2025 年度 微分方程式 II (担当:松澤 寛) 自己チェックシート No.4

学科 (コース)・プログラム_____ 学籍番号____ 氏名____

- 1. 区間 I で定義された \mathbb{R}^N に値をとる x のベクトル値関数 $\mathbf{u}_1, \dots, \mathbf{u}_m$ が線形独立であること、線形従属であることの定義を述べよ.
- 2. $a_{ij}(x)$ $(i,j=1,\cdots,N)$ を区間 I で定義された有界で連続な関数とし、 $A(x)=(a_{ij}(x))$ とする. 連立線形微分方程式 $\frac{d{\bm y}}{dx}=A(x){\bm y}$ の基本解とは何かを述べよ.
- 3. \mathbb{R}^N に値をとる微分可能なベクトル値関数 $\mathbf{u}_1(x), \dots, \mathbf{u}_N(x)$ のロンスキアンとは何か.
- 4. $\frac{d\mathbf{y}}{dx} = A(x)\mathbf{y}$ の基本行列および解核行列とは何ですか?
- 5. 微分方程式 y'' 2y' + y = 0 について以下の問いに答えよ.
 - (1) e^x , xe^x は線形独立な解であることを確かめよ.
 - (2) $y_1(x) = y(x)$. $y_2(x) = y'(x)$ とおくことにより、上の微分方程式を

$$\frac{d}{dx} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = A(x) \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

の形に直せ.

- (3) (2) で求めた微分方程式の解核行列を求めよ.
- **6**. 微分方程式 $y'' \frac{x}{x-1}y' + \frac{1}{x-1}y = 0$ について以下の問いに答えよ.
 - (1) x, e^x は線形独立な解であることを確かめよ.
 - (2) $y_1(x) = y(x)$. $y_2(x) = y'(x)$ とおくことにより、上の微分方程式を

$$\frac{d}{dx} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = A(x) \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

の形に直せ.

- (3) (2) で求めた微分方程式の解核行列を求めよ.
- 7. 微分方程式 $\frac{d \boldsymbol{y}}{dx} = A(x)\boldsymbol{y} + \boldsymbol{f}(x)$ の初期条件 $\boldsymbol{y}(x_0) = \boldsymbol{y}_0$ の解は $\frac{d \boldsymbol{y}}{dx} = A(x)\boldsymbol{y}$ の解核行列を用いてどのように表せますか?