
Ontology Based Requirements Analysis:
Lightweight Semantic Processing Approach

Haruhiko Kaiya
Faculty of Engineering,

Shinshu University
4-17-1 Wakasato,

Nagano, 380-8553, Japan
kaiya@cs.shinshu-u.ac.jp

Motoshi Saeki
Graduate School of Information Science and Engineering,

Tokyo Institute of Technology
2-12-1, Ookayama, Meguro-ku,

Tokyo, 152-8552, Japan
saeki@se.cs.titech.ac.jp

Abstract

We propose a software requirements analysis method
based on domain ontology technique, where we can estab-
lish a mapping between a software requirements specifica-
tion and the domain ontology that represents semantic com-
ponents. Our ontology system consists of a thesaurus and
inference rules and the thesaurus part comprises domain
specific concepts and relationships suitable for semantic
processing. It allows requirements engineers to analyze a
requirements specification with respect to the semantics of
the application domain. More concretely, we demonstrate
following three kinds of semantic processing through a case
study, (1) detecting incompleteness and inconsistency in-
cluded in a requirements specification, (2) measuring the
quality of a specification with respect to its meaning and (3)
predicting requirements changes based on semantic analy-
sis on a change history.

Keywords: Requirements Engineering,
Lightweight semantic processing, Thesaurus.

1. Introduction

One of the goals of requirements analysis is to develop a
requirements specification document of high quality. There
are several methods to achieve this goal and their support-
ing tools are going to be used in practice, e.g., goal oriented
requirements analysis methods, scenario analysis, use case
modeling techniques and so on. One of the most crucial
problems to automate requirements analysis is that require-
ments documents are usually written in natural language,
e.g. English or Japanese. Although techniques for natu-
ral language processing (NLP) are being advanced nowa-
days, it is hard to handle such requirements documents suf-
ficiently by computer. However, semantic processing in
requirements is indispensable for producing requirements
specifications of high quality. To overcome the problem,
there are several approaches, but each of them has its inher-
ent problems. In some studies, a semi-formal notation for
representing requirements, e.g. restricted natural languages

was introduced, but it was difficult for human engineers to
write syntactically and semantically correct requirements
sufficiently by using this notation. Rigorous formal nota-
tions with axioms and inference system seem to be suitable,
but its usage is very limited to practitioners because of their
difficulty and complexity in the practitioners’ learning and
training.

We use an ontology system to develop a requirements
document of high quality. Ontology technologies are fre-
quently applied to many application domains nowadays.
Because concepts, relationships and their categorizations in
a real world can be represented in ontology, ontology can be
used as resources of domain knowledge, especially in a spe-
cific application domain. By using such ontology, several
kinds of semantic processing can be achieved in require-
ments analysis without rigorous NLP techniques.

In this paper, we propose a requirements analysis method
by using an ontology technique, where we establish a map-
ping between a requirements specification and ontological
elements. This technique allows us to have the possibility
of automating semantic analysis with lightweight process-
ing, not heavyweight NLP techniques. We call the proposed
technique as Lightweight Semantic Processing. By map-
ping requirements descriptions in a requirements document
onto ontological elements, which represents fragments of
meaning in a problem domain, each description can be se-
mantically interpreted. By applying inference rules to the
ontological elements, we can achieve semantic processing
about the requirements document.

The rest of this paper is organized as follows. In the
next section, we explain how to interpret requirements doc-
uments by using ontology, and discuss what kinds of pro-
cessing can be achieved in our ontology technique. In sec-
tions 3, 4 and 5, typical semantic processing techniques are
introduced respectively by using a case study about “soft-
ware music player” running on a personal computer (PC).
Finally, we conclude our current results and discuss the fu-
ture directions.

2. Ontology as a Semantic Model for Require-
ments Documents

2.1 Requirements for Ontology in Requirements
Analysis

One of the most famous definitions of the term “ontol-
ogy” is “formal explicit specification of shared conceptual-
ization” [10]. Another famous definition is “classifications
of the existing concepts”. In our study, each requirements
statement should be interpreted based on the knowledge of
atomic constituents of meaning, and ontology is used as
such knowledge. Thus an ontology, which is used in re-
quirements analysis, has to have atomic concepts that are
interpreted in the same way by any stakeholder in a specific
application domain.

By using lexical decomposition technique [14], each re-
quirements statement can be decomposed into several terms
that are interpreted in the same way by anyone. Semantic
structure among such terms, i.e., a thesaurus is required for
our requirements analysis because such terms can be used
as pointers to concepts. For example, we can use synonym
relationship among terms when we unify different terms
for the same concept. Generalization relationship among
terms is also useful because we don’t have to explain gen-
eral characteristics of a specific term again. We need not
only generic concepts and relationships such as synonym
or generalization but also those appearing in software prod-
ucts and processes. For example, concepts such as “func-
tion” and “constraint” and relationships such as “apply (a
function)” and “require (a constraint)” are required in our
thesaurus.

We want to analyze a requirements document in the fol-
lowing ways, first detecting incompleteness and inconsis-
tency, second measuring the quality of the document with
respect to its meaning, and last predicting requirements
changes. Then, we need a mechanism to process the the-
saurus, a requirements document and their relationships.
We will use logical inference mechanism because it seems
to be suitable for three kinds of requirements analysis above
and supporting tools such as prolog are available. To sum-
marize, ontology used in this study consists of a thesaurus
and a set of inference rules.

2.2 Ontology System for Requirements Docu-
ments

Figure 1 illustrates mappings from requirements items
(statements) in a requirements document to elements in an
ontology. The ontology is written in the form of class dia-
grams. The requirements document may be described in ad-
vance, or it may be described incrementally through the in-
teraction between a requirements analyst and stakeholders.
The requirements document is analyzed by using this kind
of mappings. For example, we may suspect a requirements
document is incomplete when not all elements in an appro-
priate ontology are related to items in the document, e.g.,

C D

A

E

B

1. aaa
2. bbb
3. ccc

require

A requirements document “S” (consists of req. items.)

Fint: interpretation function

Domain Ontology “O” (thesaurus part only)

Figure 1. Mapping from Requirements to On-
tology

concept C in Figure 1. How to make such mapping and to
make or acquire an appropriate ontology is out of scope of
this paper. We assume requirements analyst achieves such
mapping. We formally define the notations and semantics
of our ontology system below.

2.3 Thesaurus in an Ontology System
To process requirements semantically, we have to explic-

itly describe semantic information in a thesaurus. Thus we
represent a thesaurus in a directed graph with typed nodes
and arcs like UML class diagram. We use the class diagram
notation because we want to simply represent a typed di-
rected graph. We will use another powerful notation when
our thesaurus becomes more complex. Nodes in the graph
correspond to concepts in ontology, and arcs correspond to
semantic relationships among concepts. We have decided
types of concepts and relationships for requirements analy-
sis as shown in Figure 2. To detect inconsistency among
concepts, we explicitly introduce a relationship “contra-
dict”. We also introduce a relationship “require” to capture
concepts missing in a requirements document. We intro-
duce software requirements specific concepts and relation-
ships. For example, “function” and “quality” are frequently
mentioned in requirements documents, and a relationship
“apply” is used to represent e.g., a function is applied to an
object. According to the type of each concept or relation-
ship, different inference rules are used, thus we can process
a requirements document semantically without natural lan-
guage processing techniques. To summarize, our ontology
system can be represented in the following way.

Ontology System = (Con, Rel, Rules)
Con: a set of concepts. Con = ∪t∈TypeCont

Cont: a set of concepts where its type is t, e.g.,
Cont=“function”
Rel: a set of relationships. Rel = ∪u∈RelRelu
Relu = 2Con×Con : a set of concept pairs that can
be related by Relu, e.g., by “contradict”

“Rules” represent a set of inference rules and we will ex-
plain them in detail below.

Concept

quality

function

object

environment

constraint

actor

platform

Relationship

generalize

aggregate

synonym

antonym

associate

contradict

cause

apply

require

support

perform

2 1
{ordered}

Figure 2. Concepts and Relationships in Our
Thesaurus

For convenience, following predicates are used in the
rest of this paper.
• P(x): the type of a concept or a relationship “x” is “P”.

e.g., function(play), object(music).
• R(x,y): the type of relationship between concept “x”

and “y” is “R”. e.g., aggregate(car, tire), general-
ize(operation, play), apply(delete, file), require(player,
codec).

• InSpec(x,S): requirements document S refers to con-
cept or relationship x. e.g., InSpec(A, S) and In-
Spec(require(A,C), S) are true but InSpec(C, S) is false
in Figure 1.

2.4 Mapping and Inference Rules

Mapping from requirements to thesaurus in Figure 1 can
be written formally bellow.

Fint : ReqItem → 2Con∪Rel

“ReqItem” is a set of requirements items (statements) in
a requirements document, and we call a function F int

as “an interpretation function”. In the case of Figure 1,
Fint(bbb) = {A, B, aggregate(A, B)} and Fint(ccc) =
{D, E}. A predicate InSpec can be written as follows by
using Fint.

InSpec(x, S) ≡ ∃r ∈ S · (x ∈ Fint(r))
Note that r shows requirements items in a document S.

By using the interpretation function and inference rules,
we can analyze a requirements document semantically. In
this study, we use first order predicate logic for the inference
mechanism. Logical formulas including inference rules ba-
sically come from two kinds of resources, one is a thesaurus
in an ontology system and another is explicitly described
rule.

Concepts in a thesaurus are used as constant values in
rules, and relationships are used as predicates. For example
in Figure 1, we can obtain the following four formulas from
the thesaurus.

require(A, C). aggregate(A,B). generalize(A,D).
associate(B,E).

According to the meaning of each relationship and con-
cept, we can define inference rules in advance. For example,
a relationship “generalize” is used to show that characteris-
tics of a super class are inherited to its sub classes. This fact
can be written in the following logical schema.

generalize(x, y) ∧ P(x) → P(y).
In the case of Figure 1, we can obtain the following rule

generalize(A, D) ∧ require(A, C)
→ require(D, C).

by applying assignments x=A, y=D and P(x)=require(x,C).
By using this rule, we can systematically know that re-
quirements items corresponding to a concept C seem to be
missed in a requirements document in Figure 1.

Inherent characteristics of each relationship are also rep-
resented as inference rules. For example, as a relationship
“generalize” is reflective and transitive, we use the follow-
ing inference rules.

∀x · generalize(x, x).
generalize(x, y) ∧ generalize(y, z)
→ generalize(x, z).

On the other hand, as a relationship “antonym” is symmet-
rical, we use the following rule.

antonym(x, y) → antonym(y, x).

2.5 An Example of an Ontology System

� �
1. Play a music, pause. Go to next or previous music.

2. Forward and rewind.

3. Adjust volume and mute.

4. Repeat play list.

5. Random play list.

� �
Figure 3. Requirements Document A (for mu-
sic player)

Here we show a simple example to demonstrate the use
of our ontology system. Figure 3 shows a requirements doc-
ument that should be analyzed, and Figure 4 shows an on-
tology (thesaurus part only). Because the ontology in Fig-
ure 4 is generated based on the document in Figure 3, each
requirements item is successfully mapped to the part of the
ontology. Round rectangles written in dashed line in Fig-
ure 4 show each return value of the interpretation function
Fint. For example, Fint(item 3 in Figure 3) corresponds to
the following set.

{ volume op, volume, adjust, mute,
generalize(volume op, adjust),
generalize(volume op, mute),
apply(volume op, volume) }

Several ambiguous, incomplete or inadequate points can
be found in the requirements document. For example, “play

<<function>>
music op

rewindforward <<antonym>>

<<object>>
music

<<apply>>

play

pause

<<antonym>>
<<object>>

play list

<<function>>
play list op

<<apply>>

repeat

random

next prev<<antonym>> <<require>>

<<require>>

<<object>>
volume

<<function>>
volume op

mute

<<apply>>

adjust

(1) (2)

(3) (4)

(5)

Figure 4. Ontology A (generated from a Doc-
ument A)

list” in items 4 and 5 in Figure 3 is not clearly specified.
The ontology system should provide a relationship such as
aggregate(play list, music) to specify the term clearly. In ad-
dition, editing operations for play list such as create, delete
or update should be also provided for the completeness of
the requirements document. Section 3 provides additional
means for detecting such issues.

3. Detecting Inconsistency and Incompleteness
We check whether a requirements document is consistent

or complete by using an ontology system. As mentioned in
last section, each requirements item (statement) is mapped
onto a set of elements (concepts and relationships) in the
thesaurus of the ontology system. To detect inconsistency
of a requirements document, we try to find mutually contra-
dicting elements where requirements items are mapped. For
example, we decide the document is inconsistent if there
is a relationship “contradict” between two concepts where
the document is mapped. To detect incompleteness of a re-
quirements document, we follow specific relationships from
concepts where the document is already mapped. For exam-
ple, we follow “require” relationship and find a concept that
does not appear in the current document. Then, we add new
requirements items (statements) corresponding to the con-
cept.

These detections are systematically achieved by infer-
ence rules. By using a thesaurus in Figure 5 and inference
rules below, we will improve a requirements document A in
Figure 3 with respect to the consistency and completeness.

First, we suppose the following inference rule for im-
proving the completeness of a requirements document.

∀s∀x∃y · ((object(x) ∧ inSpec(x, s))
→ (function(y) ∧ apply(y, x) ∧ inSpec(y, s)))

The intuitive meaning of this rule is that “if an object is
mentioned in a document, functions that can be applied to

the object are also mentioned in the document”. As an
object(play list) is mentioned in the document A, the rule
above can be applied for improving the completeness of the
document A as follows.

∃y · ((object(play list) ∧
inSpec(play list, document A))
→ (function(y) ∧ apply(y, play list) ∧
inSpec(y, document A)))

As a result, we can investigate the possibility about
inSpec(create, document A), inSpec(delete, document A),
inSpec(import, documnet A) and so on. Of course, the
requirements analyst finally decide whether a function
is added to the requirements or not. Suppose a func-
tion(import) is added and the following requirements item
(statement) 6 is added to the document A. We call the ex-
tended document as the document B.� �

6. Import play list.

� �
Second, we also suppose the following inference rule for

improving completeness of a requirements document.
∀s∀x∀y · (InSpec(x, s) ∧ require(x, y)
→ InSpec(y, s))

The intuitive meaning of this rule is “if a concept is men-
tioned in a requirement document, concepts required by the
concept should be also mentioned in the document”. As
function(import) is mentioned in the document B and the
function requires another function(convert) as shown in Fig-
ure 5, the rule above can be applied to the document B as
follows.

InSpec(import, documentB) ∧
require(import, convert)
→ InSpec(convert, documentB)

As a result, a new requirements item (statement) 7 related
to function(convert) should be added to the requirements
document B in the following way.� �

7. Convert play list.

� �
We call such extended document as requirements document
C. A relationship “antonym” plays the same role as “re-
quire”. For example, if function(create) is mentioned in a
requirements document and antonym(create,delete) exists
in an ontology, function(delete) should be also mentioned
in the document.

Finally, we suppose the following formula for detecting
inconsistency.

∀s∀x · (InSpec(x, s)
→ ∃y · (InSpec(y, s) ∧ contradict(x, y))

The intuitive meaning of this formula is “if a concept x is
mentioned in a requirements document, another concept y
is also mentioned in the document and x contradicts y”.
When this formula becomes true, we may assume the re-
quirements document is inconsistent. Suppose the follow-
ing two items 8 and 9 are added to the requirements docu-

<<function>>
music op

rewindforward <<antonym>>

<<object>>
music<<apply>>

play

pause<<antonym>>

<<object>>
play list

<<function>>
play list op

<<apply>>

repeat

rando

next prev<<antonym>>

<<require>>

<<require>>

+vol

<<constraint>>
volume

<<function>>
volume op

mute

<<apply>>

adjust

append a music
delete a music

<<antonym>>

<<object>>
music file

<<require>>

<<function>>
decode<<apply>>

<<object>>
codec

<<require>>

<<function>>
dynamic load<<apply>>

<<quality>>
time efficiency

<<contradict>>

create

import

sequential<<require>>

to beginning

<<constraint>>
tone

<<function>>
adjust

<<apply>>

show

show title

<<object>>
title

<<require>>

delete

<<antonym>>

<<antonym>>

<<quality>>
space efficiency

<<function>>
file op

<<apply>>

delete

<<quality>>
consistency

<<contradict>>

repeat

file

<<quality>>
usability

<<quality>>
interoperability

<<function>>
select

<<apply>>

<<apply>>

<<cause>>

<<function>>

convert

<<require>>

browse

stop

<<antonym>>

<<function>>

timer op

<<require>>

<<object>>

timer

<<cause>>

<<quality>>

accuracy

Figure 5. Ontology B (more complete version)

ment C, and we call the extended documents as document
D.� �

8. Operations are quickly. (time efficiency)
9. Dynamic and on-demand loading of codec modules for unknown
formats (dynamic load)

� �
Two concepts quality(time efficiency) and func-
tion(dynamic load) are found in the ontology in Figure
5, and they correspond to the requirements items 8 and 9
respectively. In addition, the following relationship is also
found in the ontology.

contradict(quality(time efficiency),
function(dynamic load))

The formula above is systematically interpreted as true
when x=quality(time efficiency), s=document D and
y=function(dynamic load). In other words, we can know
function(dynamic load) is harmful with respect to the qual-
ity(time efficiency) by interpreting the formula above under
the ontology in Figure 5. In this way, we can find incon-
sistency in a requirements document. How to resolve the

inconsistency is out of scope of this paper, but it depends on
the analysts and/or stakeholders in general.

We have introduced three inference rules or logical for-
mula for detecting incompleteness and inconsistency about
a requirements document. As we illustrated, mapping re-
quirements items to the elements in an ontology seems to be
useful and lightweight for semantic processing in require-
ments analysis.

4. Metrics for Requirements Documents
By using our ontology system, we can calculate met-

rics for the characteristics of a good software requirements
specification. In IEEE 830 standard [1], there are eight
characteristics and the following four characteristics are re-
lated to the semantics of a requirements specification. Note
that “ReqItem” means the set of requirements items (state-
ments) in a requirements document, “Con” means the set
of concepts in an ontology, “Rel” means the set of rela-
tionships in the ontology, and “Clo” means a closure of
Con ∪ Rel\{contradict, antonym}.

• Correctness =
|{x | x ∈ ReqItem ∧ Fint(x) �= φ}|

|ReqItem|
We regard ontology as a semantic basis for a specific

domain, thus all requirements items should correspond
to elements in the ontology.

• Completeness =
{x | x ∈ Con ∪ Rel ∧

∃y : ReqItem · x ∈ Fint(y)}
|Con ∪ Rel|

Ideally, all elements in ontology should be men-
tioned in the requirements document for its complete-
ness.

• Consistency =
|{x | x ∈ RCC ∧ ¬contradict(x)}|

|RCC|
Relationships between concepts mentioned in the

requirements document are focused in this metric.
Such relationships can be represented in the following
way.

RCC =
{r | ∃a∃b : Con · ∃x∃y : ReqItem·

a ∈ Fint(x) ∧ b ∈ Fint(y) ∧ r(a, b)}
If there are “contradict” relationships in such relation-
ships, we regard the document is inconsistent.

• Unambiguity =
|{x | x ∈ ReqItem ∧ Fint(x) ⊆ Clo}|

|ReqItem|
When a requirements item is mapped onto several

elements that are not semantically related, the item is
regarded as ambiguous one. The set Clo is the maxi-
mal set of elements that are semantically related, thus
Fint(an item) should be a subset of Clo for unambi-
guity.

According to the definitions above, we calculated met-
rics for a requirements document in Figure 6 against the
ontology in Figure 5. Note that |Con| = 48, |Rel| = 67 and
|ReqItem| = 15.

• Correctness = 13/15 = 87%
ReqItem 8 and 9 cannot be mapped onto the ontology.

• Completeness = 51/(48 + 67) = 44%
• Consistency = 35/36 = 97%

A concept for ReqItem 4 and another concept for Re-
qItem 14 have a contradict relationship in the ontology.

• Unambiguity = (15 − 2)/15 = 87%
ReqItem 11 and 13 are ambiguous.

From this small experiment, the metrics seems to be
valid, but there are some problems. Our ontology inher-
ently contains contradict relationships. Therefore a require-
ments document is inconsistent if its completeness metric
is 100%. Because this fact seems to be a little bit strange
against our intuition, we have to reconsider the definition of
completeness metrics. One of the ideas is to use a transi-
tive closure of relations except “contradict” relation as the
denominator of the definition. Other problem is about con-
sistency about play list. If ReqItem 15 is accepted, a music
file that is listed in a play list can be freely deleted by other
applications, e.g., by file browser and the play list cannot
be handled consistently by the music play. Current defini-
tion of consistency cannot take such case into account. An-

� �
1. Play a music.

2. Pause a music.

3. Go to next or previous music.

4. Operations are quickly.

5. rewind and forward a music.

6. Adjust volume and mute.

7. Set volume for each music.

8. Play a music in any speed.

9. Play a music in any tone.

10. Random play list.

11. Delete play list.

12. Set volume for each play list.

13. Repeat play.

14. Dynamic and on-demand loading of codec modules for un-
known formats.

15. Music files can be operated by other applications.

� �
Figure 6. Requirements document X

other problem is about priority about functionalities. Both
in ReqItem 7 and 12, the rate of volume can be set in dif-
ferent ways. Because priority about these settings is not
mentioned in this requirements document, the document is
intuitively ambiguous. However, current definition of un-
ambiguous cannot take such case into account. All these
cases are against our intuition, thus we will improve the def-
initions of the metrics.

5. Predict Requirements Changes
5.1 Change Patterns on the Ontology

If requirements changes in the next version can be pre-
dicted in advance, there are following kinds of advantages.
• We can decide which part in a requirements document

is stable and which part is unstable. Note that sta-
ble parts are rarely changed in the future, but unstable
parts will be frequently changed.

• Predicted changes enable us to improve the complete-
ness of requirements specification incrementally.

We try to collect patterns of requirements changes fre-
quently occur to predict requirements changes in the future.
We assume effective and useful patterns can be character-
ized not only by syntactic features but also by semantic fea-
tures of requirements. We examine this assumption by ex-
ploring change history of music player software.

We found the following two patterns of requirements
changes in the history.

1. Append new functionality: Lacking functionality is
found and it is appended.

2. Improve the quality of existing functionality: Insuf-
ficient quality, e.g., performance, usability and/or in-
teroperability, of a function are found and the quality

is improved. This kind of insufficiency is usually de-
tected after the system worked.

In both patterns, our ontology system contributes to predict
the changes. The relationship “require” suggests us func-
tions to be added in the former pattern in the same way
in Section 3. The relationship aggregate(function(x), qual-
ity(y)) suggests us qualities to be improved in the latter pat-
tern.

We represent the patterns above in a logical formula
below so that requirements analyst can predict expected
changes by applying the formula to the current version of
software. If the formula is not satisfied in a version, the ver-
sion should be changed so that the formula becomes true.

(¬InSpec(x, Si) ∧ InSpec(x, Si+1)) →
∃j∃y∃ri+1∃rj∃Sj ·((j > i+1)∧((InSpec(y, Sj)∧
quality(y) ∧ Rel(x, y) ∧ rj ∈ Sj ∧ ri+1 ∈ Si+1 ∧
((y ∈ F(rj) ∧ ((y �∈ F(ri+1)) ∨ ((y ∈ F(ri+1) ∧
ri+1 �= rj)))

Note that Si means a requirements document S version i,
and the more the version number is, the newer the document
is. ReqItem ri+1 and rj are related to quality(y) in Si+1

and Sj respectively. Rel(x,y) shows whether function(x) is
related to quality(y). The quality(y) could be a part of x
or a part of an object applied by x. We can represent this
predicate as follows.

Rel(x, y) =
∃a · (generalize(a, x)∧aggregate(a, y))∨∃b∃c ·
(generalize(b, x)∧apply(c, b)∧aggregate(c, y))

The intuitive meaning of the formula is as follows. When a
new function x is added to a requirement document version
i+1, requirements items (statements) about quality(y) that
has a relationship (Rel) with x in the later version j of the
document represent the one of the following characteristics.

1. rj is added. (y ∈ F(rj) ∧ y �∈ F(ri+1) · · ·)
2. items are updated from r i+1 to rj. (((y ∈ F(rj)∧(. . .∨

((y ∈ F(ri+1) ∧ ri+1 �= rj)))

5.2 Evaluation
To evaluate the patterns above, we analyzed a change

history of software music player by using the ontology
in Figure 5. The history is written in natural language
(Japanese), 35 versions, including minor updates, of the
software exist in the history. The version number of old-
est software is 1.00, and the lasted version number is 2.02.
Except the records of bug and defects fixes, 50 changes are
found in the history. We categorize the changes as shown in
Table. Note that one change is sometimes categorized into
several types, thus the total number of categorized changes
is more than 50.

An example of changes categorized into “Interoperabil-
ity” is “increasing file formats that can be handled”. An
example of “Time Efficiency” is “improving response time
of play operations”. Examples of “Usability” are “introduc-
ing short-cut operations” and “improving the behavior of
pop-up menus”.

Table 1. Types of Changes and Their Frequen-
cies

Type name of changes #
Add Function 12
Improve Reliability (Error handling) 3
Improve Time Efficiency 3
Improve Interoperability 6
Improve Usability 30
Improve Accuracy 1

As shown in Table 1, 12 changes about adding functions
are found in the history. According to the history, qual-
ity features were added to functions occurred after two out
of the 12 functions’ changes occurred. Quality features of
functions were improved after other 8 out of 12 changes
occurred. In the rest changes (two changes), new function-
alities were simply added. From this fact, changes related
quality features seems to occur frequently after new func-
tions are added. This supports the patterns in section 5.1,
thus we may predict requirements changes by using such
patterns. We will refine such patterns to fit more specific
situations specified by each domain ontology.

6. Conclusions and Future Works
In this paper, we propose a requirements analysis method

by using domain ontology. Even though the method does
not support rigorous natural language processing techniques
(NLP), the method enables us to detect incompleteness and
inconsistency about a requirements document, to measure
the quality of the document, and to predict requirements
changes in the future versions of the document. We examine
the method about software music player.

We did not have/use specific supporting tools in our cur-
rent study, but we use generic tools like a spreadsheet and
a diagram editor with macro processing. After defining the
process to use our ontology approach, we will design and
implement its supporting tools.

There are many studies using NLP for requirements en-
gineering. For example, inconsistencies in natural language
requirements are discovered [17], conceptual models are
semi-automatically generated by linguistic analysis [13], or
formal method and lightweight natural language processing
are used together [9]. However, it seems to be unclear how
to handle domain knowledge and quality of requirements
document itself in such studies. Studies to handle ambigu-
ity in use case descriptions written in natural language exist
[6], [7], but they also unclearly handled domain knowledge.
There is a CASE tool to generate class diagrams from re-
quirements [8], and a description called “world model” is
used in the tool. The world model corresponds to the ontol-
ogy in our study, but the world model is not used to interpret
a requirements document but to make up for a deficiency of
such a document.

Domain ontology in high quality is indispensable for our
study, thus how to develop or acquire such ontology should

be also studied. We will introduce data mining techniques
on several kinds of natural language descriptions such as
users manuals, change histories, use case descriptions, sce-
narios and so on. Such kinds of documents can be require-
ments specification [2]. However, most methods for build-
ing ontology are ambiguous, thus the quality and efficiency
of building ontology depend on the skills of each engineer
[4]. Therefore, we have to explore systematical procedure
to build ontology. Normally, we focus on the frequency of
the occurrences of words or phrases in the documents when
we build ontology. In addition, comparison among several
documents also helps to build ontology in high quality [12].

COTS (Commercial Off-the-Shelf Software) and OISR
(Off-the-Shelf Information Systems) will be easily selected
by ontology generated from documents about COTS and
OISR. Ontology is already used in OISR selection [15], and
techniques in such study will be able to be used in require-
ments analysis.

There is a study to predict source code changes by min-
ing change history [16], but there is no such studies in re-
quirements analysis. In contrast to source codes, there are
no unified and formal languages in requirements documents
and change history thus it is hard to analyze them in require-
ments analysis. In our study, ontology plays a role to relate
different versions of documents and their change histories
with each other, thus we can predict changes in require-
ments documents.

In our study, quality characteristics are also represented
as concepts in ontology. However, such characteristics are
represented in a goal model and such goal model and ontol-
ogy are combined in a study [5]. We also have our own goal
oriented requirements model [11], thus we try to explore the
possibility to combine a goal model and ontology. With re-
spect to extending a model for semantic processing, we have
to take implementation issues into account. To add knowl-
edge about implementation into ontology, tasks in design
and implementation phases could be supported by the on-
tology. Knowledge representation in WinWin [3] can be re-
garded as ontology with knowledge about implementation,
and we will be able to gain an insight from the representa-
tion.

Acknowledgement

This study is supported by Grant-in-Aid Scientific Re-
search #16016230 on Priority Area “Informatics” (Area
#006).

References
[1] IEEE Recommended Practice for Software Requirements

Specifications, 1998. IEEE Std. 830-1998.
[2] D. M. Berry, K. Daudjee, J. Dong, I. Fainchtein, M. A.

Nelson, T. Nelson, and L. Ou. Users manual as a require-
ments specification: case studies. Requirements Engineer-
ing, 9(1):67 – 82, Feb. 2004.

[3] B. Boehm and H. In. Identifying Quality-Requirement Con-
flict. Software, 13(2):25–35, Mar. 1996. IEEE.

[4] K. K. Breitman and J. C. S. do Prado Leite. Ontology
as a Requirements Engineering Product. In 11th IEEE In-
ternational Requirements Engineering Conference (RE’03),
pages 309–319, Sep. 2003.

[5] L. M. Cysneiros, J. C. S. do Prado Leite, and J. de Melo
Sabat Neto. A Framework for Integrating Non-Functional
Requirements into Conceptual Models. Requirements Engi-
neering, 6(2):97 – 115, Jun. 2001.

[6] A. Fantechi, S. Gnesi, G. Lami, and A. Maccari. Appli-
cation of Linguistic Techniques for Use Case Analysis. In
IEEE Joint International Conference on Requirements En-
gineering (RE’02), pages 157–164, Sep. 2002.

[7] A. Fantechi1, S. Gnesi, G. Lami, and A. Maccari. Applica-
tions of linguistic techniques for use case analysis. Require-
ments Engineering, 8(3):161 – 170, Aug. 2003.

[8] R. Gaizauskas and H. Harmain. CM-Builder: An Automated
NL-Based CASE Tool. In The Fifteenth IEEE International
Conference on Automated Software Engineering (ASE’00),
pages 45–53, Grenoble, France, Sep. 2000.

[9] V. Gervasi and B. Nuseibeh. Lightweight Validation of Nat-
ural Language Requirements: A Case Study. In 4th Interna-
tional Conference on Requirements Engineering (ICRE’00),
pages 140–148, Schaumburg, Illinois, Jun. 2000.

[10] T. R. Gruber. A translation approach to portable ontologies.
Knowledge Acquisition, 5(2):199–220, 1993.

[11] H. Kaiya, H. Horai, and M. Saeki. AGORA: Attributed
Goal-Oriented Requirements Analysis Method. In IEEE
Joint International Requirements Engineering Conference,
RE’02, pages 13–22, Sep. 2002.

[12] R. Lecceuche. Finding Comparatively Important Concepts
between Texts. In The Fifteenth IEEE International Confer-
ence on Automated Software Engineering (ASE’00), pages
55–60, Grenoble, France, Sep. 2000.

[13] S. P. Overmyer, B. Lavoie, and O. Rambow. Concep-
tual Modeling through Linguistic Analysis Using LIDA.
In 23rd International Conference on Software Engineering
(ICSE’01), pages 401–410, Toronto, Canada, May 2001.

[14] M. Saeki, H. Horai, and H. Enomoto. Software Develop-
ment Process from Natural Language Specification. In Proc.
of 11th International Conference on Software Engineering,
pages 64–73, 1989.

[15] P. Soffer, B. Golany, D. Dori, and Y. Wand. Modelling Off-
the-Shelf Information Systems Requirements: An Ontolog-
ical Approach. Requirements Engineering, 6(3):183 – 199,
Oct. 2001.

[16] A. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll.
Predicting Source Code Changes by Mining Change His-
tory . IEEE Trans. on Software Engineering, 30(9):574–586,
Sep. 2004.

[17] D. Zowghi, V. Gervasi, and A. McRae. Using Default Rea-
soning to Discover Inconsistencies in Natural Language Re-
quirements. In Eighth Asia-Pacific Software Engineering
Conference (APSEC’01), pages 113–120, Dec. 2001.

