原 著

PHASEによる二次元 Siのフォノン計算と実験比較

青木 孝^{1,2}

The comparison between PHASE phonon calculation and Measurements of laser Raman peak

Takashi Aoki^{1,2}

¹ Department of Mathematics and Physics, Faculty of Science, Kanagawa University, Hiratsuka City, Kanagawa, 259-1293, Japan

 2 To whom correspondence should be addressed. E-mail: <code>u17aok@kanagawa-u.ac.jp</code>

Abstract : Measurements of laser Raman peak shift in two-dimensional Si layers were simulated by first-principles calculation: PHASE. It was noted that the results of PHASE calculations by phonon model was consistent with measurements of laser Raman peak shift qualitatively.

Keywords:two-dimensional Si PHASE phonon mode Raman spectroscopy peak shift

序論

励起光 325nmの UV レーザー (3.8eV) による、二次 元 Si(2D-Si) のラマン分光実験からは、面方位 (100) も (110) も、Si を薄膜化すると、フォノンの量子 閉じ込め効果により、バルク Si のフォノンモード: 520(/cm) のピーク位置が、膜厚が薄くなるに連れ てダウンシフトし、さらに、ピークの波数分布の幅 も膜厚が薄くなるに連れて、低波長側に大きく広が り、すそ野をひくことが分かっている¹⁾。これらの 量の N_L (膜厚を Si 層の数で換算して表す) 依存性に は、面方位 (100)(110) 依存性がないことも分かって いる。ここで、Si 層の数: N_L は、Si 膜厚を T_{Si} (nm) として、(100)Si では a_0 を 0.543nm、(110)Si では a_0 を 0.543× $\sqrt{2}$ nm として、次式で定義して、 $N_L=4$ は、NL4 等と表記する。

(0.1)
$$N_L = \frac{T_{Si}}{\frac{a_0}{4}} + 1$$

(100)Siの膜厚 $0.5 \text{nm}(N_L = 3.7)$ では、フォノンモードのピークダウンシフトが、20(1/cm)程度、ピークの広がりも 25(1/cm)程度になる。

本報告は、この水野智久研究室(神奈川大学)の実 験結果で与えられる、膜厚、面方位依存性が、第一 原理計算:PHASEの 点フォノン振動解析計算に より再現できるのかどうか調べたものである。

しかし、PHASEにおいて、フォノン振動モードの 解析は、バンド計算よりも、Si 格子モデルのチュー ニングが微妙であることが分かった。まず、格子に ストレスを生じないために、格子定数に対し計算上 のチューニングをする必要がある。さらに、薄膜モ デルの周期スラブモデルにおいて、真空層を作るた めに終端する定番のH原子の振動が、Si格子の振動 に影響しないように最外側 Si 原子に重みを付ける 処方が、必要であることが分かった。この重み付け は、水野智久教授の発案である。それらを施した上 で、実験結果との比較を行った。その結果、薄膜化 により、Si バルクのフォノン3 重縮退モードが解け、 その解けた振動モードのバルクからのスプリット幅 が、実験のラマン分光ピークのダウンシフト量と定 量的に合うことが分かった。薄膜化による、フォノン モードの変化は、各面方位 (100)、(110) の PHASE 点フォノンモード、 モデルにおける、 点から X 点へのフォノンバンド、 点のフォノン振動ベクト ルの解析に基づいて比較検討した。Siバルクの3重 縮退フォノンモードが、薄膜化により解け、3 モー ドにダウンシフトし、その幅と、実験のラマン分光 ピークのダウンシフト量とを関係づけた。

方法

3D-Si バルクのフォノンモード

後に設定する薄膜方向を Z 軸に、Fig.1 の横軸を X 軸、縦軸を Y 軸としたものが、3D バルク (100)Si である。 は、Si 原子配列を示す。Fig.1 において、 3D バルク (110)Si は、後に設定する薄膜方向が Z' 軸 (b 軸):(110)Z'となり、その直交軸が Y'(a 軸): (110)Y'となる。(100)Z 方向は、(110) では X' 軸 (c 軸):(110)X'となる。この b 軸=[X,Y,0]、a 軸=[X,-Y,0]、c 軸=[0,0,Z] は、4 つの Si 原子による、最少 限の (100)Si4 バルクモデルの、基本格子となってい

Table 1 Axes Orientation of (100)(110)Si

model	Х	Y	Z	vol
(100)Si8	Х	Y	$\rm Z(c)$	a^3
(100)Si4	[X,Y,0](b)	[X, -Y, 0](a)	[0,0,Z](c)	$\frac{1}{2}a^{3}$
(110)Si4	X'(c)	Y'(a)	Z'(b)	$\frac{1}{2}a^{3}$

それぞれの基本格子の体積 vol は、Table 1 のよう になる。Si 原子 4 つの (100)Si4 モデルは、(110)Si4 と同じ基本格子を持ち、それぞれ 4 つの Si 原子で構 造を規定する。(100)Si4 は、(100)Si8 と比べ、X 軸方 向に Si 原子の重なりである冗長性がない。(110)Si4 は、(110)X' 軸方向に、冗長性がある。このモデル上 の冗長性は、Si 原子の重なりから起こる折り返しの ための、見かけの無意味なバンドを計算してしまう。 格子定数 a = 10.26a.u. として、 点のフォノン

モードを PHASE で、4 バルクモデル: Si2, (100)Si8,

(100)Si4, (110)Si4で計算すると、Table 2 となる。
どのモデルも、3 重縮退モード T2gR = 511(/cm)
に準じて計算できるが、現実のモード値:520(/cm)
とは、2 %程度違う。このとき、Si2 モデルの計算で
は、Fig.2のように、理論上のフォノンバンド図(横
軸の左端が 点、右端が X 点)と同じになる。

Table 2 Bulk phonon mode for PHASE

mod	(100)Si8	(100)Si4	(110)Si4
LOx	511(T2gR)	510(EgR)	511(B1gR)
ТОу	511(T2gR)	510(EgR)	511(B2gR)
TOz	511(T2gR)	511(B2gR)	511(EgR)

Fig.2 512 - A phonon band

Fig.2 の横軸右端:X 点の波数の大きい方から、 順に、TO(1,2):459(/cm)、LO:407(/cm)、LA: 407(/cm)、TA:140(/cm)のモードとなる。添え字 Oは光学フォノンで、A は音響フォノンであり、ラマ ン分光では、光学フォノン Oを観測する。L は、波 数 k 進行方向に対して水平方向、T は、垂直方向を 示す。 点から X 点に向かう途中までは、TOより、 LOが大きい。横軸左端の 点では、LOx,TOy,TOz は、3 重縮退 (T2gR) している。

(100)Si4 モデルの 点 - X 点フォノンバンド図 Fig.3 には、Z 方向の基本格子原子配列の冗長性に よる折り返しとして、X 点上にあるモード点が、 点上の対称の位置に見かけ上のモード点として現 れる。したがって、 点のフォノンモードには、X 点が 点に折り返った、3 つの、見かけ上のモード 点:457(/cm)(EuIR)、407(B1uNON)、142(EuIR) が、計算される。

(110)Si4 モデルの 点 - X 点フォノンバンド図 Fig.4 は、X 方向の基本格子原子配列の冗長性によ リ、横軸を X/2 で折り返したバンド図となる。後 に述べる薄膜深さ方向 Z'における薄膜と見れば、 NL2 となる。したがって、 点に、X 点のモードが 重なり、重なった 3 つの見かけ上のモード点として、 458(/cm)、407、143(すべて EuIR) が、現れる。 Fig.5 に示す、(110)Si8 には、同様に、Z 方向の冗 長性による折り返しとしての見かけのモードと、さ らにその見かけのモードも加えて、X 点に現れるべ きモードが、横軸 X/2 で折り返されて 点に出る。 X 方向の冗長性による見かけのモードが混在して、

点上に、見かけ上の8モード点が現れる。以上、 バンド図における折り返しの状況が、フォノンバン ド図にも同様に現れる。後に述べる薄膜深さ方向 Z⁷ における膜厚と見れば、NL4となる。

(100)Si4bulk における格子定数の最適化
 PHASEによるフォノンモードの解析には、格子ス
 トレスがないように、計算上の格子定数 a の最適
 化をする必要がある。格子定数 a を、10.26a.u.から、10.35a.u.まで変えて、結晶の全エネルギー:
 etotal(Hartree)と、Z方向の Z回りのストレス:
 Szz(a.u.)を見れば、Table 3となる。

ストレス: Szz の有効数字は、etotal より精度 が悪く、計算上の厳密解を与える Si2 の Szz 値 (=Sxx=Syy): 0.0000516134から見て、1ケタであ る。全エネルギー etotal の最小値は、ストレス Szz の最小値と一致しないが、ストレス 0 を目指すため に、Szz を重視する。この Szz により、格子定数の 最適化を行ない、フォノンモード計算の場合には、

最適格子定数: a = 10.32(= 0.54611nm) とする。この格子定数 a の最適値の傾向は、Si2 で も、(110)Si4でも同じであることは確認済みである。 ストレスの+符号は、引っ張り応力を示す。

	lattice const. :a							
a	etotal	Szz(a.u.)						
10.26	-15.755339	0.0000566014						
10.30	-15.755610	0.0000198467						
10.31	-15.755644	0.0000122855						
10.32*	-15.755662	0.0000032569						
10.33	-15.755669	-0.0000067608						
10.34	-15.755658	-0.0000147475						
10.35	-15.755637	-0.0000236400						

Table 3 (100)Si4bulk etotal, Stress Vector for Si

Table 4 Comparison of a=10.32, 10.26 for (100)Si4

model	pt(eV)	ΤOz	TOy	TOx
10.26	2.5696	511(B2gR)	510(EgR)	510(EgR)
10.32	2.5611	502(B2gR)	502(EgR)	502(EgR)

この格子定数 a の、10.26 と 10.32(a.u.) の違いに よって、バンド計算(点 pt、X 点 Xpt)への影 響は、Table 4 のように小さく、1 %程度の違いであ る。X 点の10.26 は 0.7303(eV)、10.32 は 0.7631(eV) となる。また、 点フォノンモードは、a=10.26 の 511 から、a=10.32 では、502(/cm) へ変わる。実際 の 520(/cm) からは、3 %ずれる。このストレスに よる、格子定数 a の最適化によって、Z 方向に薄膜 化した Si の膜厚 T_{Si} を増やした時に、最外側 Si の、 バルク Si 位置からの変位 が、 = 0 に近づくはず であるという推測が、正しく PHASE で計算できる ようになる。格子定数 a = 10.32a.u.の時に、横軸 を Si 層の数: N_L 、縦軸をバルク位置からの変位量

(nm) として、 N_L の最外側 Si について計算すれ ば、Fig.6 となる。Si 原子のバルクからの変位 は、 Z 方向しかなく、 N_L が増えるにしたがって、 = 0 に近づく。格子定数 a が最適でなく、ストレスが 格子にかかってしまう a = 10.26 では、この変位 は、 N_L が大きくなるにつれ、逆に大きくなってし まう。

Fig.6 Position of Outer 10.32Si(a.u.) for NL

現在の収束判定値は、原子位置の精度に対し、相 対誤差で 0.002 %の精度があり、十分であることを 確認している。この原子位置の計算における、計算 収束判定値と精度については、付録1を参照のこと。

結果と討論

(100)2D-Si 最外側原子の重み付け まず、(100)Si について述べる。第一原理計算におい て、薄膜をモデル化するための周期スラブモデルで は、真空層を作るために導入する終端 H 原子の重さ を、現実の200倍程度にして表面をモデル化する。 しかし、この H 原子の振動が、内側の最外側 Si の 振動に、大きな影響を及ぼすことが分かった。その 結果、薄膜 Si の振動フォノンモードは、バルク Si の振動フォノンモードより大きくなってしまう。こ れを、うまく避けるために、最外側の Si の重さを 1.5倍程度にすると、H 原子の振動の影響を受けず

に、薄膜による Si 振動フォノンモードの変化を評価

Fig.7 Primitive unit of (100)NL4 Slab model

Fig.7 の (100)NL4 の薄膜モデルにおいては、真空 層に面した Si2 が、最外側となり、終端 H が、その Si 原子に 2 個付く。H の振動は、より薄膜の方が Si の振動に大きな影響を与える。バルクに近い、NL12 では、H の振動の影響は小さくなる。また、H の振 動の影響は、(100)Si 配位の方が、(110)Si に比べ、 影響が大きい。検討の結果、NL12 で、H の振動の 影響がなくなる重み:Wを選ぶことにした。(100)Si では、W = 1.5、(110)Si では、W = 1.4 とした。 (100)Si について、この根拠にした、H の影響ので るフォノンモードの W 依存性の結果を、Fig.8(NL4 の場合)、Fig.9(NL12の場合) に示す。

(100)NL4(a = 10.26a.u.) について、横軸に質量 W をとり、バルクの3重縮退モード:T2gRが3分 岐した、フォノンモード:AgR, B2gR, B1gRのW 依存を Fig.8 に見る。

Fig.8 W Dependency of (100)NL4-SiW Model

次に、(100)NL12(a = 10.26a.u.) において、W 依 存を見ると、Fig.9 となる。膜厚の厚い NL12 の方 が、W 依存が小さい。これは、理屈にあう。

厚い薄膜 NL12 では、W が大きくなると、AgR はバルクの 511 に近づく。NL4 も NL12 も 3 モード が分岐を始めるのが W=1.5 のところである。この W=1.5 の数値は、振動原子としての Si の機能も持 たせ、H の振動は、Si の振動モードに影響させない、 ちょうどよい値になっていることが分かる。このた め、振動モードは、薄膜時にバルク Si の振動モード を越えることなく、ダウンシフトになる。

また、Wを大きくすると (W > 10)、最外側 Si を重

くした新しい振動モードが現れる。このとき、B1gR: LOxは、 点の振動モードではあるが、TOz,TOyと は、1段下がった波数 (Fig.8 の (100)NL4) になる。 このような検討の結果、終端のための H 原子の振 動の影響が現れなくなる、重み付け W 値は、(100)Si 薄膜においては、W = 1.5程度であることが分かっ た。膜厚が薄い方が、H 原子を抑える W の効果は大 きくなる。W = 0.0の時、薄膜 Si では、バルクの振 動モード 502(/cm)(a=10.32)より、3モードとも大 きくなってしまう。バンド計算(点、X 点) では、 W = 0.0とW = 1.5で、0.1%程度の差しかない。

ここで、薄膜 Si のフォノンモードを検討するため の準備として、格子定数 a = 10.32a.u.として、多層 (2 層) バルク Si の見かけ上のバンドの折り返し状況 を見ておく。まず、a = 10.32a.u.で、Si4bulkのフォ ノンバンド図 (横軸左 点から右 X 点) は、Fig.10 となり、Fig.3 と同形で、 点の 3 重縮退モードは 502(/cm) となり、Z 方向の折り返しがある。

Fig.10 10.32(100)Si4bulk -X phonon band

さらにバルクの折り返しの出方を見るために、Z 方向(薄膜方向)に、a = 10.32a.u.の2層のスーパー セルを基本格子とする Si4 × 2層バルクでフォノン バンドを計算すると、Z方向(薄膜方向)の折り返し が2重に入り、Fig.11となる。 点の3重縮退モー ドの502(/cm)は変わらない。X 点軸上の見かけの X 点が、2層のために2倍に増える。増えた見かけ の X 点に対応する、 点軸上の対称点は、現れな い。 点軸上に、Z方向の冗長性による、折り返し の見かけの 点は、増える。

Table 5 のように、(100)NL4 Si4bulk、NL4 × 2bulk では、3 重縮退モード 502 であるが、これが 薄膜の、NL4 になると、3 重縮退モードは分岐する。 最外側 Si 原子の重み W=0(通常の Si の質量) では、 Table 5 のように、振動モードがバルク値 502(/cm) を越えてしまうが、重み W=1.5 にすると、H 終端 の H 原子の振動の影響が減り、振動モード 502 が、 492(TOz)、478(TOy+-)、474(LOx-) に分岐するこ とが分かる。したがって、Si 薄膜の PHASE 振動解析 をする工夫として、「ストレスなし格子定数 a=10.32 かつ最外側 Si 重み W=1.5」が必要であることが分 かった。

Fig.11 10.32(100)Si4bulk-2sou -X phonon band

Table 5 pt mode of a=10.32 (100)Si

model	TOz	TOy	LOx
NL4 W= 0	534(AgR)	526(B2gR)	514(B1gR)
NL4 W=1.5	492(AgR)	478(B2gR)	474(B1gR)
NL4 Si4bulk	502(B2gR)	502(EgR)	502(EgR)
NL4 × 2 bulk	502(B2gR)	502(EgR)	502(EgR)

実際に、「ストレスなし格子定数 a=10.32 かつ最 外側 Si 重み W=1.5」として計算した、薄膜 NL4 に おけるフォノンバンド 図は、Fig.12 となる。Fig.12 は、折り返しのある、NL4 Si4bulk の Fig.10 のよ うなバンド 図となっており、見かけのバンドを除け ば、 点でのバルクの 3 重縮退モードは、3 つのモー ド (492(TOz)、478(TOy)、474(LOx)) に分岐した ことが分かる。

さらに、薄膜にした、(100)NL2では、「格子定数 a=10.32かつ最外側Si重みW=1.5」において、3固 有振動モードは、Table 6となる。このとき、フォノ ンバンド図は、Fig.13となる。Siの振動モードに近 いが、格子定数以下の薄膜のため、振動モードは、低 い方に広がる。見かけのバンドを除けば、 点でのバ ルクの3重縮退モードは、3つのモード(461(TOz)、 430(TOy)[X,-Y,0]、446(LOx)[X,Y,0])に分岐する。

model	TOz	ТОу	LOx
NL4 W= 1.5	461(AgR)	430(B2gR)	446(B1gR)

pt mode of a=10.32 (100)Si NL2

Table 6

Fig.1310.32(100)W=1.5 NL2 -X phonon band

Table 7 Phonon Mode(/cm) for (100)10.32Si-W1.5

Mode	NL2	NL4	NL6	NL8	NL12	NL20
TOz	461	492	498	500	498	501
ТОу	430	478	488	491	492	497
LOx	446	474	485	492	492	497
TOz	-40	-9	-3	-1	-3	0
ТОу	-67	-19	-9	-6	-5	0
LOx	-51	-23	-12	-5	-5	0

Fig.14 NL Dependency of 10.32(100)SiW1.5 Model's k Downshift

(100)Si10.32-W=1.5における、 点フォノンモード: TOz(AgR), TOy(B2gR), LOx(B1gR)の膜厚NL依存性の結果は、Table 7となる。膜厚NLが増えれば、膜厚NL20=2.715nmで、バルクの 502(/cm)に近づくことが分かる。この振動モードのNL依存

をグラフにすると、Fig.14 となる。フォノンの量子 的閉じ込め効果による、ラマン分光ピークのダウン シフトの広がりの実験結果(印)と、特に、薄膜方 向 TO_Z(AgR)のモードが定量的にもよく合うこ とが分かる。

(110)2D-Si 最外側原子の重み付け

(100) 薄膜と同様に、(110) についても 点フォノンモード:LOx'(AgR), TOz'(B2gR), TOy'(B1gR)の膜厚 NL 依存を調べた。最外側 Si の重み W を適切に選び、W=1.4 として、PHASE で計算するとTable 8 となる。

Table 8 Phonon Mode(/cm) for 10.32(110)Si-Sw1.4

Mode	NL2	NL4	NL6	NL8	NL12	NL20
LOx'	448	489	496	499	501	502
TOz'	450	486	497	500	502	503
ТОу'	435	487	495	498	501	502
LOx'	-54	-13	-6	-3	-1	0
T Oz'	-53	-17	-6	-3	-1	0
T Oy'	-67	-15	-7	-4	-1	0

膜厚 (110)NL20=3.84nm(= $20\frac{a}{4}\sqrt{2}$) となると、

バルクの 502(/cm) に近づくことが分かる。(100) と (110)の座標軸と振動モードの対応は、Table 9 と なる。

Table 9 Axes Orientation and mode of (100)(110)Si

(100)	Х	Y	Z
Si2	T2gR(LOx)	T2gR(TOy)	T2gR(TOz)
(100)Si4	[X,Y,0](b)	[X,-Y,0](a)	[0,0,Z](c)
(100)Si4	B1gR(LOx)	B2gR(TOy)	AgR(TOz)
(110)	Z'(-b)	Y'(-a)	X'(c)
(110)Si4	[-X,-Y,0](c')	[-X,Y,0](b')	[0,0,Z](a')
(110)Si4	B2gR(TOz')	B1gR(TOy')	AgR(LOx')

また、最外側 Si 原子の重み W の効果を見ると、 Table 10 となる。Table 8 の (110)NL20 が、薄膜 NL4(NL2 × 2) から膜厚が厚くなるにつれ、(110) バルクに近づいていることが分かる。

Table 10 pt mode of a=10.32 (110)Si

model	TOz	TOy	LOx
NL4 W= 0	519(B2gR)	509(B1gR)	522(AgR)
NL4 W=1.4	486(B2gR)	487(B1gR)	489(AgR)
NL2 Si4bulk	502(EgR)	502(B2gR)	502(B1gR)
NL2 × 2 bulk	503(B2gR)	503(B1gR)	502(AgR)

(110) について、Table 8 を、NL20 を基準に、各 モードの波数のダウンシフト量をみると、Fig.15 に なる。青 は、実験値である。Fig.15 によれば、この 実験値は、10.32(110)SiW1.4 の、ほぼ同じ推移をた どる 2 値: B2gR(TOz')、AgR(=LOx')(正しい)の ダウンシフト量と傾向が良く合うことが分かる。

Fig.15 NL Dependency of 10.32(110)SiW1.4 Model's k Downshift

(100)(110) とも、膜厚 Z、Z'方向の TOz、TOz' モードのダウンシフト量の膜厚 NL 依存性が、実験 値と良く合うことが分かった。また、測定実験から の知見である、ラマンダウンシフト量の膜厚 NL 依 存性は、面方位依存がないことが分かっているが、 3 重縮退が解けたモードのダウンシフト量と、量子 閉じ込め効果によるラマンシフトの広がりによるダ ウンシフトとを関連付ければ、PHASE の結果もそ れに近い。PHASE の計算には、量子効果は入って いないが、薄膜による、バルクの 3 重縮退のモード の分岐は、フォノン振動の閉じ込め (薄膜化)によっ て起こり、その変化を計算している。

(100) **点振動ベクトルの解**析(10.32)

まず、10.32(100)Si4bulk について解析する。 (100)Si4bulkの縮退した、直交する B2gR(TOz)、 EgR(TOy)、EgR(LOx)の、Z > =0の内側 Si1、最 外側 Si2の固有ベクトル成分を示すと、Table 11 となる。直交する軸は、TOz,TOy,LOx それぞれ、 [0,0,Z]、[X,-Y,0]、[X,Y,0] である。光学フォノン なので、正負が交互になる。振動方向に垂直に隣 り合う Si 原子、振動に平行に対向する隣り合う Si1,Si2 (Fig.7) は、光学モードを特徴付ける振動方 向が逆のベクトルとなる

Table 11	Eigen	Vector	r Co	mponents	s of	each	Si	for
		10.32(100)Si4bulk				

mode		Si1	$\rm Si2(out)$
B2gR(TOz)[0,0,Z]	502	-1.0	1.0
EgR(TOy)[X,-Y,0]	502	-1.0	1.0
EgR(LOx)[X,Y,0]	502	1.0	-1.0

TOz(B2gR)の振動モードを、ベクトルの大きさ 1.0 として表記すると、Fig.16 のように、すべて のベクトルが同じ大きさになる。FIg.16 は、asms PHASEの出力図を利用した。Si4bulk における、3 重縮退光学モード:B2gR(Si2 では T2gR)の Z 軸方 向に振動した固有ベクトル TOz は、Fig.16 となる。

Fig.16 (100)NL4bulk Γ Phonon Vibration Vector(Z)

次に、10.32(100)NL4 薄膜で最外側原子の重み W = 1.5 について解析する。NL4 薄膜において、 AgR,B2gR,B1gR の固有振動ベクトルの、各成分: Si1(最内側:最外側Siから <u>NL</u> 番目),Si2(最外側)は、 Table 12 となる。

Table 12 Eigen Vector Components of each Si for 10.32(100)NL4-SW1.5

mode		Si1	Si2(out)
AgR(TOz)[0,0,Z]	492	1.0	-0.57
B2gR(TOy)[X,-Y,0]	478	1.0	-0.44
B1gR(LOx)[X,Y,0]	474	1.0	-0.72

この内 AgR(TOz) について、格子上で表示する と、Fig.17となる。膜厚方向 Z に対して、隣り合 う原子の互いに対向する振動ベクトルが、バルクで は大きさが同一であったものが、外側原子のベクト ルの大きさ (-0.57) が、内側 (1.0) に比べ小さくな る。最外側の Si には、重み W=1.5 が掛かっている。 TOz[0,0,Z] 軸、TOy[X,-Y,0] 軸、LOx[X,Y,0] 軸に 沿う、TOz、TOy、TOx ベクトルは、完全に 3 軸 と直交する。後述するが、(110)の振動ベクトルは、 直交するが、3 軸と少し向きがずれる。Si4 モデル は、[X,Y,0]、[X,-Y,0]、[0,0,Z] の 3 軸が、それぞれ 格子軸:b、a、c 軸となっている。

Fig.17 10.32(100)NL4 AgR(TOz) phonon mode

Fig.17 および Table 12 の振動ベクトルの大きさ を、横軸に最内側からの原子番号を取りプロットす ると、Fig.18 となる。NL4 の場合には、横軸左が最 内側で、Si1 番、横軸右が最外側: <u>NL</u> 番で、Si2 番 となる。薄膜化により、振動ベクトルの大きさが、 最外側で大きく影響を受ける。

Fig.18 Eigen Vector Components of each Si for 10.32(100)NL4 phonon MODE

Fig.18の同様のプロットを、膜厚が厚く、バルク に近い NL20において行うと、Fig.19となる。横軸 左が最内側:Si1、横軸右が最外側:Si10($\frac{NL}{2}$)とな る。Fig.19によれば、内側の $\frac{1}{2}$ 層:Si5 程度までは、 バルクのような振動ベクトルを保持するが、薄膜化 した最外側に行くにつれ、3モードとも強度は小さ くなる。

Fig.19 Eigen Vector Components of each Si for 10.32(100)NL20 phonon MODE

(110) 点振動ベクトルの解析 (10.32)

Fig.20 Primitive unit of (110)NL4 Slab model.

Fig.20は、横軸をY'軸、薄膜方向の縦軸をZ'に とった (110)NL2 の原子配置図である。H 終端すれ ば、周期スラブモデルとなり、終端しないで、周期 境界で解けばバルクモデルとなる。Si1 は内側、Si2 は外側原子である。

Table 13 (110)Si4-bulk Multi Layer model's Phonon Mode(/cm)

(110)NL4	(110)NL2	Si1	Si2(out)
AgR(LOx'):502	B1gR(LOx'):502	1.0	-1.0
B2gR(TOz'):503	EgR(TOz'):502	1.0	-1.0
B1gR(TOy'):503	B2gR(TOy'):502	-1.0	1.0

a=10.32a.u. でバルクの縮退した 3 モードを見 ると、Si1,Si2 とも、固有ベクトル成分の大きさ は同じ 1.0(基準) で、TOz',LOy',LOx' それぞれ [0,0,Z'],[0,Y',0],[X',0,0] 軸に対して光学フォノンに なるので、ベクトルの方向は交互になる。Table 13 は、(110)NL2bulk と (110)NL4bulk の後の薄膜 Z' 方向の最内側 Si1 と最外側 Si2 のフォノンベクトル の大きさを示す。Table 13 の LOx' と TOz' を実格 子で見ると、それぞれ Fig.21,Fig.22 のようになる。 各図は、asmsPHASE の出力による。(110) におい て X' 軸は、(100) においては Z 軸に相当する。

Fig.21 (110)NL2bulk Γ Phonon Vibration Vector(X:LOx': AgR)

Fig.22 (110)NL2bulk Γ Phonon Vibration Vector(Z:TOz': B2gR)

次に、10.32(110)NL4 薄膜の膜厚 0.5(nm) 相当で 最外側原子の重み W = 1.4 について解析する。NL4 薄膜において、AgR,B2gR,B1gR の固有振動ベクト ルの、各成分:Si1(内側),Si2(最外側) は、Table 14 となる。下段は、主軸から振動ベクトルが傾く角度 (°)を示す。薄膜化すると、(100) では、薄膜方向 しか構造が変化しないが、(110) では、薄膜化方向 と、(110)のX軸方向両方に、構造が変化する。そ のため、振動ベクトルも、主軸方向から、少し傾く。 内側のSiの傾きは小さいが、最外側に近いと、傾き は大きい。AgR(LOx')[X,0,z]のSi1(内側)の-12.5 °は、LOx'主軸の(110)X軸から、(110)Z軸の方 へ、-12.5 °振動ベクトルが傾いていることを示す。 Si2(最外側)の傾きの方が大きい。内側の傾きは、薄 膜の厚さが増えれば、0°に近づく。TOyのY軸の 振動ベクトルは傾かない。

Table 14 Eigen Vector Components of each Si for 10.32(110)NL4-SW1.4

mode		Si1	$\rm Si2(out)$
AgR(LOx')[X,0,z]	489	-1.0	0.25
AgR(LOx')[X,0,z]		-12.5 °	-16.2 °
B2gR(TOz')[x,0,Z]	486	-1.0	0.57
B2gR(TOz')[x,0,Z]		-4.0 °	-2.3 °
B1gR(TOy')[0,Y,0]	487	1.0	-0.26
B1gR(TOy')[0,Y,0]		0.0 °	0.0 °

実際には、Si 原子8、外側の終端 H 原子が4つ、 すなわち12 × 3(x,y,z) = 36 の 36 元ベクトルの AgR,B2gR,B1gR が直交している。PHASEのH 終 端モデルの影響が、フォノンモードの計算には、大 きくここででてしまう。

薄膜 (110)NL4の TOz'(B2gR)の振動ベクトルは、 Fig.23 になる。振動方向に対向する Si1,Si2 のベク トルの大きさが変わり (bulk では同じ)、振動方向も [-0.0124X,0,Z] となり、Y 軸に垂直に Z 軸方向から X 軸側に 4 度傾く。

Fig.23 (110)NL4 TOz'(B2gR) Γ Phonon Vibration Vector([-0.0124X,0,Z])

Table 14 の振動ベクトルの大きさを、グラフ表示 すると、Fig.24 となる。

Fig.24 Eigen Vector Components of each Si for 10.32(110)NL4-SW1.4 phonon MODE

膜厚を増やして NL20 薄膜において、 AgR(LOx')[X,0,z], B2gR(TOz')[x,0,Z], B1gR(TOy')[0,Y,0] の固有振動ベクトルの、 各成分:Si1(内側),Si10(最外側) は、Table 15 と なる。

Table 15 Eigen Vector Components of each Si for 10.32(110)NL20-SW1.4

mode		Si1	Si6	Si8	Si10(out)
AgR(LOx)	502	-1.0	0.66	0.46	0.09
AgR(LOx)		-0.1 °	-0.4	-1.8	-6.8
B2gR(TOz)	503	-1.0	0.72	0.49	0.16
B2gR(TOz)		0.0 °	-0.8	-2.6	-3.0
B1gR(TOy)	502	1.0	-0.62	0.38	0.06
B1gR(TOy)		0.0 °	0.0	0.0	0.0

Table 15 の振動ベクトルの大きさを、グラフ表示 すると、Fig.25 となる。Table 15 の下段の、振動ベ クトルの主軸からの傾き (X 軸と Z 軸間で傾く)を、 グラフ表示すると、Fig.26 となる。

まとめ

膜厚を Si 層の数 NL で表したとき、NL4 程度では、 フォノンの量子的閉じ込め効果により、325nm 波 長のラマン波数分布のピーク波長が、低波数側に ずれ、広がりを持つ。膜厚を NL として表したとき に、この波数のピークのずれの、NL 依存は、面方 位(100)(110)に依らないことが実験から分かってい る。PHASE フォノンモード計算において、この実 験の現象であるピーク波数のずれが、バルク縮退 3 モードの縮退が解けたための広がりとみれば、定量 的にも同様の結果が得られることが分かった。薄膜 化 (Z 方向) より、光学フォノンの 3 モードが、どの ように解けるかも振動解析により明らかにした。

Fig.25 Eigen Vector Components of each Si for 10.32(110)NL20-Sw1.4 phonon MODE

Fig.26 Eigen Vector Grad Angle(°) of each Si for 10.32(110)NL20-Sw1.4 phonon MODE

謝辞

星野靖特別助教(神奈川大学)には、第一原理計算等 について貴重なご意見をいただきました。ここに感 謝いたします。

文献

 Mizuno T, Aoki T, Nagata Y, Nakahara Y and Sameshima T(2013) Experimental study on surface-orientation/ Strain dependence of phonon confinement effects and band structure modulation in two-dimensional Si layers. In: Jpn. J. Appl. Phys.52(2013) 04CC13pp.1-8
 Hideki Tsuchiya, Haruki Ando, Shun Sawamoto, Tadashi Maegawa, Takeshi Hara, Hironobu Yao, MAtsuto Ogawa(2010) Comparisons of Performance Potentials of Silicon Nanowire and Graphen Nanoribbon MOSFETs Considering First-Principles Band structure Effrcts. IEEE Trans. on Electron Devices. Vol 57,No2 pp406-414

山本武範,濱田智之,山崎隆弘,岡本政邦,大野隆
 央,宇田毅 (2004) 第一原理シミュレータ入門. アド
 バンストソフト,東京.

付録1PHASE における収束判定値と計算 精度

現在、収束判定値として、全エネルギー変化量 と max force を次のように与えている。

```
scf_convergence{
    delta_total_energy = 1.0e-9
    succession = 2
}
force_convergence{
    max_force = 0.5e-3 Hartree/Bohr
}
```

この 0.5e-3 の 1/10 を基準として、基準収束判定 値の倍数を横軸として、NL4 の最外側の Si 原子位 置を計算すると、Fig.A1 となる。横軸左が基準収束 判定値 (X1) で、右が X128 と粗い収束判定値と なる。

Fig.A1 EPSN Dependency of Simulated Si Positoin (NL4)

このとき、基準の収束判定値では、Si原子位置が、 3.83865 (a.u.) となる。その 10 倍の現在の収束判定値 (X10) で は、

3.83874 (a.u.)

である。この相対誤差は、0.002 %なので、現在の判定値は、0.002 %程度の精度をもつ。

現在の収束判定値で、バルク位置: 3.84750 (Fig.1 で破線) からの薄膜化によるズレは、

3.83874 に対し、 =-0.00876 (0.2 %) 0.2 %である。この差は有意とみてよい。