
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.4 APRIL 2004
1

PAPER Special Issue on Special Issue on Knowledge-Based Software Engineering

A Method to Develop Feasible Requirements for Java

Mobile Code Application

Haruhiko KAIYA†, Kouta SASAKI†, Nonmembers, and Kenji KAIJIRI†, Member

SUMMARY We propose a method for analyzing trade-off
between an environment where a Java mobile code application is
running and requirements for the application. In particular, we
focus on the security-related problems that originate in low-level
security policy of the code-centric style of the access control in
Java runtime. As the result of this method, we get feasible re-
quirements with respect to security issues of mobile codes. This
method will help requirements analysts to compromise the dif-
ferences between customers’ goals and realizable solutions. Cus-
tomers will agree to the results of the analysis by this method
because they can clearly trace the reasons why some goals are
achieved but others are not. We can clarify which functions can
be performed under the environment systematically. We also
clarify which functions in mobile codes are needed so as to meet
the goals of users by goal oriented requirements analysis(GORA).
By comparing functions derived from the environment and func-
tions from the goals, we can find conflicts between the environ-
ments and the goals, and also find vagueness of the requirements.
By resolving the conflicts and by clarifying the vagueness, we can
develop bases for the requirements specification.
key words: Goal Oriented Requirements Analysis, Anti-
Requirements, Security Policy, Access Control, Java Mobile
Codes

1. Introduction

Java applications can use several mobile codes provided
by different code providers at the same time. We can
construct and execute various kinds of applications eas-
ily and efficiently with the help of these codes. In a ma-
chine where such an application is executed, there are
valuable resources, such as files and network connec-
tions, that should be protected from malicious and/or
inadequate access by mobile codes. In the case of Java
mobile codes, all functions accessing such valuable re-
sources are revoked by default. Granted functions for
some resources are defined in a description of secu-
rity policies, so that functions required or permitted
by users are enabled.

However, it is not so easy to know whether such
description of security policies consistently meets the
goals of the application users. For example, most users
can not easily identify inadequate functions until inade-
quate results happen. However, some inadequate func-
tions can be granted by the description unconsciously,
and goals such as ‘something should not happen’ are
not achieved. Even when we develop an application
without mobile codes, it is not so easy to know such neg-

†Faculty of Engineering, Shinshu University
Email kaiya@cs.shinshu-u.ac.jp

ative requirements. Fortunately, inadequate results do
not frequently happen in an application without mobile
codes because most codes are tailored only for the ap-
plication. However, inadequate results happen easily in
an application with mobile codes because mobile codes
are tailored for many applications. In addition, using
mobile codes is almost the same that mobile codes’ de-
velopers access user’s own machine directly.

Even if we can identify all inadequate functions by a
mobile code and we can write security policies so as to
avoid such functions, another kind of problem happens.
In Java security system, grant rules are applied not to
each mobile code but to each location where mobile
codes are placed. Consequently, functions to valuable
resources are granted to all codes placed in the same
location. In addition, we can not easily change the de-
ployment of such mobile codes because mobile codes are
provided by other companies and/or organizations. As
a result, we can not sometimes avoid inadequate func-
tions intrinsically, therefore we should abandon some
goals so as to develop an application under such an
environment including the deployment and features of
mobile codes and security policies.

As a result of above discussion, it is realistic to com-
promise the differences between an environment and
goals, and to identify what kinds of things are com-
promised and why they are compromised. During such
compromising process, we can get feasible requirements
for mobile code applications, and also have a chance to
clarify vagueness of requirements. In this paper, we will
introduce a method for such purpose. In our method,
we explore the possibility to refine goals so as to meet
an environment as follows.

1. Clarify the functions required by users’ goals and
the functions enabled under an environment.

2. Identify the differences between these two kinds of
functions.

3. Resolve conflicts between them by modifying the
environment and/or by abandoning some parts of
goals.

4. Clarify vagueness of goals by specifying functions
derived from the goals.

We use goal oriented method [1] for analyzing require-
ments. We use our method to generate and check secu-
rity policies under a deployment of mobile codes[2] for
analyzing the functions derived from an environment



2
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.4 APRIL 2004

for mobile codes.
In Section2, we show the overview of the method and

introduce a tabular form for representing functions. In
Section3, we discuss which functions in mobile codes
can be executed under an environment. In Section 4,
we discuss which functions are required by users. In
Section 5, we show how to identify and compromise the
differences between the available functions under the
environment and the users’ requirements. Examples
using our method are shown in Section6. In Section 7,
we refer the related works to clarify advantages and lim-
itations of our work. Finally, we summarize our results
and show the future direction.

2. Overview of the Method

Enabled Functions
Table

Required Functions
Table

Goal Hierarchy

Conflicts
and Vagueness

Environment
Description

Fig. 1 Descriptions during an Analysis

Compromised Functions Table

Goal HierarchyEnvironment
Description

Fig. 2 Descriptions after the Analysis

In our method, we write several kinds of descrip-
tions related to our requirements analysis. By modify-
ing these descriptions stepwise during the analysis, we
achieve trade-off between environments and goals. In
Figure1, we show descriptions that are used and written
during an analysis, and their relationships. In Figure2,
we also show descriptions and relationships after the
analysis. Using these figures, we will outline the proce-
dure how to analyze the trade-off between environments
and goals.

The main inputs of our method are an environment
description and a goal hierarchy. The environment de-
scription represents the following contents; functions
and features of each mobile code, their deployment over
the network and security policies for a site where in-
tended application will be executed. The goal hierarchy
represents what application users want.

We derive enabled functions and required functions

from an environment description and a goal hierar-
chy respectively. Enable functions represent the abil-
ities accessing valuable resources, and required func-
tions represent the requirements accessing valuable re-
sources. In our method, we identify and compromise
the differences between enabled and required functions
by comparing them directly. Therefore, we describe en-
abled and required functions in the same tabular form.
We call such tabular forms as an enabled functions ta-
ble and a required functions table respectively. By using
these tables, we can easily and systematically find con-
flicts and vagueness.

Because terms in enabled functions are normally
those in implementation level, such terms are not fit for
representing requirements in general. In our method,
we encourage analysts to decompose and refine the
goals in a goal hierarchy until terms in the goals can
fit for terms in enabled functions.

The main output of our method is a compromised
functions table in Figure 2, that becomes bases of soft-
ware requirements specification. Compromised func-
tions in the table can be performed under the given
environment, but are not always consistent with a goal
hierarchy for the application.

In our method, an environment description and a goal
hierarchy are modified so that required functions be-
come consistent with enabled functions. As a result,
required and enabled functions tables become the same
after the analysis. The name of ‘compromised func-
tions’ is only an alias of the name of required or enabled
functions after the analysis. Therefore, the notation of
compromised functions table is also the same as the
notation of required and enabled functions tables. Our
method guarantees compromised functions to be feasi-
ble under the given environment, but the functions are
not always consistent with the goal hierarchy.

The goal hierarchy is modified and/or extended when
implicit and/or unidentified goals are found by using
this method. The environment description is also mod-
ified when the environment can be modified in fact
and such modification meets required functions derived
from the goal hierarchy. As a result, the goals become
clearer, and the environment becomes fit to user goals
if possible.

2.1 Tabular Form for Functions

Table 1 An Example of Enabled functions table

Read.class Write.class Net.class
/home/ - r+ w+ -
any ports - - connect+

We represent both enabled and required functions
tables like Table1. The left hand column of the table



KAIYA et al.: A METHOD TO DEVELOP FEASIBLE REQUIREMENTS
3

shows valuable resources such as data and/or objects
that will be accessed by functions. The top row of the
table shows mobile codes that will execute functions.

Values in cells of the table show the functions. For
example in Table1, an application cannot access any
valuable resources using mobile code Read.class. On
the other hand, it can read and write files under /home/
using Write.class. It can also make any network con-
nections using Net.class. Note that r and w are abbre-
viation for read and write.

Enabled functions are completely determined in gen-
eral. On the other hand, required functions are in-
trinsically incomplete because they are derived from
goals of application users. Therefore, we attach the
following postfixes to each function in a table. The
word ‘function’ represents some function, e.g. r, w or
connect.

• function+: The function is enabled or required.
• function-: The function is not enabled, or dis-

ablement of the function is required.
• function*: We don’t care whether the function is

required or not.
• function?: We don’t have decided whether the

function is required or not.

We frequently use the abbreviation ‘+’ in a cell which
means all possible functions are enabled or required.
We also use the abbreviation ‘-’, ‘*’ and ‘?’ in the
same way. We sometimes abbreviate ‘function+’ as
‘function’. All of the not specified part is filled with ‘-’
by default. If there is no confusion, we may abbreviate
the name of valuable resources and/or mobile codes.
For example, we may abbreviate ‘/home/’ to ‘home’,
and ‘Write.class’ to ‘Write’.

3. Which Functions in Mobile Codes can be
executed?

In this section, we will show how to derive enabled func-
tions from an environment description.

3.1 Access Control Mechanism in Java2

As mentioned in a survey article [3], the expression ‘mo-
bile code’ has various different meanings. In this paper,
we only focus on quite simple applications using mobile
codes as shown in Figure3. An application is executed
on a machine, and it downloads and uses several mobile
codes from several different sites. We may locate a part
of mobile codes in the machine. We call a map from
each code to a location where the code is placed before
download, as a deployment in this paper.

Figure4 shows an example of policy description for
Java [4]. As mentioned in the first section, all functions
accessing valuable resources are revoked by default, and
granted permissions are given to each location. The
policies in Figure4 grant the following permissions to

/somdir/java/

/otherdir/class/

Read.class

Write.class

http://www.a.b/
codes’ server

/home/

/tmp/

a machine

Application

file

file

Execute
Read 
or
Write

Security Policies

network 
connection

another machine

/somdir/net/

Net.class

ftp://ftp.a.b/
codes’ server

Download

Fig. 3 Mobile Code Application and its Environment

applications using mobile codes.

• The functions reading and writing files in /home/*
can be executed if that functions are embedded in
codes in http://www.a.b/otherdir/class/.

• The functions making network connections using
any ports can be executed if that functions are em-
bedded in codes located in ftp://ftp.a.b/somdir/net/.

� �
grand codeBase
"http://www.a.b/otherdir/class/" {
permission java.io.FilePermission

"/home/*", "read, write";
}
grand codeBase
"ftp://ftp.a.b/somdir/net/" {
permission java.io.SocketPermisson

"*", "connect";
}

� �
Fig. 4 An Example of Policy Description

When the policies in Figure4 are applied to an
application running in a machine in Figure3, the
application cannot access any valuable resources
in the machine using mobile code Read.class in
http://www.a.b/somdir/java/. On the other hand,
it can read and write files under /home/ using
Write.class in http://www.a.b/otherdir/class/. It can
also make network connections using Net.class in
ftp://ftp.a.b/somdir/net/.

In general, granted permissions are defined for each
location. Locations are represented in an URI form,
and permissions are represented in the following form.

permission class name target name action list



4
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.4 APRIL 2004

There are several standard permission classes, such as
FilePermission and SocketPermission, in Java2 security
system, and we can append new non-standard permis-
sions. The targets and the actions are defined in each
permission classes. The targets show valuable resources
for a permission class, and actions show kinds of func-
tions applied to the targets.

3.2 Enabled Functions and Their Derivation Algo-
rithm

Security policies specify the enabled functions that can
access valuable resources and that can be executed in
a mobile code application under an environment. We
will show an algorithm to derive enabled functions.

1. Enumerate the functions that access valuable re-
sources and that can be called from each code:
We can know such functions embedded in the stan-
dard class library of Java beforehand from their
documents. We can find such functions in the non-
standard libraries and handmade codes by analyz-
ing them. Even when source codes are not avail-
able, we can do it with the help of Jode[5].
In both cases, we can not strictly enumerate such
functions because classes and methods are dynam-
ically bound in Java runtime. As a result, some
functions to access valuable resources are always
called from the code, but others are not always
called. In this paper, we focus on all functions
which have the possibility to be called, because we
want to explore possibilities of inadequate func-
tions without omission.

2. Identify permissions for the code:
By looking up the deployment, we can know the
location of the code. With the location, we can
identify the permissions for the code.

3. Enumerate enabled functions by the code:
By filtering out the functions that can not be ex-
ecuted from the functions enumerated in the step
1, we can enumerate enabled functions.

This algorithm is almost the same as checking al-
gorithm in [2]. The checking algorithm only reports
whether all functions can be enabled functions or not,
but this derivation algorithm reports the list of enabled
functions.

Table1 is the enabled functions table derived from
an environment in Figure3 with a policy description
in Figure4. Because the number of targets and the
number of actions in a policy description are finite and
their kind is fixed, the size of functions tables are finite
and the variation of values in each cell is also finite in
general.

4. Which Functions are Required by Users?

In this section, we discuss the role of goals and require-

ments, and show how to derive required functions from
a goal hierarchy.

4.1 Software Requirements Specification for Mobile
Code Application

We think mobile code applications are useful in the do-
mains of e-commerce, e-learning, network-game and so
on. Their common characteristics are as follows. First
their services are dynamically changed therefore their
requirements are also dynamically changed. Second,
they need scalability. Third, security issues are impor-
tant for them.

As mentioned in IEEE standard[6], ‘software require-
ments specification (SRS) is a specification for a par-
ticular software product, program, or set of programs
that performs certain functions in a specific environ-
ment’. In the case of SRS for mobile code application, a
specific environment can be defined by functions of mo-
bile codes, their deployment and security policies men-
tioned in section3.1. Such environment defines what
can be performed under the environment, and we rep-
resent such things as enabled functions.

4.2 Goals and Required Functions

We assume software requirements are derived from
goals of application users. Unfortunately, their goals
are not fully achieved by the application under a spe-
cific environment in general. So, we should clarify dif-
ferences between requirements and their goals. In this
paper, we regard goals as to-be or ideal goals[7], but
we regard requirements as required functions that are
required by goals and that can be performed under a
given environment.

Because we should test each required function
whether it can be performed or not under a given envi-
ronment, required functions should be represented near
in implementation level. Therefore, we should fully de-
compose or refine the goals so that we can derive re-
quired functions, that can be tested in a given environ-
ment. The notation of a goal hierarchy is suitable for
this purpose because we can convert abstract goals into
concrete goals stepwise.

Because security issues are important for mobile code
application, we should explicitly handle them. Non-
Functional Requirements (NFR) types[8] can be used
to identify such issues in top down way. In our method,
we mainly develop goal hierarchy in bottom up way by
identifying the differences between enabled functions
and required functions. Inference rules for goal decom-
position [9] will also help us to make goal hierarchy in
both ways.

5. Trade-off Analysis

In this section, we show how to identify and compromise



KAIYA et al.: A METHOD TO DEVELOP FEASIBLE REQUIREMENTS
5

the differences between enabled and required functions.

5.1 Identifying the Differences

Using the tabular form for functions, we find conflicts
between enabled and required functions tables. Be-
cause each row in tables shows each valuable resources
and each column shows each code, we try to find con-
flicts in each cell respectively. We call a set of functions
in a cell of a required function table as RSet, and a cor-
responding set in an enabled function table as ESet.

1. For each function+ ∈ ESet

a. If function− ∈ RSet, there is a conflict about
function.

b. Else if function? ∈ RSet, there can be con-
flict or vagueness. We should check it man-
ually. We sometimes find unstated conflicts
about function.

c. Else there is neither conflict nor vagueness
about function.

2. For each function− ∈ ESet

a. If function+ ∈ RSet, there is conflict and
goals related to function are not satisfied
now.

b. Else if function? ∈ RSet, there can be con-
flict or vagueness. We should check it manu-
ally.

c. Else there is neither conflict nor vagueness
about function.

We sometimes call each cell by using row and line
labels. For example in Table1, Write-home cell is filled
in ‘r+ w+’.

5.2 Compromising the Differences

Here we show the procedure to compromise the dif-
ferences between an environment and a goal hierarchy,
and to get bases of software requirements specification.

1. Write the environment description and the goal hi-
erarchy. We may consult the system requirements
specification[10] when we write them.

2. Derive required functions and enabled functions:
In the first step, we construct required functions
from the goal hierarchy. We also construct enabled
functions from the environment systematically as
mentioned in Section3.2. We should refine the goal
hierarchy so as to identify required functions and so
that the terms in goals can fit for terms in enabled
functions.

3. Identify the differences between required functions
and enabled functions:
Because they are written in the same form and

terms in required functions are fit for terms in en-
abled functions by goal decomposition and refine-
ment, we can systematically identify their differ-
ences.

4. Resolve conflicts between enabled functions and re-
quired functions: There are two ways to resolve
such conflicts.

• Modify environment:
So as to meet required functions and goals,
the environment is modified if possible. It is
relatively easy to modify policies because poli-
cies are located in the user’s machine. Such
modification sometimes enables other func-
tions performed by other mobile codes, so we
should check such kind of side effects. It is
not easy to modify the deployment and the
codes themselves because they are defined by
code providers and they are sometimes shared
several applications and/or projects.

• Modify required functions:
The environment sometimes can not be mod-
ified as mentioned just above. In such a case,
we should abandon some part of required func-
tions so as to resolve conflicts. As a result, sev-
eral goals can not be satisfied. In our method,
there is no way to recover such things. Our
method only enables us to record gaps be-
tween goals and required functions, so as to
recover them when the environment will be
changed in the future.

5. Clarify vagueness of required functions and goals:
By observing the differences between enabled and
required functions, we can sometimes detect re-
quirements that are unstated but should be spec-
ified. Such detection enables us to find implicit
goals, and to add such goals into the goal hierar-
chy.

6. Iterate above steps so as to make required func-
tions be consistent with enabled functions. When
the environment description and/or the goal hier-
archy are changed, inconsistency can be occurred.
Rename required or enabled functions as compro-
mised functions and finish this procedure, when
required functions become consistent with enabled
functions.

Currently, we use simple GORA, because we do not
handle conflicts among stakeholders. We will use ex-
tended version of GORA e.g.[11], when we handle such
conflicts.

6. Examples

In this section, we will show examples of an applica-
tion for e-learning, to demonstrate the usefulness of
our method. Outline of goals for the application are
as follows.



6
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.4 APRIL 2004

We want to provide e-learning system for peo-
ple over the internet. When learners use our
system, each learner solves questions respec-
tively, and the answers are scored respectively.
Learners can give remarks to any other learn-
ers so as to encourage the progress and the
motivation of their study. Because of the scal-
ability of the services, the services should be
provided by decentralized system. The service
should be also constructed by mobile codes
that are already developed by our related com-
pany.

We decide to develop this application not as server-
side system like CGI but as client-side system using
the following mobile codes according to the goals.

We can use the following mobile codes to develop this
application.

• Staff.class including a function to mark answers.
• CoLearner.class including a function to give re-

marks.
• Learner.class including functions to write answers

and to see their scores and remarks.

Because each code has not only function(s) above but
also other functions and we can not modify codes them-
selves, we should restrict some of their functions in the
client-side using security policies.

We identify the following valuable resources (files)
stored in each client machine used by each learner.

• Answers for a question.
• Score for each answer.
• A set of remarks for the question.

For simplicity, we handle only one question, one answer
and one set of remarks for the question in this exam-
ple. The environment for this application is shown in
Figure5.

/staff/

/learner/

/colearner/

Staff.class

Learner.class

CoLerner.class

http://www.a.b/
codes’ server

/Answer/

/Score/

/Remark/

learner’s machine

Application file

file

file

Download
Execute Read 

or
Write

Fig. 5 Environment for this Example Application

6.1 Modifying Policies

In this first example, we will show how to modify poli-
cies so as to meet the goals. In addition, we will show
how to clarify the goals during the modification.

6.1.1 Initial Policies for the Application

To enable the functions performed by the mobile codes
above, we first give the policy in Figure6 to the applica-
tion. Because the policy in Figure6 is large enough to

� �
grand codeBase "http://www.a.b/" {
permission java.io.FilePermission

"/*", "read, write";
}

� �
Fig. 6 Initial Policy

enable the codes in Figure5 to read and write any files
in the learner’s machine, we may regard this policy as
the initial one. We derive the enabled functions table in
Table2 from the environment in Figure5 by using the al-
gorithm in Section 3.2. the enabled functions seems to
satisfy goals for the application mentioned above. Note
that ‘r+ w+’ in this Table is of course an abbreviation
for ‘read, write’.

Table 2 Enabled functions table under the initial policy

Staff CoLearner Learner
Answer
Score
Remark

r+ w+

6.1.2 Goals for the Application

To clarify the required functions of this application, we
write a goal hierarchy as shown in Figure7. In this
figure, thick ovals show goals that are directly related
to required functions. As a result, we find required
functions table as shown in Table3.

6.1.3 Conflicts between the Policies and the Require-
ments

We try to find the conflicts between the policies and
the requirements by comparing Table2 and 3 using the
steps in Section5.1. We find two conflicts about Staff-
Answer cell and Learner-Score cell using step 1.b in
Section5.1.

We resolve the conflicts so that required functions are



KAIYA et al.: A METHOD TO DEVELOP FEASIBLE REQUIREMENTS
7

Participate e-learning

encourage collaboration 
among the learners 

know the result of learning

Learner reads
his/her own score

Staff scores the answers

co-learners read 
and write the remarks 

Learner answers
the question

and

Fig. 7 Initial Goal Hierarchy

Table 3 Initial Required Functions Table

Staff CoLearner Learner
Answer r+ w? ? r+ w+
Score r+ w+ ? r+ w?
Remark ? r+ w+ ?

Conflicts with
enabled functions

satisfied and that enabled functions are modified. As
a result, a staff do not write the answer and a learner
do not write score respectively. According to the res-
olution, we modify the policies as shown in Figure8.
Because we don’t have handle vagueness in this stage
yet, policies for CoLearner.class are not changed in Fig-
ure8.

6.1.4 Vagueness in the Requirements

Several cells in Table3 are ‘?’. We regard cells with ? as
the symptom of the vagueness of the requirements. We
try to investigate and decide the values for such cells,
so as to clarify the requirements and their goals.

• As we decide that teachers may give remarks as
well as colearners, the value of Staff-Remark cell is
to be ‘r+ w+’.

• Because we decide that the answer and its score
should not be read by colerners, so as to prevent
iniquities such as cheating, and so as to protect the
privacy of the learner, the values of CoLearner-
Answer cell and CoLearner-Score cell are to be
both ‘-’.

• As we decide that the learner himself may give
remarks as well as colearners, The value of Learner-
Remark cell is to be ‘r+ w+’.

6.1.5 Update the Requirements and their Goals

As the result of analysis up to here, we have compro-
mised functions table as shown in Table4.

We can also clarify the goals of the application as
shown in Figure9. Dashed ovals in this figure show

� �
grand codeBase

"http://www.a.b/staff/" {
permission java.io.FilePermission

"/Answer/*", "read";
permission java.io.FilePermission

"/Score/*", "read, write";
permission java.io.FilePermission

"/Remark/*", "read, write";
}

grand codeBase
"http://www.a.b/learner/" {

permission java.io.FilePermission
"/Answer/*", "read, write";

permission java.io.FilePermission
"/Score/*", "read";

permission java.io.FilePermission
"/Remark/*", "read, write";

}

grand codeBase
"http://www.a.b/colearner/" {

permission java.io.FilePermission
"/*", "read, write";

}
� �

Fig. 8 Policies for resolving the conflicts

Table 4 Compromised Functions Table

Staff CoLearner Learner
Answer r+ w- - r+ w+
Score r+ w+ - r + w-
Remark r+ w+ r+ w+ r+ w+

already existing goals, and other ovals show new added
goals. In this figure, we add links between the goal
hierarchy and requirements, so as to identify the reason
why new goals are added.

6.2 Abandoning Requirements

In this second example, we will show how to abandon
some parts of requirements so as to meet policies. Be-
cause we maintain the traceability between to-be goals
and modified requirements, we can easily identify why
and how to compromise the requirements.

6.2.1 Additional Requirements and their Goals

We have the following additional requirements to ex-
tend our business.

We try to extend our e-learning system so as
to certify a credit of a course. In the future,
such credit will become compatible with the



8
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.4 APRIL 2004

Participate e-learning

encourage collaboration 
among the learners 

know the result of learning

Learner reads 
his/her own scoreStaff scores

the answers

anyone read 
and write the remarks 

Learner answers 
the question

and

without unfairness

others can not 
read his answer

others can not 
modify the answer

Protect his privacy
(confidentiality)

and

without unfairness

learner can not 
modify the scoreothers can not 

read his score

and

and

co-learners

learners

teacher

and

Staff CoLearner Learner
Answer r+ w- - r+ w+
Score r+ w+ - r+ w- 
Remark r+ w+ r+ w+ r+ w+

and

Fig. 9 Updated Goal Hierarchy

credit issued by universities.

Based on this statement, we build the goal hierarchy
shown in Figure10, We replace a goal ‘others can not
read his score’ in Figure9 with the goal ‘co-learners can
not read his score’, because an administrator who issues
the credit is also a part of others, but the administrator
should be able to read the score of course.

Participate e-learning

encourage collaboration 
among the learners 

know the result of learning

learner reads 
his/her own score

staff score the answers

leaner answers the question

and
Protect his privacy
(confidentiality)

without unfairness

learner can not 
modify the score

co-learners can not 
read his score

and

and

omit

omit

Issue a credit

admin. read scores

without 
unfairness

others can not 
read his answer

andand

Fig. 10 Goal Hierarchy with Certification

We also clarify the required functions table shown in
Table5. We rename ‘staff’ to ‘teacher’ so as to distin-
guish teachers and administrators.

Table 5 Required Functions Table derived from Figure10

Teacher Admin. CoLearner Learner
Answer r+ w- - - r+ w+
Score r+ w+ r+ w- - r+ w-
Remark r+ w+ ? r+ w+ r+ w+

6.2.2 Constraints of Code Packaging

Although we identify new requirements shown in Ta-
ble5, we find we can not satisfy the requirements un-
der the given environment. The reason is that both
functions for teachers and those for administrators are
packaged into the same mobile code ‘Staff.class’ and we
can not take the code into pieces.

As a result, enabled functions table by the codes are
as shown in Table6. We encounter conflicts between re-
quirements and the environment again. We can find the
conflicts by comparing Table5 and 6. In this case, the
features of codes in the environment cause the conflicts.

Because we can not change the features, there is no
other way to select functions in Table6 as the compro-
mised functions for our new application.

Table 6 Enabled Functions Table constrained by code pack-
aging

Teacher Admin. CoLearner Learner
Answer r+ w- r+ w- - r+ w+
Score r+ w+ r+ w+ - r+ w- 
Remark r+ w+ r+ w+ r+ w+ r+ w+

both in Staff.class

6.2.3 Traceability about the Compromise

Because of the constraints by the environments, in this
case, constraints by the features of a code, we have
abandoned several parts of goals, ‘protect his privacy
including his answer’ and ‘prevent the unfairness while
answering the question’. We have found an abandoned
goal ‘scoring without unfairness’, because our new re-
quirements enable administrators to modify scores un-
fairly. We add this new goal into Figure11.

Because administrators are trustworthy enough to
read such information in general, changes of the re-
quirements here are not so serious. However, we should
remember and maintain that the changes do not meet
original goals of the application. In our method, we do
not modify goal hierarchy according to such changes of
requirements, but we leave the gaps between the goal
hierarchy and the requirements. Such gaps are written
as shown in Figure11 so as to remember and maintain
the fact.

7. Related Work

Necessity for security requirements engineering is ar-
gued in [12]. In the article, six problems are proposed
and security policy is mentioned in half of them. The
problems related to the security policies are as follows.

• Threats and anti-requirements



KAIYA et al.: A METHOD TO DEVELOP FEASIBLE REQUIREMENTS
9

Participate e-learning

encourage collaboration 
among the learners 

know the result of learning

learner reads his/her own score
staff scores the answers

learner answers the question
and

Protect his privacy
(confidentiality)

without unfairness

learner can not 
modify the score

co-learners can not 
read his score

and

and

omit

omit

Issue a credit

admin. 
read scores

without 
unfairness

others can not 
read his answer

Teacher Admin. CoLearner Learner
Answer r+ w- r+ w- - r+ w+
Score r+ w+ r+ w+ - r+ w- 
Remark r+ w+ r+ w+ r+ w+ r+ w+

both in Staff.class

gaps

admin. can not 
modify the score

gaps

andand

Fig. 11 Goal Hierarchy and Compromised Functions Table

• Security policy and why it is often ignored
• Where is the organization?

We discuss advantages with the context of first two
problems, an limitation with the context of last prob-
lem. We also discuss other advantages and limitations
referring other articles.

7.1 Advantages

First, we talk about anti-requirements, that are the re-
quirements of malicious users such as intruders. For
finding anti-requirements, misuse cases and negative
scenario are used [13], [14]. Even if we use misuse
case and negative scenario, it does not seem to be easy
to imagine anti-requirements. In our method, we can
directly face the functions that can be used for anti-
requirements from enabled functions, because enabled
functions directly show the possibilities of inadequate
and/or malicious functions. So it is slightly easy to
imagine anti-requirements. Goal oriented techniques
are also applied in this area [15]. We also think tax-
onomy for NFR such as security requirements is useful
for exploring anti-requirements.

Next, we talk about organizational security policies.
In [16], Levels of abstraction of security policies are cat-
egorized into four levels; organizational requirements,
computer policy models, access control models and im-
plementation models. Organizational security policies
are studied in [17], [18], where goal oriented analysis
is also used and useful taxonomy for privacy policy
is given. On the other hand, our study focus on the
lower levels because of the features of our application
domains. In [12], it is cited that ‘most issues for security
policies are derived from the solution world rather than
the problem world, and do not encourage a systematic
exploration of the issue’. Although our approach deeply
depends on the problem world, we believe it encourages
a systematic exploration. The reason is that we only fo-
cus on applications using mobile codes, and we can not

distinguish between requirements and implementations
because such applications are integrated and executed
on the fly along with requirements in the moment. Of
course, security issues for mobile codes are widely fo-
cused [19], but relationships between them and require-
ments are rarely discussed.

For resolving conflicts between an environment in-
cluding policies and requirements, we have options to
abandon some part of requirements or to modify poli-
cies. However, we have another option, that is, to use
other mobile codes, which support required functions
and which can work completely and adequately un-
der the environment. We can also choose this option
if we have some kind of directory services for mobile
codes. Our method can be used to explore suitable
codes among the libraries in such directory.

7.2 Limitations

A problem ‘where is the organization?’ in [12] is about
security requirements about ‘who runs the applica-
tion?’. This problem is related to the role based access
control and it is important in a multi-user environment.
This is also important when a user of an application
himself also moves from one machine to another. In
our method, we only handle simple single-user applica-
tion mentioned in Section 3.1, and don’t handle neither
a multi-user environment nor mobility of an user.

Java security system is already extended in this view
point[20]. The extended part is called Java Authentica-
tion and Authorization Service (JAAS) framework, and
it enables us to handle a security issue about ‘who runs
the code’. In the framework, an access control mecha-
nism based on the fact that who runs the code is called
user-centric style. Another access control mechanism
based on the fact that which codes are used is called
code-centric style. If we use both mechanisms, we can
provide a multi-user environment within a JVM. This
is similar to ordinary multi-user operating systems like
UNIX. Although only the code centric mechanism is
focused in our method and this means we only han-
dle the single user environment like MS-DOS, we don’t
think this limitation becomes serious problem. The rea-
sons are that most Java applications are used for the
single user, and that a multi-user system is normally
constructed with several Java applications that are con-
nected by communication mechanism e.g. RMI.

As already mentioned previous section, goal oriented
techniques are widely used for security requirements
[15], [18], [21]. We have also our own goal oriented
method AGORA[11]. We use the most simple notation
for goal hierarchy in this paper, because we don’t han-
dle conflicts among multiple stakeholders. When we
handle such conflicts, we can use our AGORA notation
instead of current one, because AGORA has a mecha-
nism for representing preferences of multiple stakehold-
ers.



10
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.4 APRIL 2004

In this paper, we only handle an application using
Java mobile codes. However, we download unknown
programs and/or libraries from internet and use it with-
out care in every day. Therefore, we should extend do-
mains of our method to codes in general. Concept for
our work can be extended, but a notation describing
security policies is too poor to be used in codes in gen-
eral. we need more expressive language for representing
policies, e.g. Ponder[22].

Ponder can express access policies to prohibit some
functions, while Java2 security policy can represent
policies to allow some functions only. When we intro-
duce former kind of negative policies, we should modify
the derivation algorithm for enabled functions in Sec-
tion3.2 but we do not need to modify the tabular form
for functions. We also meet conflicts among a policy
description when we use both negative and positive
policies at the same time. We can identify such con-
flicts syntactically by checking such description, but we
cannot resolve the conflicts systematically. We need de-
pendencies among the targets(valuable resources) when
we identify such conflicts. Typical example is an inclu-
sion relationship among folders. Current version of our
method does not need to consider such dependencies
for conflict detection, but policy description could be
redundant without such dependencies.

8. Conclusions and Future Works

In this paper, we propose a method for analyzing trade-
off between security policies for Java mobile codes
and requirements for Java application. By using our
method, we can get requirements which can be realized
in given environment. We also identify which initial
requirements are abandoned so as to meet the envi-
ronment. This is achieved by constructing a goal hi-
erarchy for ideal application. Our method is partially
supported by our tool for checking and generating Java
security policies.

Applications using mobile codes seems to be ruled
by some specific software architectures, and security is-
sues for such application seems to be deeply related
to the architectures. Therefore, relationships between
requirements and software architectures will be useful
when we think about the relationships between require-
ments and security policies. We can find many papers
about relationships between requirements and software
architectures[23], but we can not find issues for secu-
rity policies among them. We want to investigate such
meta-relationships in the future.

Acknowledgments

This work has been supported by Grant-in-Aid for
Young Scientists (B) (KAKENHI #5700028), the Min-
istry of Education, Culture, Sports, Science and Tech-
nology, Japan. The authors would like to thank Dr.

Shin Nakajima, Hosei University for insightful com-
ments to our work.

References

[1] Axel van Lamsweerde. Goal-Oriented Requirements Engi-
neering: A Guided Tour. In RE’01, pages 249–263, Aug.
2001.

[2] Haruhiko Kaiya, Furukawa, and Kenji Kaijiri. Security
Policy Checker and Generator for Java Mobile Codes. In
Engineering Information Systems in the Internet Context
(EISIC), pages 255–264. IFIP TC8/WG8.1, Kluwer Aca-
demic Publishers, Sep. 2002.

[3] Tommy Thorn. Programming languages for mobile code.
ACM Computing Surveys, 29(3):213–239, Sep. 1997.

[4] Scott Oaks. Java Security. O’Reilly, 2nd edition, 2001.
[5] JODE decomplier homepage. http://jode.sourceforg-

e.net/, Feb. 2003.
[6] IEEE Recommended Practice for Software Requirements

Specification, Oct. 1998. IEEE Std 830-1998, ISBN 0-7381-
0332-2 SH94654(Print).

[7] Evangelia Kavakli. Goal-Oriented Requirements Engineer-
ing: A Unifying Framework. Requirements Engineering,
6:237–251, 2002.

[8] Lawrence Chung, Brian A. Nixon, Eric Yu, and John My-
lopoulos. Non-functional Requirements in Software Engi-
neering. Kluwer Academic Publishers, 2000.

[9] Axel van Lamsweerde, Robert Darimont, and Emmanuel
Letier. Managing Conflicts in Goal-Driven Requirements
Engineering. IEEE Transactions on Software Engineering,
24(11):908–926, Nov. 1998.

[10] IEEE Guide for Developing System Requirements Specifica-
tions, Dec. 1998. IEEE Std 1233-1998, ISBN 0-7381-0337-3
SH94654(Print).

[11] Haruhiko Kaiya, Hisayuki Horai, and Motoshi Saeki.
AGORA: Attributed Goal-Oriented Requirements Analysis
Method. In IEEE Joint International Requirements Engi-
neering Conference, RE’02, pages 13–22, Sep. 2002.

[12] Robert Crook, Darrel Ince, Luncheng Lin, and Bashar Nu-
seibeh. Security Requirements Engineering: When Anti-
requirements Hit the Fan. In IEEE Joint International
Requirements Engineering Conference, RE’02, pages 203–
205, Essen, Germany, Sep. 2002.

[13] Ian Alexander. Initial Industrial Experience of Misuse
Cases in Trade-Off Analysis. In IEEE Joint International
Requirements Engineering Conference, RE’02, pages 61–
68, Essen, Germany, Sep. 2002.

[14] G. Sindre and A. L. Opdahl. Templates for Misuse Case
Description. In REFSQ’2001 Proceedings, 2001.

[15] L. Chung. Dealing with Security Requirements during the
development of information systems. In CAiSE’93 proceed-
ings, 1993.

[16] R. K. Thomas and R. S. Sandhu. Conceptual Foundations
for a model of Task-based Authorizations. In 66-79, editor,
Proc. of IEEE Computer Security Foundation Workshop
VII, 1994.

[17] A. Anton, J. Earp, C. Potts, and T. Alspaugh. The Role
of Policy and Stakeholders Privacy Values in Requirements
Engineering. In RE’01 proceedings, pages 138–145, 2001.

[18] A. Anton, J. Earp, and A. Reese. Analyzing Website Pri-
vacy Requirements Using a Privacy Goal Taxonomy. In
IEEE Joint International Requirements Engineering Con-
ference, RE’02, pages 23–31, Essen, Germany, Sep. 2002.

[19] Aviel D. Rubin and Jr Daniel E. Geer. Mobile Code Secu-
rity. IEEE Internet Computing, 2(6):30–34, Nov. and Dec.
1998.



KAIYA et al.: A METHOD TO DEVELOP FEASIBLE REQUIREMENTS
11

[20] Charlie Lai, Li Gong, Larry Koved, Anthony Nadalin, and
Roland Schemers. User Authentication and Authoriza-
tion in the JavaTM Platform. In Proc. of 15th Annual
Computer Security Applications Conference, pages 285–
290, Dec. 1999.

[21] Axel van Lamsweerde and Emmanuel Letier. Handling Ob-
stacles in Goal-Oriented Requirements Engineering . IEEE
transaction of Software Engineering, 26(10):978–1005, Oct.
2000.

[22] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The
Ponder Specification Language. In Proc. of Policy 2001:
Workshop on Policies for Distributed Systems and Net-
works, pages 18–39, Jan. 2001.

[23] STRAW’01, First International Workshop From Software
Requirements to Architectures homepage. http://www.ci-

n.ufpe.br/~straw01/, May 2001.

Haruhiko Kaiya is an associate pro-
fessor of Software Engineering at Shinshu
University, Japan.
http://www.cs.shinshu-u.ac.jp/ kaiya/

Kouta Sasaki is a graduate school
student of Software Engineering at Shin-
shu University, Japan.

Kenji Kaijiri is a professor of Soft-
ware Engineering at Shinshu University,
Japan.


