
All rights are reserved and copyright of this manuscript belongs to the authors.
This manuscript has been published without reviewing and editing as received
from the authors: posting the manuscript to SCIS 2007 does not prevent future
submissions to any journals or conferences with proceedings.

SCIS 2007 The 2007 Symposium on
Cryptography and Information Security

Sasebo, Japan, Jan. 23-26, 2007
The Institute of Electronics,

Information and Communication Engineers

Skew-Frobenius maps on hyperelliptic curves

Shunji Kozaki∗ Kazuto Matsuo∗† Yasutomo Shimbara∗

Abstract— The hyperelliptic curve cryptosystems take most of the time for computing a scalar
multiplication kD of an element D in the Jacobian JC of a hyperelliptic curve C for an integer k.
Therefore its efficiency depends on the scalar multiplications. Among the fast scalar multiplication
methods, there is a method using a Frobenius map. It uses a Jacobian defined over an extension field
of the definition field of C, so that the Jacobian cannot be a 160 bit prime order. Therefore there
is a loss of efficiency in that method. Iijima et al. proposed a method using a Frobeinus map on the
quadratic twist of an elliptic curve, which is called a skew-Frobenius map in this paper. This paper
shows constructions of the skew-Frobenius maps on hyperelliptic curves of genus 2 and 3.

Keywords: hyperelliptic curves, hyperelliptic curve cryptosystems, Frobenius maps, scalar multi-
plication, skew-Frobenius maps

1 Introduction

The hyperelliptic curve cryptosystems [11] have been
studied as one of the public-key cryptosystems using a
plain algebraic curve. They take most of the time for
computing a scalar multiplication kD, where k is an
integer and D is an element in the Jacobian JC of a
hyperelliptic curve C defined over Fq. Therefore it re-
quires a fast scalar multiplication to construct efficient
hyperelliptic curve cryptosystems.

In order to achieve a fast scalar multiplication, one
needs speeding up for two of operations i.e. additions
of elements and addition chains. The sliding window
method [3, Chapter IV.2] is one of the addition chain
methods. Besides there is a method using a property of
(hyper-)elliptic curves, i.e. the method using a Frobe-
nius map [10, 12, 15].

The cryptosystems using a Frobenius map are con-
structed on JC(Fqn). However JC(Fqn) cannot be a
prime order, so that one needs to choose C such that
]JC(Fqn)/]JC(Fq) is a prime number in such cryptosys-
tems. Therefore there is a loss of efficiency in the
method using a Frobenius map.

Iijima et al. proposed a method using a Frobeinus
map on the quadratic twist of an elliptic curve [8]. We
call this map the skew-Frobenius map in this paper.
One can construct a prime order Jacobian JCt(Fqn) by
using the quadratic twist Ct over Fqn of C if n = 2m

for a natural number m [9]. For elliptic curves over fi-
nite fields of characteristic 2, Furihata et al.[4] and Fu-
rukawa et al.[5] proposed fast implementations of scalar
multiplications using this method. This paper shows
constructions of the skew-Frobenius maps on hyperel-
liptic curves of genus 2 and 3.
∗ Institute of Information Security, 2-14-1, Tsuruya-cho

Kanagawa-ku, Yokohama 221-0835, Japan
† RID at Chuo Univ., 1-13-27, Kasuga Bunkyo-ku, Tokyo 112-

8551, Japan

2 Preliminaries

This section briefly introduces the definitions and no-
tations required in the following sections.

2.1 Hyperelliptic curves

Let C be a hyperelliptic curve of genus g defined over
a finite field Fq which is of the form

C : Y 2 = F (X),
F (X) = X2g+1 + a2gX

2g + · · · + a0,

a2g, · · · , a0 ∈ Fq, (1)

where char(Fq) 6= 2. When g = 1, C is called an elliptic
curve.

Let JC be the Jacobian of C, and D is an element
of JC . D can be represented as a finite formal sum of
points Pi = (xi, yi) on C as follows:

D = ΣmiPi − (Σmi)∞, (2)
Pi,∞ ∈ C, mi ∈ N≥0, Σmi ≤ g,

where Pi 6= (xi,−yi) for i 6= j. Moreover, D can be
also represented by a couple of polynomials u(X) and
v(X). The polynomials u(X) and v(X) satisfy

u(X) := Πg
i=1(X − xi)

= X2g + u2g−1X
2g−1 + · · · + u0, (3)

v(xi) = yi, (4)
degv(X) < degu(X) ≤ g,

u(X)|F (X) − v2(X),
for Pi = (xi, yi) ∈ C, 0 ≤ i ≤ g

[13]. We denote D as (u, v) by using the polynomials.
The set of D = (u, v) such that u, v ∈ K[X] forms a
subgroup JC(K) of JC . When g = 1, JC(Fq) ∼= C(Fq).

1



2.2 Scalar multiplications

Let k be an integer that satisfies

k ≈ qgn ≥ 2160.

The hyperelliptic curve cryptosystems take most of the
time for computing a scalar multiplication kD for such
k and D ∈ JC(Fqn). Therefore, speeding up a scalar
multiplication induces speeding up hyperelliptic curve
cryptosystems.

2.3 Frobenius maps

The q-th power Frobenius map φ on C is defined as

φ : C(Fq) −→ C(Fq)
(x, y) 7−→ (xq, yq)

O 7−→ O.

Moreover, φ is an automorphism over JC(Fq), and its
characteristic polynomial χ(X) ∈ Z[X] is of the form

χ(X) = X2g − s1X
2g−1 + s2X

2g−2 −
· · · − s1q

g−1X + qg,

s1, · · · , sg ∈ Z.

Because

χ(φ) = 0,

the integer k can be expanded as

k = Σs
i=0riφ

i,

where ri ∈ {−dqg/2e + 1, · · · , bqg/2c}, by using φ.
Therefore, the scalar multiplication kD can be com-
puted as

kD = Σs
i=0riφ

i(D). (5)

To apply the Frobenius map to the scalar mul-
tiplication, the cryptosystems should be constructed
on JC(Fqn)/JC(Fq), because the map is trivial on
JC(Fq). However ]JC(Fqn) ≈ qgn cannot be a prime
number, so that one needs to choose C such that
]JC(Fqn)/]JC(Fq) ≈ qg(n−1) is a prime number in such
cryptosystems. Therefore there is a loss of efficiency in
the method using a Frobenius map.

3 Skew-Frobenius maps over elliptic
curves

In order to construct more efficient cryptosystems
using a Frobenius map, Iijima et al. proposed a method
using a Frobeinus map on the quadratic twist of an
elliptic curve [8].

This section shows the construction of skew-
Frobenius maps on elliptic curves according to [8].

Let c ∈ Fqn be a quadratic non-residue over Fqn . The
quadratic twist Ct of an elliptic curve C of the form in
(1) is defined as

Ct : Y 2 = X3 + ca2X
2 + c2a1X + c3a0.

It is known that

Ct(Fq2n) ∼= C(Fq2n), (6)

whereas

Ct(Fqn) � C(Fqn).

Moreover,

End(Ct) ∼= End(C). (7)

Let σ0 be the isomorphism of (6). The isomorphism

φt : Ct(Fq2n) ∼−−→
σ−1
0

C(Fq2n) ∼−→
φ

C(Fq2n) ∼−→
σ0

Ct(Fq2n)

(8)

can be constructed by using such σ0 and a q-th power
Frobenius map φ over C(Fq2n). The isomorphism σ0 :
C(Fq2n) −→ Ct(Fq2n) is given as

σ0 : C(Fq2n) −→ Ct(Fq2n)
(x, y) 7−→ (xt, yt)
(x, y) 7−→ (cx, c3/2y).

Therefore the inversion σ−1
0 is given as

σ−1
0 : Ct(Fq2n) −→ C(Fq2n)

(xt, yt) 7−→ (x, y)
(xt, yt) 7−→ (c−1xt, c

−3/2yt).

Consequently, the isomorphism φt is obtained as

φt : Ct(Fq2n) −→ Ct(Fq2n)

(x, y) 7−→ (c1−qxq, c3(1−q)/2yq)

from (8). For the elements in C(Fqn), φt is also an
automorphism.

Moreover, the map φt has the same characteristic
polynomial as φ from (7). Therefore φt can be used for
a scalar multiplication as

kD = Σs
i=0riφ

i(D)

by the same expansion of k in (5).
Furthermore, if n = 2m for m ∈ N, one can choose

C so that Ct(Fqn) is a prime order [8, 9].
The computation of φt needs 2 multiplications and

2 q-th power operations over Fqn . However, if Ct(Fqn)
has a prime order, the size of Fqn becomes smaller than
the size of the definition field used by a naive method
using a Frobenius map, so that we expect the scalar
multiplication to be fast by using the skew-Frobenius
map.

For elliptic curves over finite fields of characteristic
2, Furihata et al.[4] and Furukawa et al.[5] proposed
fast implementations of scalar multiplications using the
skew-Frobenius maps.

4 Skew-Frobenius maps on hyperellip-
tic curves

This section shows a construction of the skew-
Frobenius maps on hyperelliptic curves of genus 2 and
3.

2



4.1 On hyperelliptic curves of g = 2

Let c ∈ Fqn be a quadratic non-residue over Fqn . A
quadratic twist Ct of an elliptic curve C of the form in
(1) for g = 2 over Fqn is defined as

Ct : Y 2 = Ft(X),

Ft(X) = X5 + ca4X
4 + c2a3X

3

+ c3a2X
2 + c4a1X + c5a0.

Let JCt be the Jacobian of Ct, and let Dt be an el-
ement of JCt . We denote Dt = (ut, vt) by using the
polynomials from (3) , (4).

An isomorphism of the Jacobians

σ : JC(Fq2n) −→ JCt(Fq2n)
D 7−→ Dt

(u, v) 7−→ (ut, vt)

can be obtained by applying the isomorphism

σ0 : C(Fq2n) −→ Ct(Fq2n)
(xi, yi) 7−→ (xti, yti),

to each Pi = (xi, yi) in (2). The isomorphism σ0 is
obtained as

σ0 : (x, y) 7−→ (cx, c5/2y). (9)

φt defined as (8) can be constructed by using σ and
the q-th power Frobenius map φ over JC(Fq2n).

Now, we classify the elements in JC(Fq2n) into the
following types,

Type I : D = {P}
Type II : D = {P1, P2}, P1 6= P2

Type III : D = {P, P},

where P = (x, y), P1 = (x1, y1), P2 = (x2, y2).

The following shows a construction of φt for each of
the types.

Type I: The polynomials u(X) , v(X) , ut(X) and
vt(X) are obtained as

u(X) = X − x, v(X) = y

ut(X) = X − cx, vt(X) = c5/2y

from (3) , (4) , (9).
Therefore, the isomorphism φt over JCt(Fq2n) is ob-

tained as

φt : JCt(Fq2n) −→ JCt(Fq2n)

(u0, v0) 7−→ (c1−quq
0, c

5(1−q)/2vq
0)

from (8).

Type II: The polynomial u(X) is obtained as

u(X) = X2 − (x1 + x2)X + x1x2 (10)

from (3). The polynomial v(X) is obtained as

v(X) = ((y1 − y2)/(x1 − x2))X
+(x1y2 − x2y1)/(x1 − x2) (11)

by the Lagrange interpolation from (4).
The polynomials ut(X) and vt(X) are obtained as

ut(X) = X2 − c(x1 + x2)X + c2x1x2, (12)
vt(X) = c3/2(y1 − y2)/(x1 − x2)X

+c5/2(x1y2 − x2y1)/(x1 − x2) (13)

from (3) , (4) , (9). The isomorphism σ is obtained as

σ : JC(Fq2n) −→ JCt
(Fq2n)

(u1, u0, v1, v0) 7−→ (cu1, c
2u0, c

3/2v1, c
5/2v0).

from (10) , (11) , (12) , (13).
Therefore, the isomorphism φt over JCt

(Fq2n) is ob-
tained as

φt : JCt
(Fq2n) −→ JCt

(Fq2n)

(u1, u0, v1, v0) 7−→ (c1−quq
1, c

2(1−q)uq
0,

c3(1−q)/2vq
1, c

5(1−q)/2vq
0)

from (8).

Type III: The polynomial u(X) is obtained as

u(X) = X2 − 2xX + x2 (14)

from (3). The polynomial v(X) is obtained as

v(X) = (F ′(x)/2y)X − (F ′(x)/2y)x + y (15)

by the Newton iteration from (4) , where F ′ denotes
the derivative of F in (1).

The polynomials ut(X) and vt(X) are obtained as

ut(X) = X2 − 2cxX + c2x2 (16)
vt(X) = c−5/2(F ′

t(cx)/2y)X
−c−3/2(F ′

t(cx)/2y)x + c5/2y (17)

from (3) , (4) , (9). The isomorphism σ is obtained as

σ : JC(Fq2n) −→ JCt(Fq2n)

(u1, u0, v1, v0) 7−→ (cu1, c
2u0, c

3/2v1, c
5/2v0)

from (14) , (15) , (16) , (17) , by F ′
t(cx) = c4F ′(x).

Therefore, the isomorphism φt over JCt(Fq2n) is ob-
tained as

φt : JCt(Fq2n) −→ JCt(Fq2n)

(u1, u0, v1, v0) 7−→ (c1−quq
1, c

2(1−q)uq
0,

c3(1−q)/2vq
1, c

5(1−q)/2vq
0)

from (8).

3



Consequently, we have the isomorphism φt over
JCt(Fq2n) of a hyperelliptic curve of genus 2 as
Type I :

φt : JCt(Fq2n) −→ JCt(Fq2n)

(u0, v0) 7−→ (c1−quq
0, c

5(1−q)/2vq
0)

Type II , III :

φt : JCt(Fq2n) −→ JCt(Fq2n)

(u1, u0, v1, v0) 7−→ (c1−quq
1, c

2(1−q)uq
0,

c3(1−q)/2vq
1, c

5(1−q)/2vq
0).

φt is a non-trivial isomorphism even for the elements
in JCt(Fqn).

The isomorphism φt on the curves of genus 2 needs
at most 4 multiplications and at most 4 q-th power op-
erations over Fqn . However, if JCt(Fqn) has a prime
order, the size of Fqn becomes smaller than the size of
the definition field used by a naive method using Frobe-
nius map, so that we expect the scalar multiplication
to be fast by using the skew-Frobenius map on a curve
of genus 2.

4.2 On hyperelliptic curves of g = 3

It is more important than genus 2 to construct skew-
Frobenius maps on hyperelliptic curves of genus 3, be-
cause fast implementations [7, 14] of addition algo-
rithms on a hyperelliptic curve of genus 3 is known,
moreover, there exist efficient attacks against hyperel-
liptic curve cryptosystems of genus 2 if n = 2m [1, 2, 6].

This section shows the construction of skew-
Frobenius maps on hyperelliptic curves of genus 3.

Let c ∈ Fqn be a quadratic non-residue over Fqn . A
quadratic twist Ct of an elliptic curve C of the form in
(1) for g = 3 over Fqn is defined as

Ct : Y 2 =Ft(X),

Ft(X) =X7 + a6cX
6 + a5c

2X5 + a4c
3X4

+ a3c
4X3 + a2c

5X2 + a1c
6X + a0c

7.

Let JCt be the Jacobian of Ct, and let Dt be an ele-
ment of JCt . Now we denote Dt = (ut, vt) by using the
polynomials from (3) , (4). An isomorphism over the
Jacobians

σ : JC(Fq2n) −→ JCt(Fq2n)
D 7−→ Dt

(u, v) 7−→ (ut, vt),

can be obtained by applying the isomorphism

σ0 : C −→ Ct

(x, y) 7−→ (cx, c7/2y) (18)

to each point on C The isomorphism φt is obtained in
the similar manner for genus 2 in the section 4.1.

Now, we classify the elements in JC(Fq2n) into the
following types,

Type I : D = {P}
Type II : D = {P1, P2}, P1 6= P2

Type III : D = {P, P}
Type IV : D = {P1, P2, P3}, P1 6= P2 6= P3 6= P1

Type V : D = {P1, P1, P2}, P1 6= P2

Type VI : D = {P, P, P}

where P = (x, y), P1 = (x1, y1), P2 = (x2, y2), P3 =
(x3, y3).

The following shows a construction of φt for each of
the types.

Type I, II, III: For these types, the isomorphism φt

over JCt(Fqn) is obtained by the similar manner for 2
as follows:
Type I :

φt : JCt(Fqn) −→ JCt(Fqn)

(u0, v0) 7−→ (c1−quq
0, c

7(1−q)/2vq
0)

Type II , III :

φt : JCt(Fqn) −→ JCt(Fqn)

(u1, u0, v1, v0) 7−→ (c1−quq
1, c

2(1−q)uq
0,

c5(1−q)/2vq
1, c

7(1−q)/2vq
0).

Type IV: The polynomial u(X) is obtained as

u(X) = X3 − (x1 + x2 + x3)X2

+(x1x2 + x2x3 + x3x1)X − x1x2x3

(19)

from (3). The polynomial v(X) is obtained as

v(X) = X2(y1(x3 − x2) + y2(x1 − x3) + y3(x2 − x1))
/((x1 − x2)(x2 − x3)(x3 − x1))
−X(y1(x2

3 − x2
2) + y2(x2

1 − x2
3) + y3(x2

2 − x2
1))

/((x1 − x2)(x2 − x3)(x3 − x1))
+(y1x2x3(x3 − x2) + y2x1x3(x1 − x3)
+y3x1x2(x2 − x1))/((x1 − x2)(x2 − x3)(x3 − x1))

(20)

by the Lagrange interpolation from (4).
The polynomials ut(X) and vt(X) are obtained as

ut(X) = X3 − c(x1 + x2 + x3)X2

+c2(x1x2 + x2x3 + x3x1)X − c3x1x2x3 (21)
vt(X) = X2c3/2(y1(x3 − x2) + y2(x1 − x3) + y3(x2 − x1))

/((x1 − x2)(x2 − x3)(x3 − x1))
−Xc5/2(y1(x2

3 − x2
2) + y2(x2

1 − x2
3) + y3(x2

2 − x2
1))

/((x1 − x2)(x2 − x3)(x3 − x1))
+c7/2(y1x2x3(x3 − x2) + y2x1x3(x1 − x3)
+y3x1x2(x2 − x1))/((x1 − x2)(x2 − x3)(x3 − x1))

(22)

4



from (3) , (4) , (18). The isomorphism σ is obtained as

σ : JC(Fq2n) −→ JCt(Fq2n)
(u2, u1, u0, 7−→ (cu2, c

2u1, c
3u0,

v2, v1, v0) c3/2v2, c
5/2v1, c

7/2v0).

from (19) , (20) , (21) , (22).
Therefore, the isomorphism φt over JCt

(Fq2n) is ob-
tained as

φt : JCt
(Fqn) −→ JCt

(Fqn)

(u2, u1, u0, 7−→ (c1−quq
2, c

2(1−q)uq
1, c

3(1−q)uq
0,

v2, v1, v0) c3(1−q)/2vq
2, c

5(1−q)/2vq
1,

c7(1−q)/2vq
0)

from (8).

Type V: The polynomial u(X) is obtained as

u(X) = X3 − (2x1 + x2)X2 + (x2
1 + 2x1x2)X − x2

1x2 (23)

from (3). The polynomials v(X) is obtained as

= ((y2 − y1)/(x1 − x2)2)X2

+(2x1(y1 − y2)/(x1 − x2)2)X
+(x2

1y2 − (2x1 − x2)x2y1)/(x1 − x2)2

(24)

by the Chinese remainder algorithm from (4).
The polynomials ut(X) and vt(X) are obtained as

ut(X) = X3 − c(2x1 + x2)X2

+c2(x2
1 + 2x1x2)X − c3x2

1x2 (25)
vt(X) = c3/2((y2 − y1)/(x1 − x2)2)X2

+c5/2(2x1(y1 − y2)/(x1 − x2)2)X
+c7/2(x2

1y2 − (2x1 − x2)x2y1)/(x1 − x2)2

(26)

from (3) , (4) , (18). The isomorphism σ is obtained as

σ : JC(Fq2n) −→ JCt(Fq2n)
(u2, u1, u0, 7−→ (cu2, c

2u1, c
3u0,

v2, v1, v0) c3/2v2, c
5/2v1, c

7/2v0).

from (23) , (24) , (25) , (26).
Therefore, the isomorphism φt over JCt(Fq2n) is ob-

tained as

φt : JCt(Fqn) −→ JCt(Fqn)

(u2, u1, u0, 7−→ (c1−quq
2, c

2(1−q)uq
1, c

3(1−q)uq
0,

v2, v1, v0) c3(1−q)/2vq
2, c

5(1−q)/2vq
1,

c7(1−q)/2vq
0)

from (8).

Type VI: The polynomial u(X) is obtained as

u(X) = X3 − 3xX2 + 3x2X − x3 (27)

from 3. The polynomial v(X) is obtained as

v(X) = X2((F ′′(x)/4y) − (F ′2(x)/8y3))
+X((F ′(x)/2y)
−2x((F ′′(x)/4y) − (F ′2(x)/8y3)))
+y − (xF ′(x)/2y)
+x2((F ′′(x)/4y) − (F ′2(x)/8y3)) (28)

by the Newton iteration from (4).
The polynomials ut(X) and vt(X) are obtained as

ut(X) = X3 − 3cxX2 + 3c2x2X − c3x3 (29)
vt(X) = X2((F ′′

t (cx)/4c7/2y) − (F ′2
t (cx)/8c21/2y3))

+X((F ′
t(cx)/2c7/2y)

−2x((F ′′
t (cx)/4c7/2y) − (F ′2

t (cx)/8c21/2y3)))
+c7/2y − (cxF ′

t(cx)/2c7/2y)
+c2x2((F ′′

t (cx)/4c7/2y) − (F ′2
t (cx)/8c21/2y3))

(30)

from (3) , (4) , (18). The isomorphism σ is obtained as

σ : JC(Fq2n) −→ JCt(Fq2n)
(u2, u1, u0, 7−→ (cu2, c

2u1, c
3u0,

v2, v1, v0) c3/2v2, c
5/2v1, c

7/2v0)

from (27) , (28) , (29) , (30), where F ′
t(cx) =

c6F ′(x), F ′′
t (cx) = c5F ′′(x).

Therefore, the isomorphism φt over JCt(Fq2n) is ob-
tained as

φt : JCt
(Fqn) −→ JCt

(Fqn)

(u2, u1, u0, 7−→ (c1−quq
2, c

2(1−q)uq
1, c

3(1−q)uq
0,

v2, v1, v0) c3(1−q)/2vq
2, c

5(1−q)/2vq
1,

c7(1−q)/2vq
0)

from (8).

Consequently, we have the isomorphism φt over
JCt(Fqn) of a hyperelliptic curve of genus 3 as
Type I :

φt : JCt(Fqn) −→ JCt(Fqn)

(u0, v0) 7−→ (c1−quq
0, c

7(1−q)/2vq
0)

Type II , III :

φt : JCt(Fqn) −→ JCt(Fqn)

(u1, u0, v1, v0) 7−→ (c1−quq
1, c

2(1−q)uq
0,

c5(1−q)/2vq
1, c

7(1−q)/2vq
0)

Type IV , V , VI:

φt : JCt(Fqn) −→ JCt(Fqn)

(u2, u1, u0, 7−→ (c1−quq
2, c

2(1−q)uq
1, c

3(1−q)uq
0,

v2, v1, v0) c3(1−q)/2vq
2, c

5(1−q)/2vq
1,

c7(1−q)/2vq
0)

φt is a non-trivial isomorphism even for the elements
in JCt(Fqn).

The isomorphism φt on the curves of genus 3 needs
at most 6 multiplications and 6 q-th power operations
over Fqn . However, if JCt(Fqn) has a prime order, the
size of Fqn becomes, small so that we expect the scalar
multiplication to be fast by using the skew-Frobenius
map on a curve of genus 3.

Acknowledgements

This research was partially supported by “The Re-
search on Security and Reliability in Electronic Soci-
ety”, Chuo University 21st Century COE Program.

5



References

[1] S. Arita. A Weil descent attack against genus two
hyperelliptic curve cryptosystems over quadratic
extention fields. Technical Report ISEC2002-62,
IEICE, Japan, 2002. in Japanese.

[2] S. Arita, K. Matsuo, K. Nagao, and M. Shimura.
A weil descent attack against elliptic curve cryp-
tosystems over quartic extension fields. IEICE
Trans., E89-A(5), May 2006. 1246-1254.

[3] I. Blake, G. Seroussi, and N. Smart. Elliptic
Curves in Cryptography. Number 265 in London
Mathematical Society Lecture Note Series. Cam-
bridge U. P., 1999.

[4] S. Furihata, T. Kobayashi, and T. Saito. Scalar
multiplication on twist elliptic curves over F2m . In
Proc. of SCIS2003, pages 843–846, January 2003.

[5] K. Furukawa, T. Kobayashi, and K. Aoki. The
cost of elliptic operations in oef using a successive
extension. In Proc. of SCIS2003, pages 929–934,
January 2003. in Japanese.

[6] P. Gaudry. Index calculus for abelian varieties
and the elliptic curve discrete logarithm prob-
lem. Cryptology ePrint Archive, Report 2004/073,
2004. http://eprint.iacr.org/.

[7] M. Gonda, K. Matsuo, K. Aoki, J. Chao, and
S. Tsujii. Improvements of addition algorithm on
genus 3 hyperelliptic curves and their implemen-
tation. IEICE Trans., E88-A(1), January 2005.
89-96.

[8] T. Iijima, K. Matsuo, J. Chao, and S. Tsujii. Cn-
struction of Frobenius maps of twist elliptic curves
and its application to elliptic scalar multiplica-
tion. In Proc. of SCIS2002, pages 699–702, Janu-
ary 2002.

[9] N. Kanayama, K. Nagao, and S. Uchiyama. Gener-
ating secure genus two hyperelliptic curves using
Elkies’ point counting algorithm. IEICE Japan
Trans. Fundamentals, E86-A(4):908–918, 2003.

[10] T. Kobayashi, H. Morita, K. Kobayashi, and
F. Hoshino. Fast elliptic curve algorithm combin-
ing Frobenius map and table reference to adapt
to higher characteristic. In Advances in Cryp-
tology - EUROCRYPT ’99, number 1592 in Lec-
ture Notes in Computer Science, pages 176–189.
Springer-Verlag, 1999.

[11] N. Koblitz. Hyperelliptic curve cryptosystems. J.
Cryptology, 1(3):139–150, 1989.

[12] N. Koblitz. CM-curves with good cryptographic
properties. In Advances in Cryptology - CRYPTO
’91, number 576 in Lecture Notes in Computer
Science, pages 279–287, 1992.

[13] A. Menezes, Y. Wu, and R. Zuccherato. An
elementary introduction to hyperelliptic curve.
http://cacr.uwaterloo.ca/techreports/
1997/corr96-19.ps, 1996.

[14] J. Nyukai, K. Matsuo, J. Chao, and S. Tsujii. On
the resultant computation in the addition Harley
algorithms on hyperelliptic cureves. (ISEC2006-
5), July 2006. in Japanese.

[15] J. A. Solinas. An improved algorihtm for arith-
metic on a family of elliptic curves. In Advances in
Cryptology - CRYPTO ’97, number 1294 in Lec-
ture Notes in Computer Science, pages 357–371.
Springer-Verlag, 1997.

6


