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Abstract— The hyperelliptic curve cryptosystems take most of the time for computing a scalar
multiplication kD of an element D in the Jacobian JC of a hyperelliptic curve C for an integer k.
Therefore its efficiency depends on the scalar multiplications. Among the fast scalar multiplication
methods, there is a method using a Frobenius map. It uses a Jacobian defined over an extension field
of the definition field of C, so that the Jacobian cannot be a 160 bit prime order. Therefore there
is a loss of efficiency in that method. Iijima et al. proposed a method using a Frobeinus map on the
quadratic twist of an elliptic curve, which is called a skew-Frobenius map in this paper. This paper
shows constructions of the skew-Frobenius maps on hyperelliptic curves of genus 2 and 3.
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1 Introduction

The hyperelliptic curve cryptosystems [11] have been
studied as one of the public-key cryptosystems using a
plain algebraic curve. They take most of the time for
computing a scalar multiplication kD, where k is an
integer and D is an element in the Jacobian JC of a
hyperelliptic curve C defined over Fq. Therefore it re-
quires a fast scalar multiplication to construct efficient
hyperelliptic curve cryptosystems.

In order to achieve a fast scalar multiplication, one
needs speeding up for two of operations i.e. additions
of elements and addition chains. The sliding window
method [3, Chapter IV.2] is one of the addition chain
methods. Besides there is a method using a property of
(hyper-)elliptic curves, i.e. the method using a Frobe-
nius map [10, 12, 15].

The cryptosystems using a Frobenius map are con-
structed on JC(Fqn). However JC(Fqn) cannot be a
prime order, so that one needs to choose C such that
]JC(Fqn)/]JC(Fq) is a prime number in such cryptosys-
tems. Therefore there is a loss of efficiency in the
method using a Frobenius map.

Iijima et al. proposed a method using a Frobeinus
map on the quadratic twist of an elliptic curve [8]. We
call this map the skew-Frobenius map in this paper.
One can construct a prime order Jacobian JCt(Fqn) by
using the quadratic twist Ct over Fqn of C if n = 2m

for a natural number m [9]. For elliptic curves over fi-
nite fields of characteristic 2, Furihata et al.[4] and Fu-
rukawa et al.[5] proposed fast implementations of scalar
multiplications using this method. This paper shows
constructions of the skew-Frobenius maps on hyperel-
liptic curves of genus 2 and 3.
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2 Preliminaries

This section briefly introduces the definitions and no-
tations required in the following sections.

2.1 Hyperelliptic curves

Let C be a hyperelliptic curve of genus g defined over
a finite field Fq which is of the form

C : Y 2 = F (X),
F (X) = X2g+1 + a2gX

2g + · · · + a0,

a2g, · · · , a0 ∈ Fq, (1)

where char(Fq) 6= 2. When g = 1, C is called an elliptic
curve.

Let JC be the Jacobian of C, and D is an element
of JC . D can be represented as a finite formal sum of
points Pi = (xi, yi) on C as follows:

D = ΣmiPi − (Σmi)∞, (2)
Pi,∞ ∈ C, mi ∈ N≥0, Σmi ≤ g,

where Pi 6= (xi,−yi) for i 6= j. Moreover, D can be
also represented by a couple of polynomials u(X) and
v(X). The polynomials u(X) and v(X) satisfy

u(X) := Πg
i=1(X − xi)

= X2g + u2g−1X
2g−1 + · · · + u0, (3)

v(xi) = yi, (4)
degv(X) < degu(X) ≤ g,

u(X)|F (X) − v2(X),
for Pi = (xi, yi) ∈ C, 0 ≤ i ≤ g

[13]. We denote D as (u, v) by using the polynomials.
The set of D = (u, v) such that u, v ∈ K[X] forms a
subgroup JC(K) of JC . When g = 1, JC(Fq) ∼= C(Fq).
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2.2 Scalar multiplications

Let k be an integer that satisfies

k ≈ qgn ≥ 2160.

The hyperelliptic curve cryptosystems take most of the
time for computing a scalar multiplication kD for such
k and D ∈ JC(Fqn). Therefore, speeding up a scalar
multiplication induces speeding up hyperelliptic curve
cryptosystems.

2.3 Frobenius maps

The q-th power Frobenius map φ on C is defined as

φ : C(Fq) −→ C(Fq)
(x, y) 7−→ (xq, yq)

O 7−→ O.

Moreover, φ is an automorphism over JC(Fq), and its
characteristic polynomial χ(X) ∈ Z[X] is of the form

χ(X) = X2g − s1X
2g−1 + s2X

2g−2 −
· · · − s1q

g−1X + qg,

s1, · · · , sg ∈ Z.

Because

χ(φ) = 0,

the integer k can be expanded as

k = Σs
i=0riφ

i,

where ri ∈ {−dqg/2e + 1, · · · , bqg/2c}, by using φ.
Therefore, the scalar multiplication kD can be com-
puted as

kD = Σs
i=0riφ

i(D). (5)

To apply the Frobenius map to the scalar mul-
tiplication, the cryptosystems should be constructed
on JC(Fqn)/JC(Fq), because the map is trivial on
JC(Fq). However ]JC(Fqn) ≈ qgn cannot be a prime
number, so that one needs to choose C such that
]JC(Fqn)/]JC(Fq) ≈ qg(n−1) is a prime number in such
cryptosystems. Therefore there is a loss of efficiency in
the method using a Frobenius map.

3 Skew-Frobenius maps over elliptic
curves

In order to construct more efficient cryptosystems
using a Frobenius map, Iijima et al. proposed a method
using a Frobeinus map on the quadratic twist of an
elliptic curve [8].

This section shows the construction of skew-
Frobenius maps on elliptic curves according to [8].

Let c ∈ Fqn be a quadratic non-residue over Fqn . The
quadratic twist Ct of an elliptic curve C of the form in
(1) is defined as

Ct : Y 2 = X3 + ca2X
2 + c2a1X + c3a0.

It is known that

Ct(Fq2n) ∼= C(Fq2n), (6)

whereas

Ct(Fqn) � C(Fqn).

Moreover,

End(Ct) ∼= End(C). (7)

Let σ0 be the isomorphism of (6). The isomorphism

φt : Ct(Fq2n) ∼−−→
σ−1
0

C(Fq2n) ∼−→
φ

C(Fq2n) ∼−→
σ0

Ct(Fq2n)

(8)

can be constructed by using such σ0 and a q-th power
Frobenius map φ over C(Fq2n). The isomorphism σ0 :
C(Fq2n) −→ Ct(Fq2n) is given as

σ0 : C(Fq2n) −→ Ct(Fq2n)
(x, y) 7−→ (xt, yt)
(x, y) 7−→ (cx, c3/2y).

Therefore the inversion σ−1
0 is given as

σ−1
0 : Ct(Fq2n) −→ C(Fq2n)

(xt, yt) 7−→ (x, y)
(xt, yt) 7−→ (c−1xt, c

−3/2yt).

Consequently, the isomorphism φt is obtained as

φt : Ct(Fq2n) −→ Ct(Fq2n)

(x, y) 7−→ (c1−qxq, c3(1−q)/2yq)

from (8). For the elements in C(Fqn), φt is also an
automorphism.

Moreover, the map φt has the same characteristic
polynomial as φ from (7). Therefore φt can be used for
a scalar multiplication as

kD = Σs
i=0riφ

i(D)

by the same expansion of k in (5).
Furthermore, if n = 2m for m ∈ N, one can choose

C so that Ct(Fqn) is a prime order [8, 9].
The computation of φt needs 2 multiplications and

2 q-th power operations over Fqn . However, if Ct(Fqn)
has a prime order, the size of Fqn becomes smaller than
the size of the definition field used by a naive method
using a Frobenius map, so that we expect the scalar
multiplication to be fast by using the skew-Frobenius
map.

For elliptic curves over finite fields of characteristic
2, Furihata et al.[4] and Furukawa et al.[5] proposed
fast implementations of scalar multiplications using the
skew-Frobenius maps.

4 Skew-Frobenius maps on hyperellip-
tic curves

This section shows a construction of the skew-
Frobenius maps on hyperelliptic curves of genus 2 and
3.
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4.1 On hyperelliptic curves of g = 2

Let c ∈ Fqn be a quadratic non-residue over Fqn . A
quadratic twist Ct of an elliptic curve C of the form in
(1) for g = 2 over Fqn is defined as

Ct : Y 2 = Ft(X),

Ft(X) = X5 + ca4X
4 + c2a3X

3

+ c3a2X
2 + c4a1X + c5a0.

Let JCt be the Jacobian of Ct, and let Dt be an el-
ement of JCt . We denote Dt = (ut, vt) by using the
polynomials from (3) , (4).

An isomorphism of the Jacobians

σ : JC(Fq2n) −→ JCt(Fq2n)
D 7−→ Dt

(u, v) 7−→ (ut, vt)

can be obtained by applying the isomorphism

σ0 : C(Fq2n) −→ Ct(Fq2n)
(xi, yi) 7−→ (xti, yti),

to each Pi = (xi, yi) in (2). The isomorphism σ0 is
obtained as

σ0 : (x, y) 7−→ (cx, c5/2y). (9)

φt defined as (8) can be constructed by using σ and
the q-th power Frobenius map φ over JC(Fq2n).

Now, we classify the elements in JC(Fq2n) into the
following types,

Type I : D = {P}
Type II : D = {P1, P2}, P1 6= P2

Type III : D = {P, P},

where P = (x, y), P1 = (x1, y1), P2 = (x2, y2).

The following shows a construction of φt for each of
the types.

Type I: The polynomials u(X) , v(X) , ut(X) and
vt(X) are obtained as

u(X) = X − x, v(X) = y

ut(X) = X − cx, vt(X) = c5/2y

from (3) , (4) , (9).
Therefore, the isomorphism φt over JCt(Fq2n) is ob-

tained as

φt : JCt(Fq2n) −→ JCt(Fq2n)

(u0, v0) 7−→ (c1−quq
0, c

5(1−q)/2vq
0)

from (8).

Type II: The polynomial u(X) is obtained as

u(X) = X2 − (x1 + x2)X + x1x2 (10)

from (3). The polynomial v(X) is obtained as

v(X) = ((y1 − y2)/(x1 − x2))X
+(x1y2 − x2y1)/(x1 − x2) (11)

by the Lagrange interpolation from (4).
The polynomials ut(X) and vt(X) are obtained as

ut(X) = X2 − c(x1 + x2)X + c2x1x2, (12)
vt(X) = c3/2(y1 − y2)/(x1 − x2)X

+c5/2(x1y2 − x2y1)/(x1 − x2) (13)

from (3) , (4) , (9). The isomorphism σ is obtained as

σ : JC(Fq2n) −→ JCt
(Fq2n)

(u1, u0, v1, v0) 7−→ (cu1, c
2u0, c

3/2v1, c
5/2v0).

from (10) , (11) , (12) , (13).
Therefore, the isomorphism φt over JCt

(Fq2n) is ob-
tained as

φt : JCt
(Fq2n) −→ JCt

(Fq2n)

(u1, u0, v1, v0) 7−→ (c1−quq
1, c

2(1−q)uq
0,

c3(1−q)/2vq
1, c

5(1−q)/2vq
0)

from (8).

Type III: The polynomial u(X) is obtained as

u(X) = X2 − 2xX + x2 (14)

from (3). The polynomial v(X) is obtained as

v(X) = (F ′(x)/2y)X − (F ′(x)/2y)x + y (15)

by the Newton iteration from (4) , where F ′ denotes
the derivative of F in (1).

The polynomials ut(X) and vt(X) are obtained as

ut(X) = X2 − 2cxX + c2x2 (16)
vt(X) = c−5/2(F ′

t(cx)/2y)X
−c−3/2(F ′

t(cx)/2y)x + c5/2y (17)

from (3) , (4) , (9). The isomorphism σ is obtained as

σ : JC(Fq2n) −→ JCt(Fq2n)

(u1, u0, v1, v0) 7−→ (cu1, c
2u0, c

3/2v1, c
5/2v0)

from (14) , (15) , (16) , (17) , by F ′
t(cx) = c4F ′(x).

Therefore, the isomorphism φt over JCt(Fq2n) is ob-
tained as

φt : JCt(Fq2n) −→ JCt(Fq2n)

(u1, u0, v1, v0) 7−→ (c1−quq
1, c

2(1−q)uq
0,

c3(1−q)/2vq
1, c

5(1−q)/2vq
0)

from (8).

3



Consequently, we have the isomorphism φt over
JCt(Fq2n) of a hyperelliptic curve of genus 2 as
Type I :

φt : JCt(Fq2n) −→ JCt(Fq2n)

(u0, v0) 7−→ (c1−quq
0, c

5(1−q)/2vq
0)

Type II , III :

φt : JCt(Fq2n) −→ JCt(Fq2n)

(u1, u0, v1, v0) 7−→ (c1−quq
1, c

2(1−q)uq
0,

c3(1−q)/2vq
1, c

5(1−q)/2vq
0).

φt is a non-trivial isomorphism even for the elements
in JCt(Fqn).

The isomorphism φt on the curves of genus 2 needs
at most 4 multiplications and at most 4 q-th power op-
erations over Fqn . However, if JCt(Fqn) has a prime
order, the size of Fqn becomes smaller than the size of
the definition field used by a naive method using Frobe-
nius map, so that we expect the scalar multiplication
to be fast by using the skew-Frobenius map on a curve
of genus 2.

4.2 On hyperelliptic curves of g = 3

It is more important than genus 2 to construct skew-
Frobenius maps on hyperelliptic curves of genus 3, be-
cause fast implementations [7, 14] of addition algo-
rithms on a hyperelliptic curve of genus 3 is known,
moreover, there exist efficient attacks against hyperel-
liptic curve cryptosystems of genus 2 if n = 2m [1, 2, 6].

This section shows the construction of skew-
Frobenius maps on hyperelliptic curves of genus 3.

Let c ∈ Fqn be a quadratic non-residue over Fqn . A
quadratic twist Ct of an elliptic curve C of the form in
(1) for g = 3 over Fqn is defined as

Ct : Y 2 =Ft(X),

Ft(X) =X7 + a6cX
6 + a5c

2X5 + a4c
3X4

+ a3c
4X3 + a2c

5X2 + a1c
6X + a0c

7.

Let JCt be the Jacobian of Ct, and let Dt be an ele-
ment of JCt . Now we denote Dt = (ut, vt) by using the
polynomials from (3) , (4). An isomorphism over the
Jacobians

σ : JC(Fq2n) −→ JCt(Fq2n)
D 7−→ Dt

(u, v) 7−→ (ut, vt),

can be obtained by applying the isomorphism

σ0 : C −→ Ct

(x, y) 7−→ (cx, c7/2y) (18)

to each point on C The isomorphism φt is obtained in
the similar manner for genus 2 in the section 4.1.

Now, we classify the elements in JC(Fq2n) into the
following types,

Type I : D = {P}
Type II : D = {P1, P2}, P1 6= P2

Type III : D = {P, P}
Type IV : D = {P1, P2, P3}, P1 6= P2 6= P3 6= P1

Type V : D = {P1, P1, P2}, P1 6= P2

Type VI : D = {P, P, P}

where P = (x, y), P1 = (x1, y1), P2 = (x2, y2), P3 =
(x3, y3).

The following shows a construction of φt for each of
the types.

Type I, II, III: For these types, the isomorphism φt

over JCt(Fqn) is obtained by the similar manner for 2
as follows:
Type I :

φt : JCt(Fqn) −→ JCt(Fqn)

(u0, v0) 7−→ (c1−quq
0, c

7(1−q)/2vq
0)

Type II , III :

φt : JCt(Fqn) −→ JCt(Fqn)

(u1, u0, v1, v0) 7−→ (c1−quq
1, c

2(1−q)uq
0,

c5(1−q)/2vq
1, c

7(1−q)/2vq
0).

Type IV: The polynomial u(X) is obtained as

u(X) = X3 − (x1 + x2 + x3)X2

+(x1x2 + x2x3 + x3x1)X − x1x2x3

(19)

from (3). The polynomial v(X) is obtained as

v(X) = X2(y1(x3 − x2) + y2(x1 − x3) + y3(x2 − x1))
/((x1 − x2)(x2 − x3)(x3 − x1))
−X(y1(x2

3 − x2
2) + y2(x2

1 − x2
3) + y3(x2

2 − x2
1))

/((x1 − x2)(x2 − x3)(x3 − x1))
+(y1x2x3(x3 − x2) + y2x1x3(x1 − x3)
+y3x1x2(x2 − x1))/((x1 − x2)(x2 − x3)(x3 − x1))

(20)

by the Lagrange interpolation from (4).
The polynomials ut(X) and vt(X) are obtained as

ut(X) = X3 − c(x1 + x2 + x3)X2

+c2(x1x2 + x2x3 + x3x1)X − c3x1x2x3 (21)
vt(X) = X2c3/2(y1(x3 − x2) + y2(x1 − x3) + y3(x2 − x1))

/((x1 − x2)(x2 − x3)(x3 − x1))
−Xc5/2(y1(x2

3 − x2
2) + y2(x2

1 − x2
3) + y3(x2

2 − x2
1))

/((x1 − x2)(x2 − x3)(x3 − x1))
+c7/2(y1x2x3(x3 − x2) + y2x1x3(x1 − x3)
+y3x1x2(x2 − x1))/((x1 − x2)(x2 − x3)(x3 − x1))

(22)
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from (3) , (4) , (18). The isomorphism σ is obtained as

σ : JC(Fq2n) −→ JCt(Fq2n)
(u2, u1, u0, 7−→ (cu2, c

2u1, c
3u0,

v2, v1, v0) c3/2v2, c
5/2v1, c

7/2v0).

from (19) , (20) , (21) , (22).
Therefore, the isomorphism φt over JCt

(Fq2n) is ob-
tained as

φt : JCt
(Fqn) −→ JCt

(Fqn)

(u2, u1, u0, 7−→ (c1−quq
2, c

2(1−q)uq
1, c

3(1−q)uq
0,

v2, v1, v0) c3(1−q)/2vq
2, c

5(1−q)/2vq
1,

c7(1−q)/2vq
0)

from (8).

Type V: The polynomial u(X) is obtained as

u(X) = X3 − (2x1 + x2)X2 + (x2
1 + 2x1x2)X − x2

1x2 (23)

from (3). The polynomials v(X) is obtained as

= ((y2 − y1)/(x1 − x2)2)X2

+(2x1(y1 − y2)/(x1 − x2)2)X
+(x2

1y2 − (2x1 − x2)x2y1)/(x1 − x2)2

(24)

by the Chinese remainder algorithm from (4).
The polynomials ut(X) and vt(X) are obtained as

ut(X) = X3 − c(2x1 + x2)X2

+c2(x2
1 + 2x1x2)X − c3x2

1x2 (25)
vt(X) = c3/2((y2 − y1)/(x1 − x2)2)X2

+c5/2(2x1(y1 − y2)/(x1 − x2)2)X
+c7/2(x2

1y2 − (2x1 − x2)x2y1)/(x1 − x2)2

(26)

from (3) , (4) , (18). The isomorphism σ is obtained as

σ : JC(Fq2n) −→ JCt(Fq2n)
(u2, u1, u0, 7−→ (cu2, c

2u1, c
3u0,

v2, v1, v0) c3/2v2, c
5/2v1, c

7/2v0).

from (23) , (24) , (25) , (26).
Therefore, the isomorphism φt over JCt(Fq2n) is ob-

tained as

φt : JCt(Fqn) −→ JCt(Fqn)

(u2, u1, u0, 7−→ (c1−quq
2, c

2(1−q)uq
1, c

3(1−q)uq
0,

v2, v1, v0) c3(1−q)/2vq
2, c

5(1−q)/2vq
1,

c7(1−q)/2vq
0)

from (8).

Type VI: The polynomial u(X) is obtained as

u(X) = X3 − 3xX2 + 3x2X − x3 (27)

from 3. The polynomial v(X) is obtained as

v(X) = X2((F ′′(x)/4y) − (F ′2(x)/8y3))
+X((F ′(x)/2y)
−2x((F ′′(x)/4y) − (F ′2(x)/8y3)))
+y − (xF ′(x)/2y)
+x2((F ′′(x)/4y) − (F ′2(x)/8y3)) (28)

by the Newton iteration from (4).
The polynomials ut(X) and vt(X) are obtained as

ut(X) = X3 − 3cxX2 + 3c2x2X − c3x3 (29)
vt(X) = X2((F ′′

t (cx)/4c7/2y) − (F ′2
t (cx)/8c21/2y3))

+X((F ′
t(cx)/2c7/2y)

−2x((F ′′
t (cx)/4c7/2y) − (F ′2

t (cx)/8c21/2y3)))
+c7/2y − (cxF ′

t(cx)/2c7/2y)
+c2x2((F ′′

t (cx)/4c7/2y) − (F ′2
t (cx)/8c21/2y3))

(30)

from (3) , (4) , (18). The isomorphism σ is obtained as

σ : JC(Fq2n) −→ JCt(Fq2n)
(u2, u1, u0, 7−→ (cu2, c

2u1, c
3u0,

v2, v1, v0) c3/2v2, c
5/2v1, c

7/2v0)

from (27) , (28) , (29) , (30), where F ′
t(cx) =

c6F ′(x), F ′′
t (cx) = c5F ′′(x).

Therefore, the isomorphism φt over JCt(Fq2n) is ob-
tained as

φt : JCt
(Fqn) −→ JCt

(Fqn)

(u2, u1, u0, 7−→ (c1−quq
2, c

2(1−q)uq
1, c

3(1−q)uq
0,

v2, v1, v0) c3(1−q)/2vq
2, c

5(1−q)/2vq
1,

c7(1−q)/2vq
0)

from (8).

Consequently, we have the isomorphism φt over
JCt(Fqn) of a hyperelliptic curve of genus 3 as
Type I :

φt : JCt(Fqn) −→ JCt(Fqn)

(u0, v0) 7−→ (c1−quq
0, c

7(1−q)/2vq
0)

Type II , III :

φt : JCt(Fqn) −→ JCt(Fqn)

(u1, u0, v1, v0) 7−→ (c1−quq
1, c

2(1−q)uq
0,

c5(1−q)/2vq
1, c

7(1−q)/2vq
0)

Type IV , V , VI:

φt : JCt(Fqn) −→ JCt(Fqn)

(u2, u1, u0, 7−→ (c1−quq
2, c

2(1−q)uq
1, c

3(1−q)uq
0,

v2, v1, v0) c3(1−q)/2vq
2, c

5(1−q)/2vq
1,

c7(1−q)/2vq
0)

φt is a non-trivial isomorphism even for the elements
in JCt(Fqn).

The isomorphism φt on the curves of genus 3 needs
at most 6 multiplications and 6 q-th power operations
over Fqn . However, if JCt(Fqn) has a prime order, the
size of Fqn becomes, small so that we expect the scalar
multiplication to be fast by using the skew-Frobenius
map on a curve of genus 3.
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