
SECURITY POLICY CHECKER AND
GENERATOR FOR JAVA MOBILE CODES

Haruhiko Kaiya, Hitoshi Furukawa and Kenji Kaijiri
Faculty of Engineering, Shinshu University, JAPAN
kaiya@cs.shinshu-u.ac.jp cfurukaw@c.cs.shinshu-u.ac.jp kaijiri@cs.shinshu-u.ac.jp

Abstract Java is one of the most famous mobile code systems, and its components can be
dynamically downloaded from the other computers over the internet. Because
such downloaded components are not always reliable, behaviors of each com-
ponent are restricted according to the application’s policy. However, it is not so
easy for the application users or developers to decide the suitable policy. In this
paper, we introduce a tool for generating and checking the security policies for
Java application. As we deploy Java components spatially on a window of our
tool, we can check which component can be executed or not with respect to a set
of security policies. In addition, our tool can generate the minimal set of policies
to execute all the deployed components.

Keywords: Java Security, Security Policy, Mobile Code

1. Introduction
Most of all computer applications over the internet use software components

which can be downloaded from the other machines over the network, and can
link the components dynamically during runtime. This kind of components
is calledmobile code [1], which enables applications to change themselves
dynamically in runtime.

Mobile codes are useful and easy for application users because the users
can use various functions without manual installation, and the codes some-
times contribute to decrease the traffic over the network because the codes are
embedded in the client machine and wasteful traffic of data is not occurred in
runtime.

The use of mobile codes follows security problems because the use is almost
the same that another person directly operates your computers. If an author of
a mobile code bears ill will, your data or processing will be damaged by the



mobile codes. Therefore, behaviors of mobile codes are normally restricted to
a certain extent in some way.

Java is the most famous language with mobile codes, and has simple but
powerful security architecture based on thesandbox model [2]. In the archi-
tecture, no permission is given to all mobile codes by default and permissions
granted to specific codes are written as security policies in the client side. How-
ever, there is no tool for confirming that such policies meet the security require-
ments of the client users. In some case, some policy grants over-permissions
to a code and the code can sometimes unconsciously destroy the client’s re-
sources such as files or processes.

Our tool presented in this paper contributes to confirm the security policies
to meet the security requirements of the users intuitively. We assume the fol-
lowing two usages of our tool. First, users of applications with mobile codes
may check the security policies against their security requirements before they
execute the applications by our tool. If the policies do not meet their require-
ments, they may request providers of the application or mobile codes to modify
the policies or functions of mobile codes. Second, developers of such applica-
tions may generate the suitable security policies by our tool. The developers
can incrementally modify the policies and select mobile codes used in the ap-
plications.

We simply call the application programs that use mobile codes asclients
in this paper. We also call the user of the clients asclient user, and the user
of our tool astool user. We sometimes use the worduser if one can clearly
distinguish the client user from the tool user.

The rest of this paper is organized as follows. In Section 2, we simply intro-
duce the security architecture of Java2 language system. We briefly introduce
related works in Section 3. In Section 4, we show the design and the imple-
mentation of our tool. Finally, we summarize our contributions and discuss the
future works.

2. Java2 Security System
Java is simple but powerful object-oriented programming language which

can use mobile codes. Java can use two kinds of mobile codes, mobile classes
and mobile instances. We only focus on the former kind of mobile codes in
this paper. Because Java classes are stored or transmitted asclass files or ajar
archive which is a composite file of class files and other data, we simply call
class files and jar archives asJava components or components.

A running instance of a client in a computer is called Java runtime or a run-
time in Java system. Java mobile codes can be loaded and linked to a runtime
in progress by class loaders, that are part of the runtime. Each class loader
enables the runtime to load the components from various sources, e.g file sys-



�������� ���	��
�� ������ ��
��

���

�������

��
����

�	�
�

����

�	����

�	
�� 	� ���	�� 
	�� ������ 	� �	��

Figure 1. Java2 Security Model[2]

��������������	�� �

��������������	�� �

���	��

���	��

���	��

���	��

	��	��

Figure 2. Protection domains[2]

tems, network connections, data bases and teletypewriters of users. Therefore,
Java can handle mobile codes from various kinds of sources.

Since JDK1.2, Java has a security model as shown in Figure 1. All Java
components are categorized into several kind of sandboxes before the compo-
nents are executed, with respect to the security policies and class loaders. Class
loaders normally mark the attributes on each component. The main attributes
are the signature of the component if signed and the location where the com-
ponent was deployed. The location of codes is normally represented in a URL
form such as http://foo.bar/java/.

The valuable resources such as file systems and network connections are
guarded by permissions. If a component is executed against the permissions
of the component, Java runtime throws exceptions and its execution is not ac-
complished. Therefore, the role of Java security architecture is to check the
permissions granted to each component. Protection domains in Figure 2 are
used to this decision.

The components that were deployed in the same location and that are signed
in the same signature are categorized into the same group. Such group of
components is called a domain or a protection domain in Java system. The
mapping from domains to the sets of permissions is written in the security
policy, and the policy is normally stored in the file in the client side.

3. Related Work
Bugs in Java security have been reported in many papers [3] since early

times. In the content of computer security, the protection from the unautho-
rized subjects always becomes the central issue[4]. Pure formalization for Java
language system and JVM is also contribute to improve the understanding of
the security system [5]. Although all these kinds of issues are very impor-
tant, the suitable usage of the security system is also important issue for Java
system. Our tool contributes such suitable usage of Java security system.



Ponder[6] is powerful language for specifying management and security
policies. Its framework is large and comprehensive, e.g. ponder can use nega-
tive authorization but Java and our tool can only handle the positive one. How-
ever, Ponder seems too complex to apply Java application.

4. Design and Implementation of Our Tool

4.1 Requirements
From the overview of Java security architecture in the previous section, we

have found that suitable use of security system is not so easy for software users
and developers. For example, components in the same domain are granted in
the same way because permissions are assigned to each domain. As a result,
needless permissions can be given to several components. Permissions for a
component are changed when a location or a sign of the component is changed.
As a result, a component which was executed in a runtime is not always execute
in the same way because of its mobility.

The following functions will contribute to supporting the developers and the
users to get the suitable security policies.

1 Developers and users can view the deployment of the Java components
over the network at a glance.

2 They can view the functions of each deployed component that can vio-
late the client’s security.

3 They can check a policy set whether the set enables the deployed com-
ponents to be executed or not.

4 They can get a minimal policy set which enables the components to be
executed. They may safely adjust a required policy set based on the
minimal set.

5 They can analyze the impacts of the changes or mobility of the compo-
nents.

Based on the requirements above, we have designed and implemented the fol-
lowing tool.

4.2 User Interfaces and Behaviors
Figure 3 shows the overview of our tool. Our tool has four main windows

as shown in this figure. The left top window entitled “Virtual Network” shows
the deployment of the mobile codes. The client policies are shown in the right
top window entitled “Policy File Editor”. The left bottom window shows the



Figure 3. Overview of the Tool

permissions that each Java component needs to be executed, and the right bot-
tom windows entitled “Project” shows a project operated now. In the following
parts of this section, we explain each window.

Virtual Network Virtual Network window shows the deployment of mo-
bile codes over the internet. Each sub-window of Virtual Network window
represents URL over the internet, and rectangles in each sub-window represent
mobile codes deployed in URL corresponding to the sub-window. Though
the set of URLs has hierarchical structure, e.g. http:/foo.bar/java/ includes
http:/foo.bar/java/com/, we do not represent such structure in Virtual Network
window for simplicity.

The color of each rectangle shows the status whether corresponding code
can be executed or not. Red color (in monochrome, dark gray color) shows
that the code can not be executed, and the gray code (in monochrome, white
color) shows that corresponding code can be executed. The URL and the code
can be created easily on this tool as shown in Section 4.3.

Permission List Several permissions are necessary for each mobile code
to be executed. A window of Permission List shows such permissions of codes.
If a code needs more than one permission, more than one line are listed on Per-
mission List for the code. If a code needs no permission, no line is listed.



Figure 4. Create a new URL for mobile codes

Currently, permissions of each code should be manually added to the Permis-
sion List.

Policy File Editor Users can edit the client’s policies on the Policy File
Editor. They may write the policies from scratch, or they may edit the minimal
set of policies as shown in section 4.4.

A status and requirements of codes are described in both Virtual Network
Window and Permission List. Security requirements of client users are de-
scribed in Policy File Editor. As a result, this tool checks whether descriptions
in both Virtual Network Window and Permission List are consistent with de-
scriptions in Policy File Editor or not. In addition, this tool generates consistent
descriptions in Policy File Editor with descriptions in both Virtual Network
Window and Permission List.

4.3 Basic Operations
Create an URL As shown in Figure 4, users can easily create an URL
for mobile codes. First, an user calls pop-up menu on the Virtual Network
window and selects “add URL” menu, then the a modal window “add an URL”
is appeared. Second, the user fills the name of an URL, then a sub-window
corresponding to the URL is appeared.

Deploy a mobile code on an URL As shown in Figure 5, users can
deploy a mobile code on a window of an URL. First, an user calls a pop-
up menu on a URL window and selects a menu “create code”, then a modal
window “add a code ” is appeared. Second, the user fills the name of a code,
then a rectangle corresponding to the code is appeared.

Edit permissions for a mobile code Because the standard permis-
sions, targets and the actions of Java are predefined, such permissions of each



Figure 5. Locate a new code on a location

code can be selected as shown in Figure 6. Tool user may directly write the
permissions, targets and the actions while they are not standard.

A typical procedure to add a permission to a code is as follows. First, an
user calls a pop-up menu on a rectangle of the code, and selects a menu “add
permissions”, then a modal window “add a permission” is appeared. On the
modal window, the user can select a permission of the code, and he can also
select a target and an action of the permission. Several kinds of targets such as
path name of a file system can be freely edited by the user.

4.4 Generating a minimal policy set
As shown in Figure 7, our tool can generate a policy set based on the de-

ployment of the codes and the permissions that the codes need. We call such
generated policy set asa minimal policy set. Currently our tool can not handle
the digital signature.

The algorithm to get a minimal policy set is quite simple as follows.

1 For each URL in Virtual Network of our tool, add a string “grant code-
BaseURL {” to the Policy File Editor.

(a) For each code in the URL,

i For each permission of the code in Permission List, add a
string “permission action target” to the Policy File Editor.

2 Add a string “}” to the Policy File Editor.

Because codes deployed in the same location are given the same permissions
by a policy set in Java security system, the minimal policy set is not a real
minimal set of policies to execute the codes. However, we can preview what
kind of permissions are given to the codes in each URL, and can find over-
permissions to some codes manually.

For example in Figure 7, although “FilePermission” and “SecurityPermis-
sion” are set to “MobCode1.class” and “MobCode3.class” respectively as shown
in the Permission List, these two permissions are given to any codes in the lo-
cation “http://foo.bar/java/” as shown in the Policy File Editor. Therefore, if



Figure 6. Add a permission to a code

“MobCode3.class” is not enough reliable to have “FilePermission”, the client
becomes unsecured. Tool user may avoid this situation by moving the “Mob-
Code3.class” to the other or new location.

4.5 Checking the Policy and the Deployments
Our tool can check whether a code can be executed or not against the secu-

rity policies written in Policy File Editor. Figure 8 shows the example of this
kind of check. Although “MobCode1.class” in “http://foo.bar/java/” needs a
permission to read all files, Policy File Editor only give the URL a permission
to read file “/tmp/”. Therefore, “MobCode1.class” can not be executed under
this deployment and the policy set.

In Virtual Network, rectangles corresponding to codes which can not be exe-
cuted are red (in monochrome, it looks like dark gray), and those of executable



Figure 7. Generate a minimal policy set
Figure 8. Check codes’ execution
against the policy

codes are light gray (in monochrome, white color). We can check whether
the policy set is too rigorous for the mobile codes to be executed in the client
program.

5. Conclusion
In this paper, we present a graphical tool to check security policies and the

deployment of the codes. The tool also generate a minimal policy set which
gives the necessary permissions to the mobile codes.

Currently, our tool do not support jar archives and the digital signature.
Three dimensional representation of Virtual Network seems to be suitable to
handle the digital signature.

Hierarchical structure of the URL and the target such as file names is not
also supported by our tool. Such kind of structure will partially contribute
for improving the scalability of our tool. However, we should carefully in-
troduce such structure into our tool. For example, suppose the permissions of
“http://foo.bar/java/” are subset of the permissions of “http://foo.bar/java/afo/”.
A hierarchical structure between such URL’s is no sense because no more per-
missions are granted to the codes deployed in “http://foo.bar/java/afo/” by this
structure.

Permissions needed by each component are manually picked up by tool
users now. However, these can be automatically picked up from source codes
or class files, because security related codes transitively use a code which in-
cludes the Permission class or its sub-classes. As Java class files can be easily
disassembled, it is not obstacle that the source codes are not published.



Most serious problem of a current version of our tool is that our tool can not
directly refer to the security requirements of client users. Because descriptions
in a policy file only tell what are granded, no one can directly know such poli-
cies contribute for satisfying the requirements of client users. In our another
work[7], we present a way to formally specify the security requirements and
to verify the security requirements written in Z notation. We want to join this
work together with our tool.

References
[1] Tommy Thorn. Programming languages for mobile code.ACM Computing Surveys,

29(3):213–239, Sep. 1997.

[2] Sun Microsystems, Inc.Java Security Architecture (JDK1.2), Oct. 1998. Version 1.0.

[3] Drew Dean, Edward W. Felten, and Dan S. Wallach. Java Security: From HotJava to
Netscape and Beyond. InProceedings 1996 IEEE Symposium on Security and Privacy,
pages 190–200, May 1996.

[4] Vincent Tam and Rakesh K. Gupta. Using Class Decompilers to Facilitate the security of
Java Application. InWISE’00 proceedings. IEEE, 2000.

[5] T. Jensen, D. Le Metayer, and T. Thorn. Security and Dynamic Class Loading in Java:
A Formalization. InProceedings of International Conference on Computer Languages,
pages 4–15, May 1998.

[6] Ponder homepage.http://www-dse.doc.ic.ac.uk/Research/policies/
ponder.html.

[7] Haruhiko Kaiya and Kenji Kaijiri. Specifying Runtime Environments and Functionalities
of Downloadable Components under the Sandbox Model. InInternational Symposium
on Principles of Software Evolution, pages 138–142, Kanazawa, Japan, Nov. 2000. IEEE
Computer Society Press.


