
Using Domain Ontology as Domain Knowledge for Requirements Elicitation

Haruhiko Kaiya
Shinshu University, JAPAN

kaiya@cs.shinshu-u.ac.jp

Motoshi Saeki
Tokyo Institute of Technology, JAPAN
saeki@se.cs.titech.ac.jp

Abstract

Domain knowledge is one of crucial factors to get a great
success in requirements elicitation of high quality, and only
domain experts, not requirements analysts, have it. We pro-
pose a new requirements elicitation method ORE (Ontology
based Requirements Elicitation), where a domain ontology
can be used as domain knowledge. In our method, a do-
main ontology plays a role on semantic domain which gives
meanings to requirements statements by using a semantic
function. By using inference rules on the ontology and a
quality metrics on the semantic function, an analyst can be
navigated which requirements should be added for improv-
ing completeness of the current version of the requirements
and/or which requirements should be deleted from the cur-
rent version for keeping consistency. We define this process
as a method and evaluate it by an experimental case study
of software music players.

1 Introduction

Domain knowledge that experts in a problem domain
have plays an important role on eliciting requirements of
high quality. Although requirements analysts having much
knowledge of software technology, they don’t know or un-
derstand their problem domain where software to be devel-
oped will be operated. Lack of domain knowledge allows
the analysts to perform poor requirements elicitation and as
a result, they come to produce requirements specification of
low quality. Requirements elicitation from stakeholders is
actually one of the most crucial steps in requirements anal-
ysis processes, and several methods and computerized tools
have been studied and developed in order to support hu-
man activities of requirement elicitation, e.g., goal oriented
requirements analysis methods, scenario analysis, use case
modeling techniques and so on. However, these methods
and tools are too general, in the sense that they are for the
general problem domains where problem-specific domain
knowledge is not used and that they did not support the uti-
lization of domain knowledge. To achieve more efficient
supports for requirements elicitation of higher quality, we
need a method and tools incorporating with the support of

utilizing domain knowledge. In this research direction, one
of the major issues is the technique to model and to rep-
resent domain knowledge for requirements elicitation. Our
approach uses a domain ontology as a representation of do-
main knowledge.

Ontology technologies are frequently applied to many
problem domains nowadays [8]. Because concepts, rela-
tionships and their categorizations in a real world can be
represented with ontologies, they can be used as resources
of domain knowledge. As mentioned in [13], we consider
an ontology as a thesaurus of words and inference rules
on it, where the words in the thesaurus represent concepts
and the inference rules operate on the relationships on the
words. The two major benefits of applying ontology as do-
main knowledge can be considered as follows.

The first benefit is related to semantic processing of re-
quirements descriptions by computer. To support require-
ments elicitation effectively by computerized tools, seman-
tic processing on requirements descriptions is necessary.
Especially, it is significant that we can detect incomplete-
ness and inconsistency in requirements to an information
system to be developed. Usually both of an initial require-
ments list, which a customer brings up to a development
organization at first, and a requirements specification docu-
ment as a final artifact are written in natural language, i.e.,
are informal descriptions. Although the techniques for nat-
ural language processing (NLP) are being advanced nowa-
days, it is hard to handle with this informality such require-
ments documents sufficiently by computers. There are sev-
eral approaches to tackle this problem. Some studies in-
cluded a topic on a semi-formal notation for representing
requirements, e.g., restricted natural languages, so that au-
tomated semantic processing is possible, but it was diffi-
cult for human engineers to write syntactically and seman-
tically correct requirements sufficiently by using this nota-
tion. Rigorous formal notations with axioms and inference
system seem to be suitable for automate semantic process-
ing, but its usage is very limited to practitioners because of
their difficulty and complexity in the practitioners’ learning
and training. A domain ontology allows us to have a se-
mantic basis for requirements descriptions and to achieve
“lightweight semantic processing” in order to detect prop-
erties of requirements descriptions. Each concept of the do-
main ontology can be considered as a semantic atomic el-

Specification
Document
Manual
…

Domain
Ontology
As Knowledge of
Domain Experts

Requirements Analysis

Mining
(Natural Language
Processing)

Semantic Processing
For Requirements

Ontology
On Internet

Figure 1. Requirements and Knowledge Elic-
itation Cycle

ement that anyone can have the unique meaning in a prob-
lem domain. That is to say, the thesaurus part of the on-
tology plays a role of a semantic domain in denotational
semantics, and inference rules can detect properties such as
inconsistency and incompleteness of requirements descrip-
tions. By using such an ontology, several kinds of semantic
processing can be achieved in requirements analysis with-
out rigorous NLP techniques.

Secondly, although we have not a complete ontology
for our problem domain yet, we can have several (semi-
)automated techniques to do it. Like DAML Ontology
Library [1], researchers and developers in knowledge en-
gineering communities, in particular Semantic Web com-
munity are constructing many ontologies in wide varieties
of domains, and they are represented with standardized
OWL based language so as to be exchanged by many per-
sons. Furthermore, some studies to extract ontological con-
cepts and their relationships by applying text-mining tech-
niques to natural-language documents exist [6]. Existing re-
quirements specification documents can also be significant
sources to text-mining processing. It means that we can in-
crementally make a domain ontology and requirements de-
scriptions in a problem domain more complete, as shown
in Figure 1. In the figure, a requirements analyst elicits
more complete and more consistent requirements by using
a domain ontology and documents them as a requirement
specification. This document is mined by suing NLP tech-
niques to extract the concepts and the relationships that can
be incorporated into the current version of the domain on-
tology. Through enacting this cycle, we can get both more
complete domain ontology and a requirements document of
high quality.

In this paper, we focus on the first benefit, i.e. using a
domain ontology for semantic processing of requirements
descriptions written in natural language. In [18, 9], we
have discussed the application of an ontology to seman-
tic processing of requirements descriptions written natural
language, more concretely detecting incompleteness and in-

consistency. Its main idea is as follows. A requirements an-
alyst explores a mapping between a requirements descrip-
tion and ontological elements such as concepts and their
relationships included in a domain ontology. After estab-
lishing the mapping, by using inference rules on the ontol-
ogy system, various kind of semantic processing such as
detecting incompleteness and inconsistency and measuring
the quality of the requirements descriptions. Suppose that
the following example. The analyst can map a requirement
“a system can reserve seats in a specified train” to an onto-
logical element “reserve” in our domain system of the do-
main of reservation systems. Another element “cancel” has
a relationship “requires” to “reserve” in our ontology sys-
tem. Thus our inference system can suggest to the analyst
that it was incomplete unless he did not include “cancel”
function in his system. This kind of inference on an ontol-
ogy system is a “lightweight” processing for computers.

This paper presents a technique to make our
“lightweight” approach concrete from a methodologi-
cal viewpoint for requirements elicitation processes. That
is to say, we define a procedure as a methodology for
requirements analysts to elicit requirements from an initial
requirements list written in the form of itemized natural
language sentences. The rest of this paper is organized as
follows. In the next section, we explain the basic idea how
to use a domain ontology and discuss the requirements to
an elicitation method based on our approach. The method
is called ORE (Ontology based Requirements Elicitation
method). In section 3, we clarify our ontology system
in detail. We also clarify the procedure how to progress
the method, especially how to update the logical structure
during the method in section 4. Section 5 presents the
assessment of our method by using experimental case
studies. In section 6 and 7, we discuss related works
and our current conclusions together wit future work,
respectively.

2 Using a Domain Ontology for Eliciting Re-
quirements

2.1 What is a Domain Ontology System?

According to [8], the most popular definitions of “ontol-
ogy” are “formal explicit specification of shared conceptu-
alization” and “classifications of the existing concepts”. In
this paper, a domain ontology provides semantic basis on
requirements to be elicited. More concretely, each state-
ment representing a requirement (we call it requirements
statement) can be interpreted with ontological elements and
such an ontology should include atomic concepts that any
stakeholders can commonly have in a problem domain.

By using lexical decomposition technique [19], each re-
quirements statement can be decomposed into several terms
that are interpreted in the same way by anyone. Semantic
structure among such terms, i.e., a thesaurus is required for

C D

A

E

B

1. aaa
2. bbb
3. ccc

require

A requirements document “S” (consists of req. items.)

Fint: interpretation function

Domain Ontology “O” (thesaurus part only)

Figure 2. Mapping from Requirements to On-
tology

our requirements elicitation because such terms can be used
as pointers to concepts. Thus an ontology should include
a thesaurus in a problem domain, where atomic terms are
connected to each other through specific relations or associ-
ations. For example, the atomic concept “reserve” has “re-
quires” relationship to “cancel” in the domain of Reserva-
tion Systems. To detect incompleteness and inconsistency,
it should be possible to infer the properties of requirements
by using these relationships. Suppose that elicited require-
ments include a statement interpreted as the concept “re-
serve” only and do not have “cancel”. In this case, the in-
ference using “requires” relationship suggests that the re-
quirement related to “cancel” may be missing. This kind of
inference and atomic concepts represented with a thesaurus
depends on a problem domain. Thus we can consider that
a domain ontology consists of a domain specific thesaurus
and inference rules on it. The details of an ontology and
inference rules will be mentioned in section 3.

2.2 How is an Ontology Used?

As mentioned in section 1, an ontology plays a role of a
semantic domain in denotational semantics.

Below, let’s consider how a requirements analyst uses
a domain ontology for completing requirements elicitation.
Suppose that a requirements document initially submitted
by a customer are itemized as a list. At first, an analyst
should map a requirement item (statement) in a requirement
document into atomic concepts of the ontology as shown in
Figure 2. In the figure, the ontology is written in the form of
class diagrams. For example, the item “bbb” is mapped into
the concepts A and B and an aggregation relationship be-
tween them. The requirements document may be improved
incrementally through the interactions between a require-
ments analyst and stakeholders. In this process, logical in-
ference on the ontology suggests to the analyst what part he
should incrementally describe. In the figure, although the

document S includes the concept A at the item bbb, it does
not have the concept C, which is required by A. The infer-
ence resulted from “C is required by A” and “A is included”
suggests to the analyst that a statement having C should be
added to the document S.

By using our approach, we can estimate the quality of re-
quirements. We pick up four quality characteristics as fol-
lows and summarize intuitive definitions. For the readers
having an interest to their formal definitions, see [9].

1. Correctness (COR): The requirements items that were
mapped into ontological elements can be considered
as requirements appropriate for a problem domain.

COR =

{requirements items that are mapped into
the ontology}
{requirements items (total number of re-
quirements items)}

2. Completeness (CMP) : The ontological elements that
did not have any mapped requirements items can be
candidates for missing requirements items.

CMP =

{ontological elements that no requirements
items are mapped into}
{ontological elements (total number of on-
tological elements)}

3. Consistency (CST) : If requirements items include
ontological concepts that are connected through
“contradict” relationship in the ontology, they are
inconsistent.

CST =

{ontological relationships that are not
“contradict” and that some requirements
items are mapped into}
{ontological relationships that some re-
quirements items are mapped into}

4. Unambiguity (UAM): If a requirements item is
mapped into several concepts that have no semantical
relationships, it can have multiple meaning.

UAM =

{the requirements items that are mapped
into concepts that can be traced from each
other through relationships}
{requirements items}

“Semantical relationship” between concepts means
the reachability of the concepts by using relationships
on the ontology.

We use the values of these measurements in ORE method
for navigating analyst’s activities.

3 Ontology Systems and Inference Rules

To elicit and define requirements systematically, we have
to formally define the logical structure of artifacts that are

used in requirements elicitation processes, i.e., require-
ments lists, ontologies and semantic mappings from a re-
quirement list to an ontology in this section.

3.1 Requirements List

system name : String = library system

 : requirements list

sentence : String = a copy of a book shall be checked out.
mandatory : Boolean = true

#1 : and

sentence : String = books shall be highly available for members.
mandatory : Boolean = false

#2 : leaf

sentence : String = books shall be able to be added.
mandatory : Boolean = true

#3 : leaf

sentence : String = staffs, upto 4 weeks.
mandatory : Boolean

#1.1 : leaf

sentence : String = students, upto 2 weeks.
mandatory : Boolean

#1.2 : leaf

Figure 3. A Requirements List

The input of our requirement elicitation process is a list
of the natural-language sentences, called requirements list.
A requirements list consists of itemized sentences written in
natural language, and each sentence represents a customers’
requirement to a software system to be developed. A re-
quirements list consists of hierarchically itemized sentences
and we call them “requirements items” or simply items. The
itemized sentences in the same level of hierarchy can be se-
mantically connected with either “and” and “or” relation-
ship. Figure 3 shows an instance of a requirements list for a
part of a library system. For example, the sub-graph whose
root node is #1 denote the requirements list below;

1. a copy of book shall be checked out.
1.1. staffs, up to 4 weeks and
1.2. students, up to 2 weeks.

3.2 Representing an Ontology

To manipulate requirements items semantically, we have
to map each requirements item into semantic elements,
which is a similar way to denotational semantics. These se-
mantic elements are defined on an ontology in our research.
Figure 4 shows the overview of a meta model of the the-
saurus part of our ontologies [9]. As shown in the figure,
thesauruses consist of concepts and relationships among the

Concept

quality

function

object

environment

constraint

actor

platform

Relationship

is-a
(generalize)

has-a
(aggregate)

synonym

antonym

contradict

cause

apply

require

support

perform

2 1
{ordered}

symmetric reflective transitive

Figure 4. Ontology Meta model (Thesaurus
Part)

<<object>>
a copy of a book

<<object>>
a book

<<function>>
add

<<apply>>

<<function>>
add

<<apply>>

<<function>>
check out

<<function>>
return

<<apply>>

<<apply>>

<<constraint>>
deadline

<<object>>
member account

<<require>>

<<actor>>
member

<<quality>>
availability

<<contradict>>

<<constraint>>
expire date

<<object>>
publication

<<object>>
magazine

<<perform>>

Figure 5. A Part of a Domain Ontology for Li-
braries

concepts and they have varies of subclasses of “concept”
class and “relationship”. In the figure, “object” is a sub
class of a concept class and a relationship “apply” can con-
nect two concepts. Concepts and relationships in Figure 4
are introduced so as to easily represent the semantics in soft-
ware systems. Intuitively speaking, the concepts “object”,
“function”, “environment” and their subclasses are used to
represent functional requirements. On the other hand, the
concepts “constraint” and “quality” are used to represent
non-functional requirements. The concept “constraint” is
useful to represent numerical ranges, e.g., speed, distance,
time expiration, weight and so on.

Basically, an instance of our ontology is represented in
a directed typed graph where a node and an arc represent
a concept and a relationship (precisely, an instance of a re-
lationship) between two concepts, respectively. Figure 5
shows a part of an instance of an ontology of library infor-
mation systems, and we use class diagram notation. Stereo
types attached to boxes (nodes) and arrows (arcs) show their
types. For example, “check out” belongs to a “function”
concept of Figure 4. An arc between “check out” and “a

copy of a book” is an “apply” relationship, which presents
that an object “a copy of book” participates in the function
“check out”.

As will be mentioned later, we use Prolog to infer var-
ious properties on an ontology and so we should represent
the instance as Prolog fact. Actually, the example ontology
of Figure 5 can represented with predicates as follows;

apply(function(check out), object(a copy of a book))
apply(function(return), object(a copy of a book))
apply(function(add), object(a copy of a book))
apply(function(add), object(publication))
has-a(object(a copy of a book), quality(availability))
has-a(function(return), constraint(deadline))
has-a(object(member account), constraint(expire date))
· · ·

The names of predicates come from relationships. For ex-
ample, in “has-a” relationship, its first parameter stands
for a “whole” concept, while the second is a “part” of the
“whole” object, e.g. the predicate has-a(object(a copy of
a book)) expresses that a copy of a book has the quality
characteristic “availability”. To clarify the type informa-
tion on concepts explicitly in Prolog facts, we use unary
functions whose names are the types of the concepts, e.g.
function(check out) expresses that the type of the concept
“check out” is “function”. The descriptions related to qual-
ities and constraints sometimes contradict or contribute to
each other, and we have two relationships “contradict” and
“contribute” in our ontologies. For example, in Figure 5,
the following relationship can be found.

contradict(constraint(deadline), quality(availability))
It means that extending the deadline of returning bor-

rowed books causes less availability of them to other poten-
tial borrowers. Some relationships are categorized into re-
flective, transitive or symmetric types in these figures. We
can infer several facts based on such categorization. For ex-
ample, the relationship “contradict” belongs to symmetric
types, so we can have the following inference rule automat-
ically:

contradict(x,y) → contradict(y,x)

3.3 Mapping and Inference Rules

To utilize the ontology mentioned in the previous sub
section, we have to discuss how to represent the semantic
mappings that were shown in as shown in Figure 2. Fig-
ure 6 illustrates semantic mappings from the requirements
items to a Library ontology, and the instances of “map item”
specify semantic mappings from a requirements item to on-
tological elements, i.e. concepts and relationships. For ex-
ample, the item “1. a copy of a book shall be checked out”
is mapped to the ontological elements “a copy of a book”
and “check out” through the map item #1. And we can con-
sider that the requirements item # is also mapped to “apply”
relationship between “a copy of book” and “check out”.
The concepts and the relationships that a requirements item

is mapped to is called mapped concepts and mapped rela-
tionships respectively. Furthermore, we call together both
of mapped concepts and mapped relationships mapped ele-
ments. In this example, the mapped concepts of a require-
ments item #1 are both function(check out) and object(a
copy of a book). Although the automated techniques to
find such mappings is out of scope of this paper, we can
consider that lexical matching and keyword matching using
thesauruses in the area of information retrieval are one of
the promising techniques. We can calculate measures men-
tioned in 2.2 using mappings of Figure 6.

Based on mapped elements, we clarify the meaning of
requirements items on an ontology. By using the inference
rules in the ontology, we extend and improve the require-
ments list. Our inference rules are written in simple if-then
form such as “if require(X,Y) exists in the ontology and X
is a mapped element, there is a requirements item that is
mapped to Y”. In Figure 6, we have the relationship “re-
quire(function(check out), object(member account))” and
the mapped concept “check out” to which the “#1 leaf” is
mapped. Following the above rule, we should include “ob-
ject(member account)” as a mapped concept, and as a result
extend the requirements list by adding the sentence refer-
ring to “member account”. Another example of the rules is
“if contradict(X,Y) exists in the ontology and X and Y are
mapped elements, then some requirements items that are
mapped to X or to Y should be deleted so as to include ei-
ther X or Y”. This deletion allows us to have the consistent
requirements list. We will explain such procedure in detail
in the next section.

Note that our semantic mapping approach does not pro-
vide precise meaning of natural language sentences, but that
it clarifies references to a fragment of atomic meaning con-
cepts. Consider the example of the following two require-
ments items; the deadline is 4 weeks later and the deadline
is 2 weeks later. If our ontology includes the concepts of
the numbers “4” and “2”, we can distinguish between them.
However, the ontology shown in Figure 5 has the concept
“deadline” only, and thus both of these items are mapped
into it. As a result, we cannot specify their semantic dif-
ference on the ontology and this semantic mapping. The
mapping provides references of a requirement to a part of
meaning.

4 Procedure in Our Method

In this section, we clarify a procedure of our method
ORE. A requirements analyst follows it to produce a com-
plete set of requirements items from an initial requirements
list. The initial requirements list is provided by customers
and/or users, and it may include inconsistent and ambigu-
ous descriptions. Furthermore greatly indispensable re-
quirements items may be missing in the initial list, and the
items that should be further refined and made more con-
crete may still remain in the list. A requirement analyst
uses our method to extend and improve a requirements list

Ontology
of a Library

Req. List
of a Library
System

system name : String = library system

 : requirements list

sentence : String = a copy of a book shall be checked out.
mondatory : Boolean = true

#1 : leaf

sentence : String = books shall be highly available for members.
mondatory : Boolean = false

#2 : leaf

sentence : String = books shall be able to be added.
mondatory : Boolean = true

#3 : leaf

<<object>>
a copy of a book

<<object>>
a book

<<function>>
add

<<apply>>

<<function>>
add

<<apply>>

<<function>>
check out

<<function>>
return

<<apply>>

<<apply>>

<<constraint>>
deadline

<<object>>
member account

<<require>>

<<actor>>
member

<<quality>>
availability

<<contradict>>

<<constraint>>
expire date

#3 : map item#1 : map item #2 : map item

<<object>>
publication

<<object>>
magazine

<<perform>>

Figure 6. A Part of a Semantic Mapping

incrementally and iteratively, interacting with stakeholders
such as customers and users by interviews.

Figure 7 shows the process view of our method to im-
prove and extend requirements. After making mappings in
Step 2 in Figure 7, the metrics mentioned in section 2 can
be calculated automatically, but accepting the calculating
results depends on the decision of a requirements analyst.
For example, even if the metrics values are not high enough,
an analyst does not have to update requirements. The met-
rics and evaluation results are merely suggestions or hints
to update the requirements list. When the size of require-
ments list and/or ontology increases, the cost of automatic
calculation may also increase. However, we do not think
that it causes to increasing the amount of analyst’s tasks,
and we need more experiments and/or simulations to clar-
ify this point.

Basic idea of our method, especially Step 4 in the figure,
is as follows. At first, we estimate the quality of a require-
ments list by using the technique mentioned in section 2.2.
Based on the estimation results, we select alternatives to
improve and to extend the list. For example, when the com-
pleteness value of the list is not high, we find what items are
missing and should add them. An ontology helps require-

ments analysts to find these items as mentioned in 2.2. On
the ontology, we trace the relationships such as “require”
and “apply” associated with the concepts corresponding to
the items so that we can find the concepts to be newly added.
Step 4.(a) in Figure 7 has been developed based on this idea.

Consider that two sets A and B of concepts where no
concepts in A can be traced from a concept in B through
relationships “require” or “apply” and vice versa on the on-
tology, so called “islands” isolated to each other. The con-
cepts included in an island have no semantically relation-
ships to the concepts of another island. If a requirements
item is mapped into two different islands, the item can be
interpreted to have two meanings. Our method helps a re-
quirements analyst to find the items mapped into more than
one island. The analyst can decrease the ambiguity of the
item by removing such mappings into more than one island.
Step 4.(b) in Figure 7 is designed based on these ideas.

Our inference rules on a thesaurus written in Prolog cal-
culate four measures as well as deduce the candidates for
missing requirements items, ambiguous, inconsistent and
incorrect ones, by tracing “is-a”, “has-a”, “apply”, “require”
and “contradict” relationships and by extracting “islands”.

After completing the requirements list, requirements

� �
1. The analyst obtains from customers and/or users an initial requirements list.

2. For each requirements item, the analyst makes mapping from the item to concepts like Figure 6.

3. The analyst evaluates the quality of the requirements list by calculating the four measures mentioned in section 2.2.
If the measures are sufficiently high to the analyst and the stakeholders, finish this procedure. Otherwise continue
the steps below.

4. The analyst updates the requirements list according to the evaluation results of step 3.

(a) When the completeness measure is low, the analyst should find and add new items to the requirements list.

i. By focusing on the mapped concepts typed with “function”, “object” and “environment” and by then
tracing “apply” and “perform” relationships from the focused concepts in both directions, the analyst
finds the concepts to be newly added.

ii. By tracing “is-a”, “has-a” and “require” relationships from the mapped concepts only in specified direc-
tion, the analyst finds the concepts to be newly added.

(b) When the unambiguous measure is low, the analyst should find ambiguous items and then modify, remove
or split them into several items. The analyst looks for a requirements item that is mapped to more than one
“island” and it is a candidate of an ambiguous item. In the case of splitting it, the analyst does it into several
items so that each of the items is mapped to only one “island”.

(c) When the correctness measure is low, the analyst focuses on the mapped concepts of the incorrect items, and
asks stakeholders whether the items are really necessary or not.

(d) When the consistency measure is low, one of two inconsistent items is selected to be removed. The incon-
sistent items can be detected by searching contradict relationships in the mapped elements. The priority
relationships among the items can help the analyst and stakeholders to decide which item should be removed.

5. Back to the step 2.
� �

Figure 7. A Procedure for Requirements Elicitation

specifications will be described, but how to tailor specifi-
cation documents compliant to a standard such as IEEE 830
is out of scope of this procedure.

By using the models shown in Figure 6, we will illustrate
the steps above. Our illustration process starts after finish-
ing the steps 1 and 2, and the mapping has been already
established as shown in Figure 6.
Results of Step 3

According to the definitions in section 2.2, we calculate
the measures as follows.

(a) Completeness = 6/13 = 46 %
(b) Unambiguity = 1/3 = 33 % (Only an item #1
is unambiguous.)
(c) Correctness = 3/3 = 100 % (All items are
mapped.)
(d) Consistency = 5/5 =100 % (No contradict re-
lationship is contained.)

Note that # of requirements items is 3, # of all concepts
is 13, # of mapped concepts is 6, # of all relationships is
15 and # of relationships between mapped concepts is 5 in
Figure 6. As a result, the values of completeness and of
unambiguity are low, thus we proceed to the next steps in

order to improve them.
Results of Step 4

According to the results in Step 3, we update require-
ments items as follows. As a result, six candidates of new
requirements items are found in Step 4.(a) and 4.(b), and
completeness and unambiguity will be improved.

Step 4.(a) For completeness:
According to Step 4.(a).i, the following candidates are
found: function(return) from the items #1 and #3,
function(return), object(publication) from the item #2.
According to Step 4.(a).ii, the following candidates
are found: object(member account) from the items #1,
which is connected to the mapped concepts of item #1
through “require” relationship.
And then we compose the following four sentences
from the newly found concepts “return”, “publication”
and “member account”:

1. A copy of a book shall be returned.

2. Publications shall be added.

3. Member account shall be required when checking
out.

4. The member shall have the member account.

Step 4.(b) For unambiguity:
According to Step 4.(b), the item #3 is mapped to
two concepts object(a copy of a book) and object(a
book); the former stands for a physical copy of a book
and the latter denotes publication, which are connected
through “has-a” relationship. These can be considered
as “islands”, and we should decide with which mean-
ing the word “books” is used in the requirements list.
We split the item #3 into the following two items ac-
cording to the Step 4.(b), as follows, since the item #3
uses the word “books” with both of meanings.

5. Copies of a book shall be added.

6. New books shall be added.

There is an is-a relationship between object(a copy of
a book) and quality(availability) mapped from the item
#2. However, we do not apply Step 4.(b), because the
concepts has the different types; object and quality.

Step 4.(c) For correctness:
We have to do nothing because the correctness mea-
sure shows 100%.

Step 4.(d) For consistency:
We also have to do nothing because the consistency
measure shows 100%. However, we will have to do
something in the next iteration because a contradict re-
lationship can be introduced by the result in Step 4.(a)
in this iteration.

Note that the completeness measure represents the ra-
tio of mapped elements to all ontological elements in the
thesaurus. It means that a requirements list refers to every-
thing included in the thesaurus if the measure is 100%, and
it is not so reasonable. In the above process, we had to ex-
clude from the calculation of completeness the ontological
elements that the analyst decided not to include in a next
version of the requirements list in the Step 4.(a).

5 Case Studies and Discussion

To evaluate the user-friendliness and effectiveness of our
method, we made a comparative experiment. In this section,
we discuss the content of our experiment and its results.

5.1 Experiment

In our experiment, we had two types of subjects; nav-
igated subjects and free subjects. The former subject
should perform requirements elicitation tasks following our
method, while the latter did not use the method but could do
his/her task as he/her liked. Both types of subjects extended

a requirements list by using domain ontology, and were in-
structed to record his/her process, especially extended re-
quirements items and mappings between ontological con-
cepts and the items. A navigated subject followed the pro-
cedure in section 4. A free subject was instructed to use
the ontology as domain knowledge and to record the corre-
spondence of the improved requirements items to ontologi-
cal concepts during his/her requirements elicitation process
and to use The free subject calculated the quality measures
mentioned in section 2.2 after finishing his/her experiment.
On the other hand, as for a navigated subject, they were
being calculated by him/her during the experiment. By ana-
lyzing the numerical and process data resulted from the ex-
periment, we discuss the user-friendliness and effectiveness
of our method.

5.2 Experimental Results

We used a domain ontology of software music players,
which have been constructed from many documents of soft-
ware music players and it was shown in [9] The ontology
consists of 48 concepts and 67 relationships. The following
document (originally written in Japanese) was used as the
initial requirements list.

1. Play a music, pause. Go to next or previous music.
2. Forward and rewind.
3. Change the speed of playing.
4. Adjust volume and mute.
5. Repeat play list.
6. Random play list.

We selected three undergraduate students in software engi-
neering course, S1, S2, and S3 as our subjects. S1 and S2
were navigated subjects and S3 was a free subject. Since
S1 and S2 followed our method, they iterated steps of the
elicitation tasks twice, while S1 did not do but extended the
requirements items all at once. Table 1 shows the overview
of experimental results. For example, S1 started with de-
composing 6 items in the initial list into 11 items, and after
that, he/she mapped the 11 items into 14 concepts on our on-
tology. At this moment, the measures of correctness, com-
pleteness, consistency and unambiguity were 91%, 12%,
impossible to calculate (the denominator was 0), and 100%
respectively. In step 2, S1 had 24 items by adding 13 items
and mapped concepts were increased to 21. This increase
led to the improvement of completeness to 29% in S1’s ac-
tivity. Unlike S1 and S2, S3 did not decompose the initial
sentences anymore.

5.3 Discussion

The findings obtained from the experimental results can
be listed up as follows.

1. The number of mapped concepts per one requirements
item reflects the semantic simplicity of the item. The
numbers of subjects S1 and S2 (35/39=0.9, 26/24=1.1,

Table 1. Results of Experiments
Subject Initial Step 1 Step 2

S1 # Requirements Items 11 24 39
Mapped Concepts 14 21 35
Correctness (%) 91 96 97
Completeness (%) 12 29 46
Consistency (%) – 100 100
Unambiguity (%) 100 50 49

S2 # Requirements Items 11 25 25
Mapped Concepts 13 26 26
Correctness (%) 90 100 100
Completeness (%) 11 22 22
Consistency (%) 100 100 100
Unambiguity (%) 80 100 100

S3 # Requirements Items 6 16
Mapped Concepts 14 40
Correctness (%) 83 100
Completeness (%) 12 35
Consistency (%) 100 98
Unambiguity (%) 100 100

after step 2) were relatively smaller than the number of
S3 (40/16=2.5), and it means that the items of S1 and
S2 are semantically simpler than S3’s items. There-
fore, our method seems to contribute to write simple
requirements items. In fact, most items of S3 were
complex sentences, each of which contained more than
one requirement.

2. In the initial step, all subjects identified 13 or 14
mapped concepts. Therefore, mapping activities in our
method seems to be objective. It can be considered the
mapping results may be same whoever does this task
of mapping.

3. Subject S1 and S2 iterated their processes twice ac-
cording to our method. However, S3 did not iterate his
process. Therefore, our method seems to encourage an
analyst to iterate RE process.

4. In any subjects, the values of quality measures in-
creased, and except for completeness values, the val-
ues became almost 100%. Therefore, our method
seems to be effective to improve the quality of require-
ments items.

5. Subject S3 explored ontological concepts in breath-
first way to make up for lacks of domain knowledge
from the ontology, and especially, he focused on “ap-
ply” relationships in his process. Our method also
encourages an analyst to focus on “apply”, thus our
method seems to be natural in the sense that it does not
force analysts to perform constrained tasks unnatural
to human.

6 Related Work

Roughly speaking, the other work related to our ap-
proach can be categorized into two groups; one is the tech-

nique to develop domain ontologies and another is the ap-
plication of ontological technique to requirements engineer-
ing. In research community of ontology, many computer-
ized tools to develop ontologies [2, 3] have been developed,
and some electronic versions of thesauruses such as Word-
Net [4] can be found. DAML Ontology Library [1] provides
ontologies for various domains and they are described in
standard OWL based language so as to achieve high inter-
operability. We can use them for our method by extracting
sub-ontologies from them and by integrating the several on-
tologies. Furthermore many persons participate in develop-
ing ontologies of their own and upload them to the library.
As a result, it is incrementally extended day by day and thus
we can get up-to-date ontologies of higher quality.

In [12], a domain ontology can be captured as domain
experts’ knowledge and a case study to try to extract an
ontology from requirements documents is presented. Al-
though the aim of these contributions is different from our
paper, they are very useful to construct domain ontologies
of high quality with less human efforts. According to [5], a
domain ontology is one of the crucial issues on developing
Semantic Web based systems and the techniques of require-
ments engineering can be applied to the development of an
ontology.

The studies in the second category are similar to our
work from the viewpoint of their goals. In [7], the idea to
use a domain model represented with RML for expressing
the meaning of requirements was firstly introduced. How-
ever, it did not discuss the technique to improve the quality
of requirements so much. LEL (Language Extended Lex-
icon) [5] is a kind of electronic version of dictionary that
can be used as domain knowledge in requirements elicita-
tion processes. Although it includes tags and anchors to
help analysts fill up domain knowledge, it has neither meth-
ods as guidance procedures nor semantic inference mecha-
nisms. PAORE [11] is a method for refining requirements
by using a domain thesaurus so as to select software pack-
ages, but its thesaurus has no inference mechanisms. It was
impossible to detect inferentially missing requirements and
inconsistent ones by this method. A feature diagram in Fea-
ture Oriented Domain Analysis [10] can be considered as a
kind of representations of a domain thesaurus, and in [22], a
technique to analyze semantic dependencies among require-
ments by using features and their dependency relationships
was proposed. The idea of this technique is similar to our
approach in the sense that requirements can be semantically
analyzed. However, the aim of our approach is the support
for requirements elicitation, while [22] just aimed at mod-
eling semantic dependencies lying behind a requirements
specification. In [16], the authors combined several formal
methods by using ontology as their common concepts. This
is another application of ontology in requirements engineer-
ing, especially method integration, but its goal is different
from ours.

Another remarkable work related to this area was Re-
quirements apprentice (RA) [17]. It used reusable templates

called Cliche to assist a requirements analyst in creating and
modifying requirements, and the cliches provided common
forms of requirements specification in a specific domain.
Using metrics for assisting an analyst is one of the key dif-
ferences between our work and RA. Spanoudakis et al [20]
proposed similarity metrics between software artifacts. Our
metrics can be regarded as some kinds of similarities be-
tween a requirements list and an ontology, thus we can ex-
tend or improve our metrics by using its technique.

7 Conclusion
In this paper, we propose a method for requirements elic-

itation by using ontology. The method helps a requirements
analyst to extend requirements systematically by taking ac-
count of the semantic aspect of requirements. We define
logical structures of artifacts during the method and its pro-
cedure. In the procedure, the following two kinds of activi-
ties are iterated; evaluation of requirements by using quality
metrics, and revision of the requirements based on the struc-
tural characteristics in ontology. We partially assess the
user-friendliness and effectiveness of this method through
an experiment. However, our experiment mentioned in sec-
tion 5 was too small to argue the generality of the experi-
mental findings.

To perform the method efficiently and effectively, CASE
tool(s) must be provided. We will develop such CASE tools
by using inference systems such as prolog [21] because in-
ference is one of the important factor in our method. Such
CASE tools will enable us to have much more experimental
findings. For example, we have already had ideas to predict
and guide requirements changes [9] and we will be able to
assess our ideas by using CASE tools. The result of our
method heavily depends on the quality of domain ontolo-
gies, thus acquiring good ontology data is important issue
in practice. Results of the related works in the previous sec-
tion are of course used to acquire ontologies for our method.
In addition, we are going to explore the possibility to ac-
quire ontology data from existing documents such as manu-
als and help files of software products by using text-mining
and lexical knowledge acquisition technology [14]. In fact,
we are starting to develop automated techniques to extract
thesauruses from natural-language documents [15].

References
[1] DAML Ontology Library. http://www.daml.org/onto-

logies/.
[2] KAON Tool Suite. http://kaon.semanticweb.org/.
[3] Proc. of 2nd International Workshop on Evaluation of

Ontology-based Tools. http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS//Vol-87/.

[4] WordNet: A Lexical Database for the English Lan-
guage. http://wordnet.princeton.edu/.

[5] K. Breitman and J.C.S.P. Leite. Ontology as a Re-
quirements Engineering Product. In Proc. of RE03,
pages 309–319, 2003.

[6] L. Goldin and D. Berry. AbstFinder, A Prototype Nat-
ural Language Text Abstraction Finder for Use in Re-
quirements Elicitation. Automated Software Engineer-
ing Journal, 4(4):375 – 412, 1997.

[7] Sol J. Greenspan, John Mylopoulos, and Alex
Borgida. On formal requirements modeling lan-
guages: RML revisited. In 16th ICSE, pages 135 –
147, 1994.

[8] M. Gruninger and J. Lee. Ontology: Applications and
Design. Commun. ACM, 45(2), 2002.

[9] Haruhiko Kaiya and Motoshi Saeki. Ontology Based
Requirements Analysis: Lightweight Semantic Pro-
cessing Approach. Proc. of QSIC2005, pages 223–
230, Sep. 2005.

[10] K. Kang, J. Lee, and P. Donohoe. Feature-Oriented
Product Line Engineering. IEEE Software, 19(4):58 –
65, 2002.

[11] J. Kato, M. Saeki, A. Ohnishi, N. Nagata, H. Kaiya,
S. Komiya, S. Yamamoto, H. Horai, and K. Watahiki.
PAORE: Package Oriented Requirements Elicitation.
In Proc. of APSEC2003, pages 17 – 26, 2003.

[12] L. Kof. Natural Language Processing for Require-
ments Engineering: Applicability to Large Require-
ments Documents. In Proc. of the Workshops, 19th
International Conference on Automated Software En-
gineering, 2004.

[13] A. Maedche. Ontology Learning for the Semantic
Web. Kluwer Academic Publishers, 2002.

[14] R. Mitkov, editor. The Oxford Handbook of Computa-
tional Linguistics. Oxford University Press, 2003.

[15] A. Miura and M. Saeki. A Technique for Constructing
Domain Thesauruses from Co-occurrence Information
of Words. In Proc. of LKR 2006, pages 23–26, 2006.

[16] M. Petit and E. Dubois. Defining an Ontology for the
Formal Requirements Engineering of Manufacturing
Systems. In Proc. of ICEIMT’97, 1997.

[17] H.B. Reubenstein and R.C. Waters. The Require-
ments Apprentice: Automated Assistance for Require-
ments Acquisition. IEEE Trans. on Software Eng.,
17(3):226–240, Mar. 1991.

[18] M. Saeki. Ontology-Based Software Development
Techniques. ERCIM News: http://www.ercim.org/p-
ublication/Ercim News/enw58/saeki.html, 58, 2004.

[19] M. Saeki, H. Horai, and H. Enomoto. Software Devel-
opment Process from Natural Language Specification.
In Proc. of 11th ICSE, pages 64–73, 1989.

[20] G. Spanoudakis and P. Constantopoulos. Measuring
Similarity Between Software Artifacts. In Proceed-
ings of SEKE ’94, pages 387–394, June 1994.

[21] tuProlog. http://lia.deis.unibo.it/research/tuprolog/.
[22] W. Zhang, H. Mei, and H. Zhao. A Feature-Oriented

Approach to Modeling Requirements Dependencies.
In Proc. of RE’05, pages 273–284, 2005.

