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Abstract

This paper shows that many of elliptic curve cryptosystems over quar-
tic extension fields of odd characteristics are reduced to genus two hyper-
elliptic curve cryptosystems over quadratic extension fields. Moreover, it
shows that almost all of the genus two hyperelliptic curve cryptosystems
over quadratic extension fields of odd characteristics come under Weil de-
scent attack. This means that many of elliptic curve cryptosystems over
quartic extension fields of odd characteristics can be attacked by Weil
descent uniformly.

1 Introduction

Now, the elliptic curve cryptosystem is one of the most important public key
cryptosystems. There have been found several attack methods for elliptic curve
cryptosystems, such as MOV attack [15], Frey-Rück attack [8], SSSA attack
[19, 21, 22], and Weil descent attack. Among them, the most problematic attack
is Weil descent attack, because the class of the elliptic curves for which Weil
descent attack efficiently works has not been determined yet.

Weil descent attack, of which idea was shown by Frey and Gangl [7], aims
to break DLP on algebraic curve over composite fields. For a given algebraic
curve A on a composite field K, using the technique of scalar restriction, we
construct an algebraic curve C on a smaller field k to cover the curve A. By
doing this, we can reduce DLP on A to DLP on C. Since the definition field k
of C is smaller than that K of A, Gaudry method [12] could be more effective
against DLP on C than against A, provided that genus of C is small enough.

Gaudry, Hess and Smart [13] firstly showed that some of (DLP on) elliptic
curve of characteristic two are really attacked by Weil descent. Later, it was
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shown, by Galbraith [9] and [2], that some of hyperelliptic curve of characteristic
two and some of elliptic curve of characteristic three are also attacked, respec-
tively. Moreover Diem [6] has shown the existence of (hyper-)elliptic curves of
general odd characteristics which can be attacked by Weil descent. However,
elliptic or hyperelliptic curves attacked by those are very exceptional ones.

In this paper, we deal with elliptic curve cryptosystems over quartic exten-
sion fields. We show that many of those are reduced to genus two hyperelliptic
curve cryptosystems over quadratic extension fields. Moreover, we show that
almost all of the genus two hyperelliptic curve cryptosystems over quadratic
extension fields of odd characteristics come under Weil descent attack. This
means that many of elliptic curve cryptosystems over quartic extension fields of
odd characteristics can be attacked by Weil descent uniformly.

The organization of the paper is as follows:
In Section 2, we show that many of elliptic curve cryptosystems over quartic

extension fields are reduced to genus two hyperelliptic curve cryptosystems over
quadratic extension fields. In Section 2.1, we introduce Scholten form of an
elliptic curve over a quartic extension field, and we see that Scholten form is
covered by a genus two hyperelliptic curve over a quadratic extension field.
Then, in Section 2.2, we see that elliptic curves which can be expressed in
Scholten form are ones with no two-torsions, or ones with full two-torsions.

In Section 3, we show Weil descent attack is effective in the almost all of the
genus two hyperelliptic curve cryptosystems over quadratic extension field. In
Section 3.1, given a genus two hyperelliptic curve over a quadratic extension, we
construct an algebraic curve of genus nine over its subfield using the technique
of scalar restriction. Then, in Section 3.2, we construct a Cab model of the genus
nine curve, and in Section 3.3, we explicitly reduce DLP on the hyperelliptic
curve to DLP on the Cab model in order to apply a variant of Gaudry method.

2 A Weil Descent Attack against Elliptic Curve
Cryptosystems over Quartic Extension Fields

Suppose an elliptic curve defined over quartic extension field k4 of k of odd
characteristic in the Weierstrass form Ew : y2 = f(x) is given. Let k2 be a
quadratic extension of k in k4. Let q denote the order of k. We show that the
elliptic curve Ew has Scholten form [20], that is, it has a defining equation of the
form y2 = ax3 + bx2 + bq2

x + aq2
with a, b ∈ k4 if and only if f(x) is irreducible

over k4 with j(E) 6∈ k2, or f(x) is completely factored over k4.
Moreover, we show an elliptic curve En in Scholten form has a double cover

of genus two hyperelliptic curve H : y2 = a(x−c)6 +b(x−c)4(x−cq2
)2 +bq2

(x−
c)2(x − cq2

)4 + aq2
(x − cq2

)6, which is defined over k2 (c ∈ k4). Thus, we see
that DLP on many of elliptic curves over quartic extension field k4 of odd char-
acteristics are reduced to DLP on genus two hyperelliptic curves over quadratic
extension field k2. Here, we notice that the corresponding hyperelliptic curve
has a defining equation of the form y2 = x6 + ax5 + bx4 + cx3 + dx2 + ex + f ,
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not necessarily to be an imaginary type.

2.1 Scholten from

Let k = Fq be a finite field of order q of characteristic different from 2. Let kd

denote the d-th degree extension of k. An elliptic curve En over k4 is called
Scholten form if it is defined by an equation

y2 = ax3 + bx2 + bq2
x + aq2

with some a, b ∈ k4.
Scholten [20] showed that the scalar restriction Πk4

k2
En of Scholten form En

is isomorphic to Jacobian of a genus 2 hyperelliptic curve over k2, and gave
a way to construct secure genus two hyperelliptic curve (constructive Weil de-
scent). Moreover, he showed that an elliptic curve with full 2-torsions can be
transformed into Scholten form, and observed that an elliptic curve with no
2-torsions can be also transformed experimentally.

We see in this paper that Scholten form En on k4 is covered by a genus two
hyperelliptic curve on k2 in a different manner from Scholten [20], and clarify
necessary and sufficient conditions for a given elliptic curve to be transformed
into Scholten form.

Scholten form En has a double cover of genus two hyperelliptic curve

H : Y 2 = a(X−c)6+b(X−c)4(X−cq2
)+bq2

(X−c)2(X−cq2
)4+aq2

(X−cq2
)6.

Here, c denotes an element of k4, not included in k2. We notice that H is defined
on k2. A covering map Ψ from hyperelliptic curve H to Scholten form En is
given by

(x, y) = Ψ(X, Y ) =

((
X − c

X − cq2

)2

,
Y

(X − cq2)3

)
. (1)

Remark 1. The hyperelliptic curve H dose not depend on the choice of c (∈
k4 − k2). In fact, H0 : Y 2 = aX6 + bX4 + bq2

X2 + aq2
is isomorphic to H via

a map

(X, Y ) 7−→
(

X − c

X − cq2 ,
Y

(X − cq2)3

)
.

For a k4-rational point P on Scholten form En, let {Q1, Q2} be an inverse
image of P by the covering map Ψ : H → En. The covering map Ψ : H → En

induces a homomorphism Ψ∗ from En(k4) to Jacobian JH(k4) of H over k4:

Ψ∗ : En(k4) → JH(k4)
P 7→ Q1 + Q2 −∞1 −∞2.
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Here, ∞1,∞2 denote two points of H at infinity. By equation (1) of the covering
map Ψ, we see that X-coordinates of Q1 and Q2 are roots of

(X − c)2 − x(P )(X − cq2
)2 = 0, (2)

where x(P ) denotes the x-coordinate of the point P .
We take a composition of Ψ∗ with trace map

T : JH(k4) → JH(k2)∑

i

Qi 7→
∑

i

Qi + Qq2

i

to get a homomorphism T ·Ψ∗ from En(k4) to Jacobian JH(k2) over k2.

Lemma 1. Let P be a k4-rational point of Scholten form En. If the order of P
is not less than 2q2 + 2, then we have T ·Ψ∗(P ) 6= 0.

Proof. We only have to show that the number of P ∈ En(k4) satisfying T ·
Ψ∗(P ) = 0 is at most 2q2 + 1. In order to do that, it suffices to show the
number of P ∈ En(k4) with x(P ) 6= 1,∞ satisfying T · Ψ∗(P ) = 0 is at most
2q2 − 2.

Let x(P ) 6= 1,∞. Let {Q1, Q2} be an inverse image of P by Ψ : H → En.
Let A(X) = (X − c)2 + (X − cq2

)2 and B(X) = (X − c)2 − (X − cq2
)2. Since

X-coordinates of Q1, Q2 satisfies equation (2), we have

1
2
(1− x(P ))A(X) +

1
2
(1 + x(P ))B(X) = 0.

By making this monic, we have

1
2
(A(X)− b + 1

b
B(X)) = 0

with b = (−1 + x(P ))/2.
Now we assume, in addition, that T · Ψ∗(P ) = 0. Then, since Ψ∗(P ) =

−Ψ∗(P )q2
, the monic equation for X-coordinates of Q1, Q2 and the one for

Qq2

1 , Qq2

2 must be identical. So, noticing that A(X), B(X) is transferred to
A(X),−B(X) respectively by q2-Frobenius, we see

(
b + 1

b

)q2

= −b + 1
b

.

Since the number of such b (6= 0) are at most q2− 1, the number of P satisfying
T ·Ψ∗(P ) = 0 is at most 2q2 − 2.

By Lemma 1, we see that the homomorphism T ·Ψ∗ from En(k4) to JH(k2)
is not trivial. So, it reduces DLP on En(k4) to DLP on JH(k2). Thus, we know
that DLP on Scholten form over k4 is reduced to DLP on genus two hyperelliptic
curve over k2.
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2.2 Which elliptic curves are in Scholten form?

Now, we consider necessary and sufficient conditions for an elliptic curve on k4

in Weierstrass form to be transformed into Scholten form over k4. In general, an
isomorphism between elliptic curves (which are not necessarily in Weierstrass
forms) is given by a linear transformation x → Ax + B, y → Cy + Dx + E with
constants A,B, C, D. If Weierstrass form Ew : y2 = f(x) on k4 is transformed
into Scholten form En : y2 = F (x) on k4 by transformation x → Ax + B, y →
Cy +Dx+E over k4, it is obvious that D = E = 0 and F (x) = C−2f(Ax+B).

2.2.1 The case of f(x) being irreducible over k4

First, we consider necessary and sufficient conditions for Weierstrass form Ew :
y2 = f(x) to be transformed into Scholten form En : y2 = F (x) with f(x) being
irreducible over k4.

Suppose Weierstrass form Ew : y2 = f(x) is transformed into Scholten form
En : y2 = F (x) by transformation x → Ax + B, y → Cy over k4. Since
F (x) = C−2f(Ax + B), F (x) is also irreducible over k4. Let δ be a root of
F (x) = ax3 + bx2 + bq2

x + aq2
:

aδ3 + bδ2 + bq2
δ + aq2

= 0.

Applying q2-Frobenius and multiplying with (δ−q2
)3, we have

a(δ−q2
)3 + b(δ−q2

)2 + bq2
δ−q2

+ aq2
= 0.

So, δ−q2
is also a root of F (x). This means that

δ−q2
= δ or δq4

or δq8
.

However, if we suppose δ−q2
= δ, then we have δq4−1 = (δq2+1)q2−1 = 1, and

δ ∈ k4, which contradicts the irreducibility of F (x). Similarly, if δ−q2
= δq4

,
then δ−1 = δq2

which also means δ ∈ k4. Therefore, we must have δ−q2
= δq8

,
that is, δ1+q6

= 1.
Summarizing,

Proposition 1. Suppose that a monic cubic polynomial f(x) is irreducible over
k4, and that Weierstrass form Ew : y2 = f(x) on k4 is isomorphic to Scholten
form En : y2 = F (x) over k4. Then, for a root γ for f(x), there are A ∈ k×4
and B ∈ k4 satisfying γ = Aδ + B and δ1+q6

= 1.

The contrary also holds:

Proposition 2. Let f(x) be an irreducible monic cubic polynomial over k4.
Suppose that there are A ∈ k×4 and B ∈ k4 satisfying γ = Aδ +B and δ1+q6

= 1
for a root γ of f(x). Let

a = −A2−q2
δ1+q4−q2

,

b = −A(δ + δq4
+ δ−q2

).
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Then, Weierstrass form Ew : y2 = f(x) on k4 is transformed into Scholten form
En : y2 = ax3 + bx2 + bq2

x + aq2
on k4 by transformation y → ay, x → ax + B

over k4.

Proof. Applying transformation y → y, x → x + B, we can suppose B = 0. For
f(x) = (x− γ)(x− γq4

)(x− γq8
),

the coefficient of x2 = −(γ + γq4
+ γq8

)

= −A(δ + δq4
+ δ−q2

)
= b,

the coefficient of x = γγq4
+ γq4

γq8
+ γq8

γ

= A2(δ1+q4
+ δq4−q2

+ δ1−q2
)

= −A2−q2
δ1+q4−q2 · (−1) ·Aq2

(δq2
+ δ−1 + δ−q4

)

= abq2
,

Let ε = δ1+q4−q2
. Noticing that ε1+q2

= 1,

the constant term = −γ1+q4+q8

= −A3ε

= −A2q2−1εq2 ·A4−2q2
ε2

= aq2
a2.

Therefore, we have

y2 = x3 + bx2 + abq2
x + aq2

a2.

This is transformed into

En : y2 = ax3 + bx2 + bq2
x + aq2

by transformation y → ay, x → ax.

Next, for a root γ of a monic cubic irreducible polynomial f(x) over k4, we
examine the condition of Proposition 2:

∃A ∈ k×4 , B ∈ k4, satisfying γ = Aδ + B, δ1+q6
= 1.

For γ ∈ k12, let

d(γ) = (γq2+q4 − γq2+1) + (γq6+q8 − γq6+q4
) + (γq10+1 − γq10+q8

) (3)

We note that d(γ)q4
= d(γ), d(γ)q2

= −d(γ).
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Lemma 2. For γ ∈ k12 \ k4, we have d(γ) 6= 0 if and only if γ satisfies the
condition of Proposition 2. In such a case, A,B in the condition of Proposition
2 are given by

B = d(γ)−1(γ(γq6+q8 − γq4+q6
) + γq4

(γq10+1 − γq8+q10
)

+γq8
(γq2+q4 − γ1+q2

)),
C = Nk12|k6(γ −B),

A =

{ √
C if C ∈ k×2

2

√−C if C 6∈ k×2
2 .

Proof. (⇒) Suppose d(γ) 6= 0. Since Nk4|k2 is surjective, we only need to show
(γ − B)1+q6 ∈ k2 for some B ∈ k4 (For A1+q2

= A1+q6
= (γ − B)1+q6

, let
δ = (γ −B)/A). For that sake, we see an equation for B:

(γ −B)q2
(γq6 −Bq6

)q2 − (γ −B)(γq6 −Bq6
) = 0 (4)

has a solution in k4. Letting Bq4
= B, equation (4) is expanded as:

γq2+q8 − γq2
B −Bq2

γq8
+ Bq2+1 − (γ1+q6 − γBq2 −Bγq6

+ B1+q2
) = 0.

Collecting terms of B,

(γq2 − γq6
)B + (γq8 − γ)Bq2 − γq2+q8

+ γ1+q6
= 0. (5)

Applying q2-Frobenius,

(γq4 − γq8
)Bq2

+ (γq10 − γq2
)B − γq4+q10

+ γq2+q8
= 0. (6)

Equations (5) and (6) are written with matrices as
(

γq2 − γq6
γq8 − γ

γq10 − γq2
γq4 − γq8

) (
B

Bq2

)
=

(
−γ1+q6

+ γq2+q8

−γq2+q8
+ γq4+q10

)
(7)

The determinant of the coefficient matrix is computed to be

(γq2 − γq6
)(γq4 − γq8

)− (γq8 − γ)(γq10 − γq2
)

= (γq2+q4 − γ1+q2
) + (γq6+q8 − γq6+q4

) + (γ1+q10 − γq8+q10
).

This is equal to d(γ), which is not zero by assumption. Therefore,

(
B

Bq2

)
= d(γ)−1

(
γq4 − γq8 −γq8

+ γ

−γq10
+ γq2

γq2 − γq6

)(
−γ1+q6

+ γq2+q8

−γq2+q8
+ γq4+q10

)
.

So, we have

B = d(γ)−1(γ(γq6+q8 − γq4+q6
) + γq4

(γq10+1 − γq8+q10
)

+γq8
(γq2+q4 − γ1+q2

)).
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For this B we have

Bq4
= d(γ)−1(γq4

(γq10+1−γq8+q10
)+γq8

(γq2+q4−γ1+q2
)+γ(γq6+q8−γq4+q6

)),

which implies B = Bq4
, i.e., B ∈ k4.

(⇐) Suppose d(γ) = 0, i.e.

(γq2+q4 − γq2+1) + (γq6+q8 − γq6+q4
) + (γq10+1 − γq10+q8

) = 0. (8)

If (γ − B)1+q6 ∈ k2 for some B ∈ k4, then equation (7) has a solution B.
Then, since the determinant of the coefficient matrix of equation (7) is equal to
d(γ) = 0, we must have

γq2 − γq6

γq10 − γq2 =
γq8 − γ

γq4 − γq8 =
γ1+q6 − γq2+q8

γq2+q8 − γq4+q10 .

So,

(γq8 − γ)(γq2+q8 − γq4+q10
) = (γq4 − γq8

)(γ1+q6 − γq2+q8
).

Expanding,

γ1+q4+q6
+γq4+q8+q10

+γ1+q2+q8−γ1+q4+q10−γq2+q4+q8−γ1+q6+q8
= 0. (9)

Adding γq4
-times equation (8) to equation (9),

γ1+q4+q6
+ γ1+q2+q8−

γq2+q4+q8 − γ1+q6+q8
+ γq2+2q4 − γq2+1+q4

+ γq6+q8+q4 − γq6+2q4
= 0.

However, the left-hand side is factored as

(γq6 − γq2
)(γ − γq4

)(γq4 − γq8
) = 0.

This implies γ ∈ k4, which contradicts the assumption.

From Propositions 1 and 2 and Lemma 2, we have

Theorem 1. Let f(x) be an irreducible monic cubic polynomial over k4. Let γ
be a root of f(x). The necessary and sufficient condition for Weierstrass form
y2 = f(x) to be isomorphic to Scholten form over k4 is that d(γ) 6= 0. More
precisely, in such a case, for

B = d(γ)−1(γ(γq6+q8 − γq4+q6
) + γq4

(γq10+1 − γq8+q10
)

+γq8
(γq2+q4 − γ1+q2

)),
C = Nk12|k6(γ −B),

A =

{ √
C if C ∈ (k×2 )

2

√−C if C 6∈ (k×2 )
2 ,
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let

a = −A2−q2
δ1+q4−q2

b = −A(δ + δq4
+ δ−q2

).

Weierstrass form Ew : y2 = f(x) on k4 is transformed into Scholten form
En : y2 = ax3 + bx2 + bq2

x + aq2
on k4 by translation y → ay, x → ax + B over

k4.

Next, we examine the condition d(γ) 6= 0.

Lemma 3. Let f(x) be an irreducible monic cubic polynomial over k4. For
Weierstrass form Ew : y2 = f(x) on k4, the condition j(Ew) ∈ k2 is equivalent
to the condition that a root γ of f(x) is given by

γ = Aα + B

with some A ∈ k×4 , B ∈ k4 and α ∈ k6.

Proof. (⇒) By the condition j(Ew) ∈ k2, we see that for some transformation
y → Cy, x → Ax + B (C2 = A3) over k4, the elliptic curve y2 = C−2f(Ax + B)
becomes an elliptic curve y2 = (x − α)(x − αq2

)(x − αq4
) over k2, or its twist

y2 = (x−Dα)(x−Dαq2
)(x−Dαq4

) over k4 (D is a non-square in k4). Then,
we have γ = Aα + B or γ = ADα + B.

(⇐) Applying transformation x → Ax + B, y → A
3
2 y over k8 for Ew : y2 =

f(x) = (x− γ)(x− γq4
)(x− γq8

), we have

y2 = A−3(Ax + B − (Aα + B))(Ax + B − (Aαq4
+ B))(Ax + B − (Aαq2

+ B))

= (x− α)(x− αq4
)(x− αq2

).

So, j(Ew) ∈ k2.

Proposition 3. Let f(x) be an irreducible monic cubic polynomial over k4. Let
γ be a root of f(x). If j(Ew) ∈ k2 for Weierstrass form Ew : y2 = f(x), then
we have d(γ) = 0.

Proof. By Lemma 3, there are some A ∈ k×4 , B ∈ k4 and α ∈ k6 satisfying

γ = Aα + B.

By Lemma 2, we know

d(γ) = 0 ⇐⇒ d(γ −B) = 0.

So, we can suppose B = 0, i.e. γ = Aα. Let

d0(γ) = γq2+q4
+ γq6+q8

+ γq10+1,
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then we have d(γ) = d0(γ)−d0(γ)q2
. So, to show the proposition, we only have

to show d0(γ) ∈ k2. By γ = Aα,

d0(γ) = A1+q2
(αq2+q4

+ α1+q2
+ αq4+1)

= Nk4|k2(A)Tk6|k2(α
1+q2

).

When the characteristic of k is not there, we can show the contrary:

Proposition 4. Let the characteristic of k be different from there (or two). Let
f(x) be an irreducible monic cubic polynomial over k4. Let γ be a root of f(x).
If d(γ) = 0, then we have j(Ew) ∈ k2 for Weierstrass form Ew : y2 = f(x).

Proof. We can suppose

γ + γq4
+ γq8

= 0, (10)

by letting γ = γ − 1
3Tk12|k4(γ) if necessary (we notice that d(γ) remains to be

zero by Lemma 2). To show the proposition, it is sufficient to show

A :=
γ

γ + γq6 ∈ k4

by Lemma 3 (If γ + γq6
= Tk12|k6(γ) = 0, let γ = aγ for some a ∈ k4). Since

A−Aq4
=

γ1+q10 − γq4+q6

(γ + γq6)(γq4 + γq10)
,

it is sufficient to show

γ1+q10 − γq4+q6
= 0.

By the assumption d(γ) = 0, we have

(γq10+1 − γq6+q4
) + (γq2+q4 − γq10+q8

) + (γq6+q8 − γq2+1) = 0. (11)

Using equation (10),

γq2+q4 − γq10+q8
= γq2+q4

+ γq10
(γ + γq4

)

= γq4
(γq2

+ γq10
) + γ1+q10

= γ1+q10 − γq4+q6
,

and

γq6+q8 − γq2+1 = γq6
(−γ − γq4

)− (−γq6 − γq10
)γ

= −γq4+q6
+ γ1+q10

.

So, by equation (11), we see γ1+q10 − γq4+q6
= 0.
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Summarizing foregoing arguments, for an irreducible monic cubic polynomial
f(x) over k4 and for its root γ, we have

Ew : y2 = f(x) can be Scholten form
Prop. 1, 2⇐⇒ δ = Aγ + B, δ1+q6

= 1
(∃A ∈ k×4 , B ∈ k4)

Lemma 2⇐⇒ d(γ) 6= 0
Prop. 3, 4⇐⇒ j(Ew) 6∈ k2

Here, ⇐ on the last line is shown only when the characteristic of k is not three.

Remark 2. Even in the case of j(E) ∈ k2, we could find an elliptic curve E′

over k4 with j(E′) 6∈ k2, which is isogenious to E. Then DLP on E also reduced
to DLP on a genus two hyperelliptic curve on k via DLP on E′ (See [10]).

2.2.2 The case of f(x) being reducible over k4

Now, we consider the case of Weierstrass form Ew : y2 = f(x) with a reducible
f(x) over k4.

First, we consider the case of f(x) being a product of a linear polynomial
and an irreducible quadratic polynomial over k4. For such a f(x), we assume
Weierstrass form Ew : y2 = f(x) on k4 is transformed into Scholten form En :
y2 = F (x) by transformation x → Ax + B, y → Cy over k4. Then, (up to a
scalar multiplication,) F (x) also is a product of a linear polynomial x−c and an
irreducible polynomial (x− δ1)(x− δ2) over k4(c ∈ k4, δi ∈ k8 − k4). As seen in
Section 2.2.1, by the form of defining equation of Scholten form, δ−q2

1 is also a
root of F (x). So, we have δ−q2

1 = δ1 or δ−q2

1 = δ2. If δ−q2

1 = δ1, then δ1+q2

1 = 1
and δ1 ∈ k4 which is a contradiction. If δ−q2

1 = δ2, then δq4

1 = δ2 = δ−q2

1 and
δq2

1 = δ−1
1 , which also implies δ1 ∈ k4. Hence,

Proposition 5. If a monic cubic polynomial f(x) is a product of a linear poly-
nomial and an irreducible quadratic polynomial over k4, then Weierstrass form
Ew : y2 = f(x) on k4 is never k4-isomorphic to Scholten form.

From now on, in this section, we consider the case of f(x) which is completely
factored over k4. Scholten [20] has already shown that Weierstrass form Ew :
y2 = f(x) with such f(x) is always transformed into Scholten form over k4.
Here, we show the same result in the way of Section 2.2.1, which is different
from Scholten’s method.

As in Section 2.2.1, we have

Proposition 6. If Weierstrass form Ew : y2 = f(x) = (x− γ1)(x− γ2)(x− γ3)
with three different elements γ1, γ2, γ3 in k4 is k4-isomorphic to Scholten form,
then we can suppose the following (i) or (ii) holds:
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(i) δi (i = 1, 2, 3) defined by γi = Aδi + B with some A ∈ k×4 , B ∈ k4 satisfy
δ−q2

1 = δ1, δ−q2

2 = δ2, δ−q2

3 = δ3.

(ii) δi (i = 1, 2, 3) defined by γi = Aδi + B with some A ∈ k×4 , B ∈ k4 satisfy
δ−q2

1 = δ1, δ−q2

2 = δ3, δ−q2

3 = δ2.

Proof. By assumption, Weierstrass form Ew : y2 = f(x) is transformed into
Scholten form En : y2 = F (x) by transformation x → Ax + B, y → Cy over
k4. Since F (x) = C−2f(Ax + B), F (x) also is completely factored over k4. Let
roots of F (x) be δ1, δ2, δ3. By the definition of Scholten form, δ−q2

i is a root of
F (x). The correspondence δi 7→ δ−q2

i has order one or two as a permutation of
the set of roots {δ1, δ2, δ3}.

The contrary holds also in this case:

Proposition 7. Suppose distinct three elements γ1, γ2, γ3 in k4 satisfy the fol-
lowing condition (i) or (ii):

(i) δi (i = 1, 2, 3) defined by γi = Aδi + B with some A ∈ k×4 , B ∈ k4 satisfy
δ−q2

1 = δ1, δ−q2

2 = δ2, δ−q2

3 = δ3.

(ii) δi (i = 1, 2, 3) defined by γi = Aδi + B with some A ∈ k×4 , B ∈ k4 satisfy
δ−q2

1 = δ1, δ−q2

2 = δ3, δ−q2

3 = δ2.

Let

a = −A2−q2
δ1δ2δ3,

b = −A(δ1 + δ2 + δ3).

Then, Weierstrass form Ew : y2 = f(x) = (x − γ1)(x − γ2)(x − γ3) on k4 is
transformed into Scholten form En : y2 = ax3+bx2+bq2

x+aq2
by transformation

y → ay, x → ax + B over k4.

Proof. We can suppose B = 0 by a transformation y → y, x → x + B. Under
the assumption (i) or (ii), we have

{δq2

1 , δq2

2 , δq2

3 } = {δ−1
1 , δ−1

2 , δ−1
3 }.

For f(x) = (x− γ1)(x− γ2)(x− γ3),

the coefficient of x2 = −(γ1 + γ2 + γ3)
= −A(δ1 + δ2 + δ3)
= b,

the coefficient of x = γ1γ2 + γ2γ3 + γ3γ1

= A2(δ1δ2 + δ2δ3 + δ3δ1)

= −A2−q2
δ1δ2δ3 · (−1) ·Aq2

(δq2

1 + δq2

2 + δq2

3 )

= abq2
,
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and

the constant term = −γ1γ2γ3

= −A3δ1δ2δ3

= −A2q2−1δq2

1 δq2

2 δq2

3 ·A4−2q2
(δ1δ2δ3)2

= aq2
a2.

So, we have

y2 = x3 + bx2 + abq2
x + aq2

a2.

By a transformation y → ay, x → ax, this is transformed into

En : y2 = ax3 + bx2 + bq2
x + aq2

.

Let

d2(γ1, γ2, γ3) = (γ1γ
q2

2 + γ2γ
q2

3 + γ3γ
q2

1 )− (γ1γ
q2

3 + γ2γ
q2

1 + γ3γ
q2

2 ).

We have d2(γ1, γ2, γ3)q2
= −d2(γ1, γ2, γ3).

Lemma 4. For distinct three elements γ1, γ2, γ3 in k4, d2(γ1, γ2, γ3) 6= 0 is
equivalent to the condition (i) in Proposition 7. In such a case, A,B in the
condition (i) are given by

B = d2(γ1, γ2, γ3)−1(γ3γ
1+q2

1 + γ1γ
1+q2

2 + γ2γ
1+q2

3

−(γ2γ
1+q2

1 + γ3γ
1+q2

2 + γ1γ
1+q2

3 )),

A =

{ √
C if C ∈ k×2

2

√−C if C 6∈ k×2
2 ,

with C = Nk4|k2(γ1 −B).

Proof. (⇒) Suppose d2(γ1, γ2, γ3) 6= 0. We only need to show Nk4|k2(γ1−B) =
Nk4|k2(γ2−B) = Nk4|k2(γ3−B) = C for some B ∈ k4 (For A1+q2

= (γi−B)1+q2
,

let δi = (γi −B)/A). For that sake, it is sufficient to show an equation for B

(γ1 −B)(γq2

1 −Bq2
) = (γ2 −B)(γq2

2 −Bq2
) (12)

(γ2 −B)(γq2

2 −Bq2
) = (γ3 −B)(γq2

3 −Bq2
) (13)

has a solution in k4. By equations (12),(13), we have
(

γ1 − γ2 γq2

1 − γq2

2

γ2 − γ3 γq2

2 − γq2

3

) (
Bq2

B

)
=

(
−γ1+q2

2 + γ1+q2

1

−γ1+q2

3 + γ1+q2

2

)
. (14)
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The determinant of the coefficient matrix is computed to be

(γ1 − γ2)(γ
q2

2 − γq2

3 )− (γ2 − γ3)(γ
q2

1 − γq2

2 )

= (γ1γ
q2

2 + γ2γ
q2

3 + γ3γ
q2

1 )− (γ1γ
q2

3 + γ2γ
q2

1 + γ3γ
q2

2 )

which is equal to d2(γ1, γ2, γ3) 6= 0. So,

B = d2(γ1, γ2, γ3)−1(γ3γ
1+q2

1 +γ1γ
1+q2

2 +γ2γ
1+q2

3 −(γ2γ
1+q2

1 +γ3γ
1+q2

2 +γ1γ
1+q2

3 ))

(⇐) Suppose d2(γ1, γ2, γ3) = 0, i.e.

(γ1γ
q2

2 + γ2γ
q2

3 + γ3γ
q2

1 )− (γ1γ
q2

3 + γ2γ
q2

1 + γ3γ
q2

2 ) = 0. (15)

If we have Nk4|k2(γ1 −B) = Nk4|k2(γ2 −B) = Nk4|k2(γ3 −B) for some B ∈ k4,
then an equation (14) has a solution B ∈ k4. Since the determinant of the
coefficient matrix of equation(14) is equal to d2(γ1, γ2, γ3) = 0, we must have

γq2

1 − γq2

2

γq2

2 − γq2

3

=
γ1+q2

2 − γ1+q2

1

γ1+q2

3 − γ1+q2

2

.

So,

γq2

1 γ1+q2

3 +γq2

2 γ1+q2

1 +γq2

3 γ1+q2

2 − (γq2

1 γ1+q2

2 +γq2

2 γ1+q2

3 +γq2

3 γ1+q2

1 ) = 0. (16)

By subtracting γq2

1 times equation (15) from equation (16),

γq2

1 γ1+q2

3 − γq2

1 γ2γ
q2

3 + γq2

3 γ1+q2

2 − γq2

2 γ1+q2

3

−γq2

1 γ1+q2

2 + γq2

1 γ3γ
q2

2 − γ3γ
2q2

1 + γ2γ
2q2

1 = 0,

(γ3 − γ2){(γ3 − γ1)(γ1 − γ2)}q2
= 0.

So, we have γ1 = γ2 or γ2 = γ3 or γ3 = γ1 which is a contradiction.

By Proposition 7, and Lemma 4,

Theorem 2. For distinct three elements γ1, γ2, γ3 in k4, suppose d2(γ1, γ2, γ3) 6=
0. Let

B = d2(γ1, γ2, γ3)−1(γ3γ
1+q2

1 + γ1γ
1+q2

2 + γ2γ
1+q2

3

−(γ2γ
1+q2

1 + γ3γ
1+q2

2 + γ1γ
1+q2

3 )),
C = Nk4|k2(γ1 −B),

A =

{ √
C if C ∈ k×2

2

√−C if C 6∈ k×2
2

and let

δi = A−1(γi −B) (i = 1, 2, 3),

a = −A2−q2
δ1δ2δ3,

b = −A(δ1 + δ2 + δ3).
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Then, Weierstrass form Ew : y2 = (x−γ1)(x−γ2)(x−γ3) on k4 is transformed
into Scholten form En : y2 = ax3 + bx2 + bq2

x + aq2
by a transformation y →

ay, x → ax + B over k4.

Next we consider the case of d2(γ1, γ2, γ3) = 0 for distinct three elements
γ1, γ2, γ3 in k4. If the characteristic of k is not 3, we can assume γ2+γ3−2γ1 6= 0
without loss of generality. In fact, equations

γ2 + γ3 − 2γ1 = 0,
γ3 + γ1 − 2γ2 = 0,
γ1 + γ2 − 2γ3 = 0

implies 3γ2 = 3γ3.

Lemma 5. Suppose the characteristic of k is not 3, and γ2 + γ3 − 2γ1 6= 0 for
distinct three elements γ1, γ2, γ3 in k4. Then, if d2(γ1, γ2, γ3) = 0, condition (ii)
in Proposition 7 holds. In such a case, A,B in condition (ii) are given by

A =
α2γ − αγ2+q2

γ2+2q2 − α2
,

B = −A + γ1

with

α = (γ2 − γ1)(γ3 − γ1)q2
,

γ = γ2 − γ1.

Proof. We can suppose γ1 = 0 by a transformation x 7→ x + γ1, y 7→ y. By
assumption, we have γ2 ± γ3 6= 0. Moreover,

0 = d2(0, γ2, γ3) = γ2γ
q2

3 − γq2

2 γ3.

(We note that the property of d2(γ1, γ2, γ3) = 0 remains valid under a transfor-
mation x 7→ x + γ1, y 7→ y by Lemma 4.)

So, we have α := γ2γ
q2

3 ∈ k2. Let γ = γ2. Roots of f(x) are 0, γ, α
γq2 . By

γ2 ± γ3 6= 0, we have α± γ1+q2 6= 0.

Let k4 3 A = α2γ−αγ2+q2

γ2+2q2−α2 . By a transformation x 7→ x−A, roots of f(x) are
transformed as follows:

0 7→ A
γ 7→ A(1 + γ

A )
α

γq2 7→ A(1 + α
Aγq2 )

.

Here, we let

δ2 := 1 +
γ

A

=
γ2+2q2 − αγ1+q2

α2 − αγ1+q2 .
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and

δ3 := 1 +
α

Aγq2

=
αγ1+q2 − α2

αγ1+q2 − γ2+2q2 .

Then, since δ2, δ3 ∈ k2 and δ2 = δ−1
3 , δi’s satisfy condition (ii) in Proposition

7.

By Proposition 7 and Lemma 5,

Theorem 3. Suppose the characteristic of k is not 3, and d2(γ1, γ2, γ3) = 0 for
distinct three elements γ1, γ2, γ3 in k4. Let

α = (γ2 − γ1)(γ3 − γ1)q2
,

γ = γ2 − γ1,

A =
α2γ − αγ2+q2

γ2+2q2 − α2
,

B = −A + γ1

and let

δi = A−1(γi −B) (i = 1, 2, 3),

a = −A2−q2
δ1δ2δ3,

b = −A(δ1 + δ2 + δ3).

Then, Weierstrass form Ew : y2 = (x−γ1)(x−γ2)(x−γ3) on k4 is transformed
into Scholten form En : y2 = ax3 + bx2 + bq2

x + aq2
by a transformation y →

ay, x → ax + B over k4.

2.3 Example

We take an example of an elliptic curve of Weierstrass form over a quartic
extension field of prime order, and we see it is transformed into Scholten form,
and see the Scholten form is covered by a genus two hyperelliptic curve over the
quadratic field. We used Magma V.2.10 for computations below.

Let k be a prime field of characteristic q = p = 71, k2 be its quadratic
extension defined by an irreducible polynomial o2−2o+7, and k4 be its quadratic
extension defined by an irreducible polynomial r2 − or + 1.

We generate randomly an elliptic curve of Weierstrass form Ew : v2
1 +70u3

1 +
(o2058r+o4231)u1+o3375r+o2069 = 0 on k4 to have a prime order n = 25404727.
Since j(Ew) = o1854r + o2692 6∈ k2, we have d(γ) 6= 0 by Proposition 4. Hence,
by Theorem 1, Ew is transformed into Scholten form v2 = au3 +bu2 +bq2

u+aq2

over k4. In fact, let

a = o2258r + o214,
b = o3519r + o2654,
B = −(o4167r + o3302).
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Then, by a transformation Π(1)
2 : En ' Ew over k4 defined by

u = a−1(u1 −B),
v = a−1v1,

Ew is transformed into En : v2 = au3 + bu2 + bq2
u + aq2

= (o2258r + o214)u3 +
(o3519r + o2654)u2 + (o999r + o3103)u + o4778r + o355.

As seen in Section 2.1, Scholten form En is covered by a genus two hyper-
elliptic curve H0 : y2

0 = a(x0−c)6+b(x0−c)4(x0−cq2
)2+bq2

(x0−c)2(x0−cq2
)4+

aq2
(x0 − cq2

)6 = o1463x6
0 + o666x5

0 + o2070x4
0 + o1093x3

0 + o794x2
0 + o315x0 + o1939.

A morphism Π(2)
2 from H0 to En is given by

u =
(

x0 − c

x0 − cq2

)2

,

v =
y0

(x0 − cq2)3
.

In the computations, we take c = r.
Let F (x0) denote the right-hand side of the equation for H0. In order to

make F (x0) monic, we apply a transformation Π(3)
2 : H ' H0 defined by

y1 = F (β)−1/2(x0 − β)−3y0,

x = 1/(x0 − β)

with β = 3 (which makes α := F (β) = o2756 a square) to the equation for H0.
Then H0 is transformed into a hyperelliptic curve H : y2

1 = x6 + o2177x5 +
o4311x4 + o2447x3 + o566x2 + o3664x + o3747.

Let Π2 = Π(1)
2 ·Π(2)

2 ·Π(3)
2 : H → Ew. Take a point G = (o387r+o397, o166r+

o1205) of order n on Ew. By the definition of Π(i)
2 (i = 1, 2, 3), an inverse image

J = Π∗2(G) of G via map Π2 : H → Ew is computed to be zeros of

J = {a((β − c)x + 1)2 − (Gx + β2)((β − cq2
)x + 1)2,

aα1/2y1 −Gy((β − cq2
)x + 1)3}

= {(o353r + o4196)x2 + (o1900r + o1805)x + o1922r + o2318,

(o3720r + o1533)x3 + (o1693r + o4323)x2 + (o3636r + o1592)y1

+(o1256r + o3701)x + o2686r + o3725},
which, as an ideal of k4[x, y1], represents an element of Jacobian of hyperelliptic
curve H corresponding to G (Gx, Gy denotes x-coordinate and y-coordinate of
G, respectively). We verified that discrete logarithm is preserved from G to J .
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3 A Weil Descent Attack against Hyperelliptic
Curve Cryptosystems over Quadratic Exten-
sion Fields

Here, we show Weil descent attack is effective in the almost all of the genus two
hyperelliptic curve cryptosystems over quadratic extension field of odd charac-
teristics.

Given a genus two hyperelliptic curve over a quadratic extension field k2 of
order q2, we construct an algebraic curve of genus nine over the subfield k of
order q using the technique of scalar restriction. We explicitly reduce DLP on
the hyperelliptic curve to DLP on the new curve, and apply a variant [1] of
Gaudry method against Cab model [16, 4] of the curve. It solves DLP on the
Cab model over k in the amount of computations O(q

9
5 ), moreover new variants

of Gaudry method solves in O(q
34
19 ) by [23], or O(q

17
9 ) by [17, 14]. Thus, DLP on

genus two hyperelliptic curve over quadratic extension field k2 can be solved by
Weil descent attack in the amount of computations less than O(q2) via Pollard’s
ρ-method.

This means, with the result of Section 2, that Weil descent attack is effective
in many of the elliptic curve cryptosystems over quartic extension fields of odd
characteristics.

3.1 Weil descent of hyperelliptic curves and their GHS-
sections

Let H be a genus two hyperelliptic curve defined on a finite field k2 = Fq2 which
is a quadratic extension of a finite field k = Fq of characteristic different from
2:

H : y2 = x6 + ax5 + bx4 + cx3 + dx2 + ex + f.

A scalar restriction Πk2/kH of H with respect to the extension k2/k is a two-
dimensional algebraic variety defined by the following two conjugate equations

y2
1 = x6

1 + ax5
1 + bx4

1 + cx3
1 + dx2

1 + ex1 + f,

y2
2 = x6

2 + aqx5
1 + bqx4

2 + cqx3
2 + dqx2

2 + eqx2 + fq.

Notice Πk2/kH is geometrically defined on k. Let σ denote q-th Frobenius
automorphism of k2/k. σ can be extended to the automorphism of Πk2/kH by

σ(x1) = x2, σ(y1) = y2.

In Weil descent attack, we should find an algebraic curve D on Πk2/kH,
which is defined on k and is of genus as small as possible, and we reduce DLP
on the hyperelliptic curve H to DLP on the curve D against which we apply
Gaudry method [12]. Since the complexity of Gaudry method is O(g!) with
respect to genus g, the genus of D should be less than ten or around in the
usual region of security parameters.
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As seen above, in Weil descent attack, the choice of the curve D on ΠK/kH
is critical. In the presented paper, just as in [13] and [9], we let D be the
intersection of Πk2/kH and a hypersurface (x :=)x1 = x2, which we call ‘GHS-
section’. GHS-section D is an algebraic curve geometrically defined on k by
equations

y2
1 = x6 + ax5 + bx4 + cx3 + dx2 + ex + f,

y2
2 = x6 + aqx5 + bqx4 + cqx3 + dqx2 + eqx + fq.

Proposition 8. If F (x) := x6 +ax5 +bx4 +cx3 +dx2 +ex+f does not contain
any non-trivial factor over k, then GHS-section D is a nonsingular affine curve.

Proof. Suppose D is a singular curve. Since Jacobian matrix J of D is

J =
(

F ′(x) 2y1 0
F̄ ′(x) 0 2y2

)

with F̄ := σ(F ), both y1 and y2 must be zero on singular points. So, F and F̄
contain non-trivial irreducible common factor a over k2. Then, since ā is also
irreducible over k2, we have a = ā or a and ā are prime to each other. However,
by assumption, we cannot have a = ā, so a and ā are prime to each other.
Hence, aā be a factor over k of F , which is a contradiction.

For simplicity, from now on we assume

Assumption 1 F (x) does not contain any non-trivial factor over k,

for hyperelliptic curve H : y2 = F (x) to be attacked. However, even without
Assumption 1, the attack remains unchanged except for the more complicated
details of construction of Cab model for D.

In cases of [13] and [9], GHS-sections D have huge genera. Remember that
the complexity of Gaudry attack with respect to genus g is O(g!). So, in [13]
and [9] Weil descent attack can be applied only in special cases in which we can
take irreducible components of small genus of GHS-section D.

However, in our cases,

Proposition 9. The genus of GHS-section D is nine.

Proof. Under Assumption 1, as seen in the proof of Proposition 8, F (x) and
F̄ (x) are prime to each other. So, GHS-section D has twelve ramification points
over H. Then, for genus g of D, by Hurwitz formula, we have 2g − 2 = 2 · (2 ·
2− 2) + 12 = 16, which means g = 9.

Therefore, we don’t need to take irreducible components of D. The only
thing we have to do is to construct a model over k of GHS-section D against
which we can apply Gaudry attack. If we can construct such a model, DLP on
H can be solved by Gaudry attack in the amount of computations O(q

2g
g+1 ) =

O(q
9
5 ) [13], which is less than O(q2) for Pollard’s ρ-method.
Gaudry attack is extended to Cab curves [1] and for which we have an efficient

addition algorithms in Jacobian [4]. So, hereafter, we construct a Cab model
over k of GHS-section D.
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3.2 Cab model of GHS-section

In general, to construct a Cab model of a given curve D, we need to choose
a point on D, which we call a “base point”, and need to determine all of the
regular functions outside the base point on D.

Remember that GHS-section D is defined by two equations

y2
1 = x6 + ax5 + bx4 + cx3 + dx2 + ex + f,

y2
2 = x6 + aqx5 + bqx4 + cqx3 + dqx2 + eqx + fq.

Since GHS-section D is a double cover of hyperelliptic curve y2
1 = x6 + ax5 +

bx4 + cx3 + dx2 + ex + f , GHS-section D has four points P1, P2, P3 and P4 at
infinity. As seen later, P4 is fixed by the automorphism σ. We choose the point
P4 at infinity as the base point of Cab model of D. The property of P4 being
fixed by σ will be useful to construct Cab model over k.

To determine all of the regular functions outside the base point P4, we need
to know the ‘value’ of a given function at points P1, P2, P3, P4 at infinity. First,
we find local parameter expansions of coordinate functions at those points at
infinity.

3.2.1 Points of GHS-section at infinity

Let t := x2/y1. t is a common local parameter of hyperelliptic curve H at points
Q1, Q2 at infinity. Removing y1 from the first equation of D with t, we get

t−2x4 = x6 + ax5 + bx4 + cx3 + dx2 + ex + f.

This has two solutions x = −t−1 +α
(1)
0 +α

(1)
1 t+ · · · and x = t−1 +α

(2)
0 +α

(2)
1 t+

· · · , which give local parameter expansions of x at Q1 and Q2, respectively.
Substituting this for x of y1 = t−1x2, we get a local parameter expansion y1 =
t−3 + β

(i)
−2t

−2 + β
(i)
−1t

−1 + · · · of y1 at Qi (i = 1, 2). Moreover, substituting local
parameter expansion of x at Qi for x in the second equation y2

2 = x6 + aqx5 +
bqx4+cqx3+dqx2+eqx+fq of D, we get y2 = −t−3+γ

(2i−1)
−2 t−2+γ

(2i−1)
−1 t−1+· · ·

and y2 = t−3 + γ
(2i)
−2 t−2 + γ

(2i)
−1 t−1 + · · · , which give local parameter expansions

of y2 at two points of D at infinity over Qi(i = 1, 2), respectively. Thus, we
get the following local parameter expansions of points P1, P2, P3, P4 on D at
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infinity:

P1 = {x = −t−1 + α
(1)
0 + α

(1)
1 t + · · · ,

y1 = t−3 + β
(1)
−2t−2 + β

(1)
−1t−1 + · · · ,

y2 = −t−3 + γ
(1)
−2t−2 + γ

(1)
−1t−1 + · · · },

P2 = {x = −t−1 + α
(1)
0 + α

(1)
1 t + · · · ,

y1 = t−3 + β
(1)
−2t−2 + β

(1)
−1t−1 + · · · ,

y2 = t−3 + γ
(2)
−2t−2 + γ

(2)
−1t−1 + · · · },

P3 = {x = t−1 + α
(2)
0 + α

(2)
1 t + · · · ,

y1 = t−3 + β
(2)
−2t−2 + β

(2)
−1t−1 + · · · ,

y2 = −t−3 + γ
(3)
−2t−2 + γ

(3)
−1t−1 + · · · }

P4 = {x = t−1 + α
(2)
0 + α

(2)
1 t + · · · ,

y1 = t−3 + β
(2)
−2t−2 + β

(2)
−1t−1 + · · · ,

y2 = t−3 + γ
(4)
−2t−2 + γ

(4)
−1t−1 + · · · }.

The set of points at infinity {P1, P2, P3, P4} is obviously invariant under the
automorphism σ. Moreover,

Proposition 10. P4 is fixed by σ.

Proof. Let vP (f) denote the valuation of a function f at point P .
Let σ(P4) = P1. By the expansions of y1, y2 at P4, we know vP4(y1 − y2) ≥

−2. On the other hand, we have vP4(y1 − y2) = vP1
σ (y1 − y2) = vP1(y2 − y1).

By the expansions y1, y2 at P1, we see vP1(y2− y1) = −3, so vP4(y1− y2) = −3,
which is a contradiction. Similarly, we know σ(P4) 6= P3.

Let σ(P4) = P2. By the expansion of x at P4, we have vP4(x − t−1) ≥ 0.
On the other hand, vP4(x − t−1) = vP2

σ (x − t−1) = vP2(x − (t−1)σ). We have
x−(t−1)σ = x−y2/x2 = −2t−1+· · · at P2. So, vP4(x−t−1) = vP2(x−(t−1)σ) =
−1, which is also a contradiction.

Thus, σ(P4) = P4.

3.2.2 Regular functions outside the base point

We have to determine regular functions outside the base point P4 on GHS-
section D. Those functions are regular in x− y1 − y2 affine space. So, they are
expressed by polynomials on x, y1 and y2 since D is nonsingular in the affine
space by Assumption 1.

Since GHS-section D is of genus nine by Proposition 9, assuming P4 is not
a Weierstrass point of D, the minimum generators of pole numbers at P4 is
{10, 11, . . . , 19}. So, polynomials f10, f11, . . . , f19, which has the unique pole of
order 10, 11, . . . , 19 at P4, respectively, generate the algebra of regular functions
outside P4. (Even if P4 is a Weierstrass point, the situation is similar except for
members of the minimum generators of pole numbers at P4.)
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In order to construct such a polynomial fi regular away P4, we recursively
take a suitable linear sum of polynomials which have the same pole order at Pi,
until we get a polynomial regular at Pi for i = 1, 2, 3. Notice we can know the
‘value’ of polynomials at Pi using local parameter expansions of Pi in Section
3.2.1.

Using those polynomials f10, f11, . . . , f19, we can construct an explicit C10,11,··· ,19
model with a base point P4 of GHS-section D over k2 [16]. To construct an
C10,11,··· ,19 model C over k, instead of k2, it is sufficient to use gi = Trk2/k(fi)
(i = 10, 11, . . . , 19) instead of fi. Here, Trk2/k is defined as

Trk2/k(Σal,m,nxlym
1 yn

2 ) = Σaq
l,m,nxlym

2 yn
1 .

We notice that gi is regular away P4 and the pole order of gi at P4 remains
to be i by Proposition 10.

3.3 Reduction

In Section 3.2, we construct C10,11,...,19 model C over k2 and k of GHS-section
D:

k2(x, y1, y2)
φ∗' k2(f10, f11, . . . , f19)
= k2(g10, g11, . . . , g19).

Let the isomorphism from C10,11,...,19 model C to GHS-section D, corre-
sponding to φ∗, be

φ : C
∼→ D

(g10, g11, . . . , g19) 7→ (x, y1, y2).

Let π be a projection from GHS-section D to hyperelliptic curve H:

π : D → H

(x, y1, y2) 7→ (x, y1).

The composition Π1 := π · φ is a map from C to H.
As in Section 2, we suppose hyperelliptic curve H is a double-cover of an

elliptic curve E on k4 with a map Π2:

Π2 : H → E.

Let Π = Π2 ·Π1 : C → E, which induces a morphism Ψ between Jacobians:

Ψ : E(k4)
Π∗→ Jack4(C)

Normk4/k→ Jack(C).

Proposition 11. Let G be an element of E(k4) of prime order n, which is
larger enough than the degree of Π∗. Moreover, suppose n2 does not divide the
order of Jacobian Jack4(C). Then, G does not vanish under Ψ.
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Proof. Since the order n of G is large enough, G does not vanish under Π∗. By
the theory of Weil descent, there is a surjection from Jack(C) to E(k4). So,
there is an element of order n in Jack(C). Then, by the assumption that n2

does not divide the order of Jacobian Jack4(C), Π∗(G) must belong to Jack(C),
as pointed out by Galbraith, and Smart [11] in a more general situation. So it
does not vanish under Normk4/k.

By Proposition 11, we can suppose DLP on an elliptic curve E on k4 is
reduced to DLP on C10,11,...,19 curve C on k by homomorphism Ψ. Details of
the way to compute homomorphism Ψ are illustrated through examples.

3.4 Examples

We show examples which shows DLP on elliptic curves on a quartic extension
field k4 is reduced to DLP on C10,11,...,19 curves on the subfield k. In the
computations below, we used Magma V.2.10.

3.4.1 Example 1

Let k be a prime field of characteristic q = p = 71, k2 be its quadratic extension
defined by an irreducible polynomial o2−2o+7, and k4 be its quadratic extension
defined by an irreducible polynomial r2 − or + 1.

We have seen in Section 2.3 that an elliptic curve Ew : v2
1 +70u3

1 +(o2058r +
o4231)u1 + o3375r + o2069 = 0 on k4, which has a prime order n = 25404727, is
covered by a genus two hyperelliptic curve H : y2

1 = x6 + o2177x5 + o4311x4 +
o2447x3 +o566x2 +o3664x+o3747 on k2 via map Π2 = Π(1)

2 ·Π(2)
2 ·Π(3)

2 : H → Ew.
As in Section 3.2.1, We take GHS-section D of the scalar restriction Πk2/kH

of H. Parameter expansions with respect to t = x2/y1 of points P1, P2, P3, P4

at infinity on D are computed as follows:

P1 :
x = 70t−1 + o4265 + o261t + o4535t2 + o2836t3 + · · ·
y1 = t−3 + o2177t−2 + o4111t−1 + o3867 + o3086t + · · ·
y2 = 70t−3 + o2713t−2 + o4163t−1 + o3058 + o4299t + · · ·

P2 :
x = 70t−1 + o4265 + o261t + o4535t2 + o2836t3 + · · ·
y1 = t−3 + o2177t−2 + o4111t−1 + o3867 + o3086t + · · ·
y2 = t−3 + o193t−2 + o1643t−1 + o538 + o1779t + · · ·
P3 :
x = t−1 + o4265 + o2781t + o4535t2 + o316t3 + · · ·
y1 = t−3 + o4697t−2 + o4111t−1 + o1347 + o3086t + · · ·
y2 = 70t−3 + o193t−2 + o4163t−1 + o538 + o4299t + · · ·
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P4 :
x = t−1 + o4265 + o2781t + o4535t2 + o316t3 + · · ·
y1 = t−3 + o4697t−2 + o4111t−1 + o1347 + o3086t + · · ·
y2 = t−3 + o2713t−2 + o1643t−1 + o3058 + o1779t + · · · .

As in Section 3.2.2, with these parameter expansions, we obtain functions
f10, f11, . . . , f19 on D which has the unique pole at P4 of order 10, 11, . . . , 19,
respectively. Appling Trk2/k to them, we obtain

g10 = o1264x3y2
1 + 3x3y1y2 + o271x3y1 + · · ·+ o1754y2,

g11 = o1386x3y2
1 + x3y1y2 + o2108x3y1 + · · ·+ o630y2,

...
g19 = o3534x3y2

1 + 41x3y1y2 + o3210x3y1 + · · ·+ o1622y2.

Every gi has the unique pole at P4 of order i as well as fi.
Among those g10, g11, . . . , g19, we have following relations r22, r23, . . . , r31

which define C10,11,...,19 curve C on k in g10 − g11 − · · · − g19 affine space:

r22 = g2
11 − (5g10g12 + 42g10g11 + 18g2

10 + · · ·+ 25),
r23 = g11g12 − (26g10g13 + 38g10g12 + · · ·+ 58),

...
r31 = g12g19 − (9g2

10g11 + 62g3
10 + 10g10g19 + · · ·+ 28).

As seen in Section 2.3, a point G = (o387r + o397, o166r + o1205) on Ew of
order n is mapped via Π∗2 to the element J of Jacobian of H:

J = {(o353r + o4196)x2 + (o1900r + o1805)x + o1922r + o2318,

(o3720r + o1533)x3 + (o1693r + o4323)x2 + (o3636r + o1592)y1

+(o1256r + o3701)x + o2686r + o3725}.
Now, we compute an image of J via map Π∗1. Remember Π1 = π · φ :

C → D → H (see Section 3.3). Let R = k4[x, y1] be a coordinate ring of
H and R1 = k4[x, y1, y2] be a coordinate ring of D, and R2 = k[ǧ10, . . . , ǧ19]
be a coordinate ring of C. J is an ideal of R. J := π∗(J) is nothing but
an ideal generated by J in R1. J corresponds to a divisor with poles of the
first order at P1, P2, P3, and at P4. We make those poles at P1, P2, P3 vanish
by taking the product of J with a polynomial with zeros at P1, P2, P3, e.g.
h13 := 40g13 + 7g12 + 44g11 + 12g10 + 31. Then an image of h13J (which is in
the same ideal class of J) under φ∗ can be computed using an elimination ideal
as follows:

J ← J · h13

J ← Eliminate(J + {ǧ10 − g10(x, y1, y2), ǧ11 − g11(x, y1, y2), · · · ,
ǧ19 − g19(x, y1, y2)}, {x, y1, y2})

J ← Reduce(J),
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where Eliminate(·, {x, y1, y2}) denotes an ideal in R2 obtained by eliminating
the variables x, y1, y2 from the ideal of the first argument, which shows relations
among gi(i = 10, 11, . . . , 19) over J , that is the image of J by Π∗1. Reduce(J)
reduces an ideal J (for details, see [4]).

Finally, we compute Normk4/k(J):

J ← jSum(jSum(J, J̃), jSum( ˜̃J,
˜̃̃
J)),

where jSum(J, J̃) denotes a sum of J and its conjugate J̃ over k in Jacobian of
C. For details of Reduce and jSum, see [4].

Thus, we have computed J = Ψ(G) = Normk4/k ·Π∗1 ·Π∗2(G):

J = {g2
17 + 37g17 + 21g16 + 49g15 + 33g14 + · · ·+ 59,

g16g17 + 45g17 + 15g16 + 45g15 + 21g14 + · · ·+ 63,

· · ·
g18 + 24g17 + 27g16 + 31g15 + 64g14 + · · ·+ 64}

which denotes an element of Jacobian over k of C10,11,...,19 curve C (for simplic-
ity, we use the letter g for ǧ) corresponding to G on Ew.

Similarly, m = 25415194-times point Gm = (o637r + o224, o1671r + o3481) of
G is mapped to an element

Jm = {g2
17 + 6g17 + 70g16 + 66g15 + 15g14 + · · ·+ 68,

g16g17 + 5g17 + 20g16 + 56g15 + 16g14 + · · ·+ 11,

· · ·
g18 + 23g17 + 34g16 + 65g15 + 18g14 + · · ·+ 4}

of Jacobian of C. We verified that m-times element of J is actually equal to
Jm in Jacobian of C. Thus, we verified that DLP on elliptic curve Ew on k4 is
actually reduced to DLP on C10,11,...,19 curve C on k.

3.4.2 Example 2

We show an example of group of 160-bit order.
Let k be the prime field of characteristic q = p = 240 − 235 − 1, k2 be its

quadratic extension defined by an irreducible polynomial o2 + 352619714346,
and k4 be its quadratic extension defined by an irreducible polynomial r2 +
702753204573o + 465976829831.

An elliptic curve

Ew : v2
1 = u3

1 + ((773569929047o + 698785454132)r + 892468792697o

+773390597884)u1 + (245022657483o + 657619174138)r
+721187940068o + 865450731541

on k4 has a 160-bit prime order

n = 1287200406650928609777376029597716043015507861907.
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As in Example 1, we found that DLP on Ew is reduced to DLP on the
following C10,11,...,19 curve C:

g2
11 − (671010913434g10g12 + 306446345201g10g11 + 205461673669g2

10 + · · ·
+675147796101) = 0,

g11g12 − (752537421825g10g13 + 1016531429604g10g12 + 897328181722g10g11

+ · · ·+ 1053682994222) = 0,

...
g12g19 − (128634052382g2

10g11 + 950367786029g3
10 + 457707828730g10g19

+ · · ·+ 665817232135) = 0.

A point

G = (1, (448960196430o+540742096931)r+521019129313o+684726004416)

on Ew is mapped to an element

J = {g2
17 + 3720685308g17 + 760318447938g16 + · · ·+ 930677256954,

g16g17 + 725294630540g17 + 222096222048g16 + · · ·+ 752506763900,

· · · ,

g18 + 942200891029g17 + 935848743981g16 + · · ·+ 234904933666}
of Jacobian of C. We verified that discrete-log is preserved from G to J .

4 Conclusion

This paper showed that Weil descent attack is effective uniformly in many of
elliptic curves on quartic fields of odd characteristic or hyperelliptic curves on
quadratic fields of odd characteristic. However, our attack is estimated to be
effective with groups of around 210 bits or longer. To attack (hyper-)elliptic
curve cryptosystems with 160-bit group in the real world, we need some works
to make the method more efficient.
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[14] P. Gaudry and E. Thomé. A double large prime variation for small genus
hyperelliptic index calculus. Cryptology ePrint Archive, Report 2004/153,
2004. http://eprint.iacr.org/.

[15] A. Menezes, T. Okamoto, and S. Vanstone. Reducing elliptic curve log-
arithms to logarithms in a finite fields. In Proc. of STOC, pages 80–89,
1991.

[16] S. Miura. Linear codes on affine algebraic curves. IEICE Trans. A, J81-
A(10):1398–1421, 1998. in Japanese.

27



[17] K. Nagao. Improvement of Thériault algorithm of index calculus for Ja-
cobian of hyperelliptic curves of small genus. Cryptology ePrint Archive,
Report 2004/161, 2004. http://eprint.iacr.org/.

[18] K. Nagao, S. Arita, K. Matsuo, and M. Shimura. A Weil descent at-
tack against elliptic curve cryptosystems over quartic fields I. In Proc. of
SCIS2004, pages 897–902, 2004. in Japanese.

[19] T. Satoh and K. Araki. Fermat quotients and the polynomial time discrete
log algorithm for anomalous elliptic curves. Commentarii Mathematici Uni-
versitatis Sancti Pauli, 47(1), 1998.

[20] J. Scholten. Weil restriction of an elliptic curve over a quadratic exten-
sion. preprint, http://www.esat.kuleuven.ac.be/~jscholte/weilres.
ps, 2003.

[21] I. A. Semaev. Evaluation of discrete logarithms in a group of p–torsion
points of an elliptic curve in characteristic p. Math. Comp., 67:353–356,
1998.

[22] N. P. Smart. The discrete logarithm problem on elliptic curves of trace
one. J. Cryptology, 12(3):193–196, 1999.

[23] N. Thériault. Index calculus attack for hyperelliptic curves of small genus.
In C. S. Laih, editor, Advances in Cryptology - ASIACRYPT 2003, number
2894 in Lecture Notes in Computer Science, pages 75–92. Springer-Verlag,
2003.

28


