
Conducting Requirements Evolution
by Replacing Components in the Current System

Haruhiko Kaiya Kenji Kaijiri
Department of Information Engineering, Faculty of Engineering

Shinshu University
4-17-1 Wakasato, Nagano City, 380-8553, Japan

kaiya@cs.shinshu-u.ac.jp kaijiri@cs.shinshu-u.ac.jp
http://www.cs.shinshu-u.ac.jp/˜kaiya/

Abstract

As new software components become available for an
existing system, we can evolve not only the system itself but
also its requirements based on the new components. In this
paper, we propose a method to support requirements evo-
lution by replacing a component with another component,
and by changing the current requirements so as to adapt to
the new component. To explore the possibilities of such a re-
placement, we use the technique of specification matching.
To change the current requirements, we modify the structure
by following the concept of Design by Contract.

1. Introduction

Requirements of a software system are originally ac-
quired from users in several ways, e.g., interviews or ques-
tionnaires. When a system already exists and several new
components become available, analysts can explicitly com-
pare components in the current system with the new com-
ponents, so as to let the users explore the possibilities of
their new system. Therefore, the emergence of new avail-
able components can encourage the evolution of the system
requirements. In this paper, we propose a method for con-
ducting requirements evolution based on the replacement of
current components.

Many techniques for supporting requirements acquisi-
tion focus on the behavior of users in their daily work
[1], because we intend to replace several parts of current
tasks with computer systems. Such techniques alone are not
enough to encourage users to explore the new possibilities
that are created by introducing computer systems, because
users do not know enough about what and how the systems
affect the current task.

Recently, many software components are introduced ev-
eryday. In practice, the method for selecting a suitable com-
ponent from libraries has become one of the most important
topics in requirements engineering [2]. Also, the number

of such components seems to be larger than the number
of user requirements. Therefore, we can stimulate user re-
quirements by showing the possible replacements of current
components and the effects of such replacements. We call
such replacements and their effects requirements evolution.

To conduct requirements evolution, we find three techni-
cal issues:

1. How to clarify the differences between the old compo-
nents and new ones.

2. How to explore new possibilities of the system with
new components.

3. How to select the most suitable replacement among the
possible replacements.

In this paper, we explore the first issue by using specifica-
tion matching [3]. In the specification matching technique,
each software component is specified by a signature and
pre/post-conditions, which is the traditional way of speci-
fication. The differences between the components are char-
acterized using the signature and the conditions. To resolve
the second issue, we use the concept of Design by Contract
[4]. In Design by Contract, each software component is also
specified in the traditional way. In addition, the relationship
between a component and the other parts of the system is
modeled as a contract, so that the responsibilities of a com-
ponent and the other parts are clearly disjointed. We do not
take up the last issue in this paper, but discuss the possibili-
ties in the last section.

The rest of this paper is organized as follows. In Section
2, we introduce the outline of our method, and Section 3
presents examples for explaining this method. In the last
section, we discuss future directions of this method.

2. Method

In Figure1, we outline our method. We regard a sequence
of activities as a requirements specification. Here we rep-
resent such a sequence using an Activity Diagram in UML.

224

pre−condition D=....

post−conditon D=....

A

B

C

D

A

B

C D
new

pre−condition A=....
post−conditon A=....

pre−condition B=....
post−conditon B=....

pre−condition C=....
post−conditon C=....

pre−condition D=....
post−conditon D=....

pre−condition A=....
post−conditon A=....

pre−condition B=....
post−conditon B=....

pre−condition C=....
post−conditon C=....

Current Requirements

Evolved Requirements

new

new

Step1

Step3

Step2

Q

S

Figure 1. Outline of this method

We regard each activity shown by an ellipse as a compo-
nent used in the system, and each activity is specified by
pre/post-conditions. Because each activity is specified by
conditions and the connections between the activities ad-
here to the principle of Design by Contract, the topology of
the diagram is constrained by the conditions (Step1).

Step2 in Figure1 shows a replacement of a component,
which can be a trigger of the requirements evolution. We
call the set of components which are directly connected by
arcs to the replaced componentthe client of the replaced
component.

We use specification matching [3] for comparing the re-
placed components. The study of specification matching in-
cludes a method for finding a specificationS which matches
another specificationQ. One type of matching is called
pre/post match and defined as follows:

matchpre/post(S, Q) = (Qpre R1 Spre) ∧ (S′ R2 Qpost)

whereS′ is eitherSpost or Spre ∧ Spost andRi is either⇒
or ⇔. In the context of our method,S corresponds to a
candidate of the replacing component, andQ corresponds
to the current (replaced) component. In our method, we
introduce the principle of Design by Contract, which argues
that the responsibilities of a component and its client should
be clearly disjointed. Therefore, pre/post match is suitable
for our comparison.

Specification matching deals with “matching” of alterna-
tive components. Therefore, the client of the component is
normally fixed. As a consequence, the pre-condition may
be weakened and the post-condition should be preserved,

so the logical relationships ofRi are either⇒ or ⇔. In
contrast, because its client does not need to be fixed in our
study, the relationships could be⇒, ⇐ or ⇔. WhenRi

is ⇐, which is not supported in specification matching, its
client should be modified.

Because each pre/post-condition normally consists of
several predicates, pre/post match cannot simply cover all
kinds of replacements. In this method, we will decompose
a component so as to be able to apply the pre/post match,
and we do not handle a component which cannot be de-
composed adequately. In this paper, we use Z notation for
describing pre/post-conditions.

In the context of Design by Contract, the conjunction
of post-conditions which specify the precedent components
should satisfy the pre-condition of the replacing component.
The post-condition of the replacing component should sat-
isfy each pre-condition of succeeding components. There-
fore, if another contract can or should be made by replacing
a component, we explore the requirements evolution

• by modifying the topology of the Activity Diagram

• or by replacing precedent and/or succeeding compo-
nents.

Though we should manually find where and how to mod-
ify and to replace, we introduce a kind of strategy for mod-
ifying the topology as follows:

Rule1 [R1or2 in matchpre/post(S, Q) = ⇒]: an activity of
the new component is moved forward in the sequence
of activities.

Rule2 [R1or2 in matchpre/post(S, Q) =⇐]: an activity of the
new component is moved backward in the sequence of
activities.

Note that this strategy is only valid when the conditions are
gradually strengthened.

Then we can formally check whether the modifications
and replacements are valid or not by checking the contracts
between the components. Step3 in Figure1 shows one such
resolution. Because we normally have several possibilities
of evolution, we leave the selection of a suitable evolution
to users now.

3. Examples

In this section, we introduce two examples of require-
ments evolution. From these examples, we will show that
the replacement of components can encourage the require-
ments evolution.

3.1. Coaching Presentation Techniques

When you have a plan to give a presentation in the near
future, you will practice your presentation and have com-
ments from your colleagues, and refine your presentation.

225

In this example, we show a requirements specification for
supporting such a task so as to discuss the replacement
which seems to refine the task.
Step1: Suppose you use static materials of presentation,
e.g., transparencies in your presentation. You cannot mod-
ify your material during the discussion for comments. This
can be formally described as a pre-condition of an activity
“Modify Material” as follows:

pre.Modify Material
c? : P Comments
m : Material

exhausted(c?)
finish trial(m)

.Qpre

The post-condition is as follows.

post.Modify Material
c? : P Comments
m, m′ : Material

m′ = modify(m, c?)

. . . . Qpost

Because the pre-condition “Modify Material” has not been
satisfied until finishing the activity “Give Comments”,
which is not described here but can be easily imagined, we
may have a requirements specification as shown in Figure2.

Practice Presentation

Prepare Material

Modify Material

Give Comments

Figure 2. Current Requirements

Step2: Suppose you can use presentation software with
which you can modify the materials during the discussion
on the fly. e.g. Microsoft’s PowerPoint, you can modify
your material without waiting for the end of the comments.
This can be formally described as follows.

pre.Modify Materialnew

m : Material

finish trial(m)

. Spre

That is to say, the pre-condition “Modify Material” is weak-
ened according to the new presentation tool. Note that the
post-condition is not changed.

In summary, the replacement of this component is clas-
sified as

matchpre/post(S, Q) = (Qpre ⇒ Spre) ∧ (Spost ⇔ Qpost).

Step3: The former part of matchpre/post(S, Q) tells that re-
sponsibilities of precedent components may be relaxed be-
cause the pre-condition of the replaced component is weak-
ened. According to rule1 in Section2, the activity “Modify
Material” does not have to wait for the end of “Give Com-
ments” , but it has to wait until “Practice Presentation” fi n-
ishes because the condition “finish trial(m)” still remains
in its pre-condition. Figure 3 shows one possible evolution.
This illustrates that the new presentation tool can change the
way of doing the task.

Practice Presentation

Prepare Material

Modify MaterialGive Comments

Figure 3. Evolved Requirements

3.2. Assigning Reviewers of a Conference

If you become a program chair of APSEC’99, you
should organize the committee of the conference from all
over the world, call for papers and assign the reviewers
of each submitted paper. In this example, we show a re-
quirements specifications for supporting the task of pro-
gram chair so as to discuss a replacement which seems to
degenerate this task.
Step1: Suppose the following conditions are satisfied:

• The committee members have suitable ways to share
and to read the contents of all submitted papers, though
the members of the committee are geographically dis-
tributed all over the world. For example, the papers are
submitted in electronic format, e.g., PostScript or PDF,
to a multi-casting address.

• They can have a meeting easily even if the time dif-
ferences among the locations of each member is large.
For example, they have an asynchronous communica-
tion tool like email.

Under such conditions, you can appoint new members of
the committee until the submission deadline, if no suitable
researcher is a member for a submitted paper. Reviewers of
each paper can be assigned simultaneously.

226

This fact can be formally described as a pre-condition of
“Assign Reviewers” as follows:

pre.Assign Reviewers
true

. Qpre

This means that the client of “Assign Previewers” takes no
responsibility. The effect of this activity can be described
as follows:

post.Assign Reviewers
p′ : P Paper
c′ : P Committee
m′ : Paper × Committee

m′ = assign(p′, c′)

. . . . Qpost

As a result, you may have a requirements specification
as shown in Figure4.

Call for Papers Assign Reviewers

Review Papers

Appoint Committee

Figure 4. Current Requirements

Step2: Unfortunately, if the members of the committee can-
not share the submitted papers easily and quickly, e.g. pa-
pers may be submitted to one or a few members of the com-
mittee as printed matter, you cannot assign the reviewers
simultaneously.

This can be described formally as follows:
pre.Assign Reviewersnew

p : P Paper

fixed(p)

. Spre

The post-condition is not changed.
In summary, the replacement of this component is clas-

sified as

matchpre/post(S, Q) = (Qpre ⇐ Spre) ∧ (Spost ⇔ Qpost).

Step3: The former part of matchpre/post(S, Q) tells that
the responsibilities of precedent components should be
strengthened, because the pre-condition of replacing com-
ponent, i.e., Qpre is strengthened. Therefore we should mod-
ify the requirements according to rule2 in Section2 so that
the new pre-condition of “Assign Reviewers” has been sat-
isfied.

Figure5 shows one possible evolution where the com-
ponent “Assign Reviewers” is preceded by the component
“Call for Papers” .

Call for Papers

Assign Reviewers

Review Papers

Appoint Committee

Figure 5. Evolved Requirements

4. Discussion

In this paper, we present a method for conducting re-
quirements evolution according to the replacement of cur-
rent components. However, the following issues still re-
main.

1. How to decompose each component so as to apply
pre/post match.

2. How to handle the components which can not be de-
composed nor pre/post match be applied.

3. Where and how to replace the other components of the
current requirements so as to adapt the new compo-
nent.

4. How to select the most suitable replacement from the
possible ones.

We will explore the solution of the first three issues by
using case studies. The fourth issue will be handled by De-
sign Rationale Systems [5], with which we can compare and
evaluate the alternatives of a design.

Acknowledgments

The authors would like to thank the members of Require-
ments Engineering Working Group, SIGSE of IPSJ.

References

[1] M. J. Muller, S. Kuhn, D. M. Wildman, and E. A. White. Par-
ticipatory Design: Introduction. Commun. ACM, 36(4):24–
28, Jun. 1993.

[2] M. A. Maiden and C. Ncube. Acquiring COTS Software Se-
lection Requirements. IEEE Software, 15(2):46–56, Mar. and
Apr. 1998.

[3] A. M. Zaremski and J. M. Wing. Specification Matching
of Software Components. ACM Trans. Software Eng. and
Methodology, 6(4):333–369, Oct. 1997.

[4] B. Meyer. Object-oriented software construction, 2nd edition.
Prentice Hall, 1997.

[5] J. Lee. Design Rationale Systems: Understanding the Issues.
IEEE Expert/Intelligent Systems & Their Applications, 12(3),
May-Jun. 1997.

227

