である．したがってこの場合
は拡張は一意的である．このように拡張された測度を直積測度といい µX ×µY と
書くことにする（µX ⊗ µY と書かれる場合もある）．

• まとめておこう．

定理 7.7! "
(X,FX , µX), (Y,FY , µY ) をそれぞれ σ-有限な測度空間とする．可測空間 (X ×
Y,FX × FY ) において次を満たす測度 µX × µY が一意的に定まる

(µX × µY )(M) =

∫

X

µY (Mx)dµX =

∫

Y

µX(M
y)dµY (M ∈ K)

# $
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8 Fubiniの定理2：定理と証明
• まず集合についての Fubiniの定理を述べる．

命題 8.1! "
(X,FX , µX), (Y,FY , µY ) をそれぞれ σ-有限な測度空間とする．(X × Y,FX ×FY )
をその直積可測空間，µX × µY を µX と µY の直積測度とする．このとき次が成り
立つ：

(1) M ∈ FX × FY ならば µY (Mx) は FX-可測関数，µX(My) は FY -可測関数で
ある．

(2) M ∈ FX × FY ならば (µX × µY )(M) =

∫

X

µY (Mx)dµX =

∫

Y

µX(M
y)dµY が

成り立つ．# $
証明

• (1), (2)を満たす集合M ∈ FX ×FY 全体 T が K を含む単調族であることを示す．

• K ⊂ T であることは命題 7.5で証明されている．

• Mn ∈ T が M1 ⊂ M2 ⊂ · · · ⊂ Mn ⊂ Mn+1 ⊂ とし，M =
∞⋃
n=1

Mn とする．M ∈ T

を示す．

• (M1)x ⊂ (M2)x ⊂ · · · ⊂ (Mn)x ⊂ (Mn+1)x ⊂ (x ∈ X) であり Mx =
∞⋃
n=1

(Mn)x で
ある．このとき各 n に対して µY ((Mn)x) は FX-可測，µX((Mn)y) は FY -可測で
あり

µX × µY (Mn) =

∫

X

µY ((Mn)x)dµX =

∫

Y

µX((Mn)y)dµY (8.1)

が成り立つ．

• 測度の性質から µY ((Mn)x)は nについて単調増加であり，測度の性質（命題 1.4）
より lim

n→∞
µY ((Mn)x) = µY

( ∞⋃
n=1

(Mn)x

)
= µY (Mx) である．

• µY ((Mn)x) は FX-可測であるので単調収束定理から
∫

X

µY (Mx)dµX = lim
n→∞

∫

X

µY ((Mn)x)dµX = lim
n→∞

(µX × µY )(Mn) (8.2)

同様にして
∫

Y

µX(My)dµY = lim
n→∞

∫

Y

µX((Mn)x)dµY = lim
n→∞

(µX × µY )(Mn) (8.3)
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以上 (8.1), (8.2), (8.3)と測度の性質（命題 4.2）より

(µX × µY )(M) = lim
n→∞

(µX × µY )(Mn) =

∫

X

µY (Mx)dµX =

∫

Y

µX(My)dµY

が成り立つ．

• Mn ∈ T を M1 ⊃ M2 ⊃ · · ·Mn ⊃ Mn+1 ⊃, M =
∞⋂
n=1

Mn とする．この場合も同様

であるが，単調収束定理を用いる際，単調減少な列に対しては
∫

Y

µX((M1)y)dµY <

∞,

∫

X

µY ((M1)x)dµX < ∞ が必要である．そこで X × Y が µX × µY について
σ-有限であることを用いる，つまり

X1 × Y1 ⊂ X2 × Y2 ⊂ · · · ⊂ Xm × Ym ⊂ Xm+1 × Ym+1 ⊂ · · · ,

X × Y =
∞⋃

m=1

(Xm × Ym), Xm ∈ FX , Ym ∈ FY , µX(Xm)µY (Ym) < ∞

となる Xm, Ym がとれる．
• このとき (µX × µY )(M1 ∩Xm × Ym) < ∞ (m = 1, 2, · · · ) であるので，単調増加
の場合の証明を修正することにより M ∩ Xm × Y ∈ T (m = 1, 2, · · · ) が成り立
つ．このとき M ∩Xm × Ym は m について単調増加であるから単調族の定義よ
り M =

∞⋃
m=1

(M ∩Xm × Ym) ∈ T が得られる．!

定理 8.2(Fubiniの定理 (1)（非負可測関数の場合）! "
(X,FX , µX), (Y,FY , µY ) をそれぞれ σ-有限な測度空間とする．(X × Y,FX ×FY )
をその直積可測空間，µX × µY を µX と µY の直積測度とする．f(x, y) ≥ 0 が
X × Y 上の FX × FY 可測関数ならば

(1) 各 x ∈ X に対して f(x, ·) は FY -可測関数，y ∈ Y に対して f(·, y) は FX-可
測関数である．

(2) x -→
∫

Y

f(x, y)dµY は FX-可測関数，y -→
∫

X

f(x, y)dµX は FY -可測関数で
ある．

(3) 次の等式が成り立つ
∫

X×Y

f(x, y)d(µX × µY )

=

∫

X

{∫

Y

f(x, y)dµY

}
dµX =

∫

Y

{∫

X

f(x, y)dµX

}
dµY

(8.4)

が成り立つ．# $
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証明
• まず f(x, y) ≥ 0 が特性関数 χM(x, y) (M ∈ FX × FY ) の場合を考える．

(1) (x, y) ∈ M ⇔ y ∈ Mx であるから χM(x, y) = χMx(y) である．したがって命題
8.1(2)より χM(x, ·) は FY -可測である．一方 χM(·, y) についても同様である．

(2) (1)で述べたことより
∫

Y

χM(x, y)dµY =

∫

Y

χMxµY = µY (Mx) である．したがって

命題 8.1(2)より x -→
∫

Y

χM(x, ·)dµY は FX-可測関数である．y -→
∫

X

χM(·, y)dµX

についても同様である．

(3)

∫

X×Y

χM(x, y)d(µX × µY ) = (µX × µY )(M) である．また，命題 8.1(3)より

(µX × µY )(M) =

∫

X

µY (Mx)dµX

=

∫

X

{∫

Y

χM(x, y)dµY

}
dµX =

∫

Y

{∫

X

χM(x, y)dµX

}
dµY

• 次に f(x, y) ≥ 0 が単関数の場合は特性関数の場合の結果と命題 4.10より成り
立つ．

• 最後に f(x, y) ≥ 0 が FX × FY -可測関数とする．このとき，命題 4.9より

0 ≤ ϕ1(x, y) ≤ ϕ2(x, y) ≤ · · ·ϕn(x, y) ≤ ϕn+1(x, y) ≤ · · ·
lim
n→∞

ϕn(x, y) = f(x, y)
∫

X×Y

ϕn(x, y)d(µX × µY ) →
∫

X×Y

f(x, y)d(µX × µY ) (n → ∞)

なる FX × FY -可測な単関数の列 {ϕn(x, y)} が存在する．

(1) 先に示したことより ϕn(x, ·)は FY -可測関数である．したがって命題 3.7より f(x, ·)
も FY -可測関数である．f(·, y) についても同様である．

(2) 単調収束定理から x の関数として
∫

Y

ϕn(x, y)dµY →
∫

Y

f(x, y)dµY (n → ∞) (8.5)

である．したがって命題 3.7より x -→
∫

Y

f(x, y)dµY も FX-可測関数である．y -→
∫

X

f(x, y)dµX についても同様である．
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(3) (8.5)，単調収束定理から
∫

X

{∫

Y

ϕn(x, y)dµY

}
dµX →

∫

X

{∫

Y

f(x, y)dµY

}
dµX (n → ∞)

同様に
∫

Y

{∫

X

ϕn(x, y)dµX

}
dµY →

∫

Y

{∫

X

f(x, y)dµX

}
dµY (n → ∞)

が成り立つ．またすでに単関数 ϕn(x, y) は (8.4)を満たすことを示してある．以上
より f(x, y) に対しても (8.4)が成り立つ．

定理 8.3(Fubiniの定理 (2)（積分可能関数の場合）)! "
(X,FX , µX), (Y,FY , µY ) をそれぞれ σ-有限な測度空間とする．(X × Y,FX ×FY )
をその直積可測空間，µX × µY を µX と µY の直積測度とする．f(x, y) が X × Y
上の FX × FY 可測関数で X × Y で積分可能ならば

(1) 各 x ∈ X に対して f(x, ·) は FY -可測関数，y ∈ Y に対して f(·, y) は FX-可
測関数である．

(2) x -→
∫

Y

f(x, y)dµY は FX-可測で X 上積分可能，y -→
∫

X

f(x, y)dµX は FY -可
測関数で Y 上で積分可能である．

(3) 等式 (8.4)が成り立つ．# $
証明 f = f+ − f− として f+ と f− のそれぞれに対して定理を適用すればよい．例
えば

(2) x -→
∫

Y

f+(x, y)dµY , x -→
∫

Y

f−(x, y)dµY が FX-可測関数であることは命題
8.2(2)から従う．これらが X 上で積分可能であることは |f |(≥ 0) に命題 8.2(3)
を使うことにより
∫

X×Y

|f |d(µX × µY ) =

∫

X

{∫

Y

|f(x, y)|dµY

}
dµX =

∫

Y

{∫

X

|f(x, y)|dµX

}
dµY

であることに注意すると x -→
∫

Y

|f(x, y)|dµY が X 上で積分可能である．これと

0 ≤
∫

Y

f+(x, y)dµY ,

∫

Y

f−(x, y)dµY ≤
∫

Y

|f(x, y)|dµY

を用いると
∫

Y

f+(x, y)dµY ,

∫

Y

f−(x, y)dµY も X 上で積分可能であることがわ
かる．
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(3) f+ と f− について等式が成り立つことからそれらについて差をとる．その際，
∞−∞ が現れないのは f が積分可能であることからである．!

• 実際に運用に便利なのは次のFubini-Tonelliの定理である．

定理 13.4(Fubini-Tonelliの定理)! "
(X,FX , µX), (Y,FY , µY ) をそれぞれ σ-有限な測度空間とする．(X × Y,FX ×FY )
をその直積可測空間，µX×µY を µX と µY の直積測度とする．X×Y 上の FX×FY

可測関数 f に対して
∫

X×Y

|f |d(µX × µY ),

∫

X

{∫

Y

|f(x, y)|dµY

}
dµX ,

∫

Y

{∫

X

|f(x, y)|dµX

}
dµY

のいずれかが有限の値として定まれば残りの 2つも一致し，3つの値は一致する．さ
らに f は X × Y 上で積分可能となり等式 (8.4)が成り立つ．# $
証明 |f | ≥ 0 であるので定理 8.2から前半の主張が成り立ち |f | が X × Y 上で積分可
能，したがって f も X × Y 上で積分可能となる．これより定理 8.3から等式 (8.4)が
成り立つ．!
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