4 Applications to Nonlinear Problems

4.1 Comparisom Principle for a single reaction diffusion equation

- In this section, we will apply the maximum principles for some nonlinear problems, in particular, a certain class of reaction-diffusion equations. Let us first consider the following equation:

$$
u_{t}=\Delta u+f(u), \quad 0<t<T, x \in U
$$

where $T>0, U \subset \mathbb{R}^{N}$ and $f \in C^{1}(\mathbb{R})$.

Lemma 4.1

Let $U \subset \mathbb{R}^{N}$ be a domain, $T>0$ and $D=(0, T) \times U$. Suppose that $c \in L^{\infty}(D) \cap$ $C(\bar{D})$ and $u \in C(\bar{D}) \cap C^{1,2}(D) \cap L^{\infty}(D)$ satisfies

$$
\begin{align*}
& u_{t} \leq \Delta u+c(t, x) u, \quad(t, x) \in D \\
& u(t, x) \leq 0, \quad 0<t \leq T, \quad x \in \partial U \tag{4.1}\\
& u(0, x) \leq 0, \quad x \in \bar{U}
\end{align*}
$$

Then it holds that $u(t, x) \leq 0$ in D.
Remark: It is not necessary to impose that $c(t, x) \geq 0$ in D. This lemma is still valid if $\partial_{t}-\Delta$ is replaced by a general uniformly parabolic operator.
Proof:

- Let $M>\sup _{(t, x) \in D}|c(t, x)|$ and $v(t, x)=e^{M t} u(t, x)$, that is $u(t, x)=e^{-M t} u(t, x)$. Then v satisfies

$$
\begin{aligned}
v_{t}-\Delta v-(c(t, x)+M) v & =e^{M t}\left\{M u+u_{t}-\Delta u-(c(t, x)+M) u\right\} \\
& =e^{M t}\left\{u_{t}-\Delta u-c(t, x) u\right\} \leq 0
\end{aligned}
$$

and clearly $v(t, x) \leq 0$ on $\partial_{p} D$. We remark that $c(t, x)+M \geq 0$ in D.

- If U is bounded, from Theorem 3.10, we obtain $v(t, x) \leq 0$, that is, $u(t, x) \leq 0$ in D.
- If U is unbounded, from Theorem 3.18, we obtain $v(t, x) \leq 0$ that is, $u(t, x) \leq 0$ in D.

Remark: When U is a bounded domain, if condition " $u^{+}(t, x) \geq u^{-}(t, x)$ for $0<t \leq T$, $x \in \partial U$ " is replaced by " $\frac{\partial u^{-}}{\partial \nu} \leq \frac{\partial u^{+}}{\partial \nu}$ for $0<t \leq T, x \in \partial U$ ", then we also obtain $u(t, x) \leq 0$ in D.

Theorem 4.2(Comparison Principle)

Let $U \subset \mathbb{R}^{N}$ be a domain, $T>0$ and $D=(0, T) \times U, f \in C^{1}(\mathbb{R})$. Suppose that $u^{+}, u^{-} \in C(\mathbb{R}) \cap C^{1,2}(D) \cap L^{\infty}(\mathbb{R})$ satisfy

$$
\begin{aligned}
& u_{t}^{+}-\Delta u^{+}-f\left(u^{+}\right) \geq u_{t}^{-}-\Delta u^{-}-f\left(u^{-}\right), \quad(t, x) \in D \\
& u^{+}(t, x) \geq u^{-}(t, x), \quad(t, x) \in \partial_{p} D .
\end{aligned}
$$

Then it holds that $u^{+}(t, x) \geq u^{-}(t, x)$ in D.

Proof:

- Because u^{-}, u^{+}are bounded, there exist $M>m>0$ such that

$$
m \leq u^{-}(t, x), u^{+}(t, x) \leq M
$$

holds for $(t, x) \in D$.

- Let us define $w(t, x):=u^{-}(t, x)-u^{+}(t, x)$ and

$$
c(t, x):= \begin{cases}\frac{f\left(u^{-}(t, x)\right)-f\left(u^{+}(t, x)\right)}{u^{-}(t, x)-u^{+}(t, x)} & \text { if } u^{-}(t, x) \neq u^{+}(t, x) \\ f^{\prime}\left(u^{-}(t, x)\right) & \text { if } u^{-}(t, x)=u^{+}(t, x)\end{cases}
$$

- We note that $c \in C(\bar{D}) \cap L^{\infty}(D)$.
- From w satisfies

$$
\begin{aligned}
w_{t}-\Delta w & =u_{t}^{-}-u_{t}^{+}-\left(\Delta u^{-}-\Delta u^{+}\right) \\
& =\left(u_{t}^{-}-\Delta u^{-}\right)-\left(u_{t}^{+}-\Delta u^{*}\right) \\
& \leq f\left(u^{-}(t, x)\right)-f\left(u^{+}(t, x)\right)=c(t, x) w
\end{aligned}
$$

Hence $w_{t}-\Delta w-c(t, x) w \leq 0$ for $(t, x) \in D$. Moreover $w(t, x) \leq 0$ holds for $(t, x) \in \partial_{p} D$.

- Therefore by Lemma 4.1, we obtain that $w(t, x) \leq 0$, that is, $u^{-}(t, x) \leq u^{+}(t, x)$ for $(t, x) \in D$. \square
Remark: When U is a bounded domain, if condition " $u(t, x) \leq 0$ for $0<t \leq T$, $x \in \partial U$ " is replaced by " $\frac{\partial u}{\partial \nu} \leq 0$ for $0<t \leq T, x \in \partial U$ ", then we also obtain $u(t, x) \leq 0$ in D.
- Consider the initial-boundary value problem

$$
\begin{align*}
& u_{t}=\Delta u+f(u), \quad(t, x) \in D=(0, T) \times U, \\
& u(t, x)=g(t, x), \quad x \in \partial U \tag{4.2}\\
& u(0, x)=u_{0}(x), \quad x \in \bar{U}
\end{align*}
$$

where $g \in C((0, T] \times \partial U), u_{0} \in C(\bar{U})$ are given functions (when $U=\mathbb{R}^{N}$ we do not impose any boundary condition in the second line).

- We say $u^{+} \in C(\bar{U}) \cap C^{1,2}(D)$ is an upper solution of (4.2) if

$$
\begin{aligned}
& u_{t}^{+} \geq \Delta u^{+}+f\left(u^{+}\right), \quad(t, x) \in D=(0, T) \times U, \\
& u^{+}(t, x) \geq g(t, x), \quad 0<t \leq T, x \in \partial U \\
& u^{+}(0, x) \geq u_{0}(x), \quad x \in \bar{U}
\end{aligned}
$$

- We say $u^{-} \in C(\bar{D}) \cap C^{1,2}(D)$ is a lower solution of (4.2) if

$$
\begin{aligned}
& u_{t}^{-} \leq \Delta u^{-}+f\left(u^{-}\right), \quad(t, x) \in D=(0, T) \times U, \\
& u^{-}(t, x) \leq g(t, x), \quad 0<t \leq T, x \in \partial U \\
& u^{-}(0, x) \leq u_{0}(x), \quad x \in \bar{U}
\end{aligned}
$$

4.2 Comparisom Principle for a system of reaction diffusion equations

- We next consider the following reaction-diffusion system:

$$
\begin{align*}
u_{t}=d_{1} \Delta u+f(u, v), & t>0, \\
v_{t}=d_{2} \Delta v+g(u, v), & t>0, \tag{4.3}
\end{align*} \quad x \in U,
$$

where $d_{1}, d_{2}>0$ are constants and f, g are smooth functions.

Lemma 4.3

Let $U \subset \mathbb{R}^{N}$ be a domain, $T>0$ and $D=(0, T) \times U$. Suppose that $u, v \in$ $C(\mathbb{R}) \cap C^{1,2}(D) \cap L^{\infty}(\mathbb{R})$ satisfy

$$
\begin{aligned}
& u_{t} \leq d_{1} \Delta u+c_{11}(t, x) u+c_{12}(t, x) v \quad(t, x) \in D \\
& v_{t} \leq d_{2} \Delta v+c_{21}(t, x) u+c_{22}(t, x) v \quad(t, x) \in D, \\
& u(t, x), v(t, x) \leq 0, \quad 0<t \leq T, x \in \partial U, \\
& u(0, x), v(0, x) \leq 0, \quad x \in \bar{U},
\end{aligned}
$$

with some $c_{i j} \in C(\bar{D}) \cap L^{\infty}(D)(i, j=1,2)$. If $c_{12}(t, x) \geq 0, c_{21}(t, x) \geq 0$ in D. Then it holds that $u(t, x), v(t, x) \leq 0$ in D.

Proof:

- Suppose that there exists $\left(t_{0}, x_{0}\right) \in D$ such that $u\left(t_{0}, x_{0}\right)>0$ or $v\left(t_{0}, x_{0}\right)>0$.
- Take $M>0$ so that $c_{j 1}(t, x)+c_{j 2}(t, x) \leq M$ in D holds.
- Define $U:=u-\varepsilon e^{M t}, V:=v-\varepsilon e^{M t}$ for small $\varepsilon>0$.
- Take $\varepsilon>0$ so that $U\left(t_{0}, x_{0}\right)>0, V\left(t_{0}, x_{0}\right)>0$ holds.
- Define $t_{\varepsilon}:=\inf \left\{t \geq 0:{ }^{\exists}(t, x) \in\left[0, t_{0}\right) \times U\right.$ s.t. $U(t, x)>0$ or $\left.V(t, x)>0\right\}$.
- Since $U(0, x)<0$ and $V(t, x)<0, t_{\varepsilon}>0$ and there exists $x_{\varepsilon} \in U$ such that $U\left(t_{\varepsilon}, x_{\varepsilon}\right)=0$ or $V\left(t_{\varepsilon}, x_{\varepsilon}\right)=0$ and

$$
U(t, x)<0, \quad V(t, x)<0 \quad(t, x) \in\left[0, t_{\varepsilon}\right) \times U .
$$

- Suppose $U\left(t_{\varepsilon}, x_{\varepsilon}\right)=0$. On $\left(0, t_{\varepsilon}\right] \times U$ we have

$$
\begin{aligned}
U_{t}-d_{1} \Delta U-c_{11} U & =u_{t}-d_{1} \Delta u-c_{11} u-\varepsilon M e^{M t}+c_{11} \varepsilon e^{M t} \\
& =c_{12} v-c_{11} u-\varepsilon M e^{M t}+c_{11} \varepsilon e^{M t} \\
& =c_{12} V-\varepsilon e^{M t}\left(M-c_{11}-c_{12}\right)<0 .
\end{aligned}
$$

- We also have $U<0$ on $\partial_{p}\left(\left(0, t_{\varepsilon}\right) \times U\right)$. By Lemma 4.1 and Corollary 3.12(strong maximum principle) we obtain

$$
U(t, x)<0 \text { for }(t, x) \in\left[0, t_{\varepsilon}\right] \times D,
$$

which is a contradiction to $U\left(t_{\varepsilon}, x_{\varepsilon}\right)=0$. We can get a contradiction in the case where $V\left(t_{\varepsilon}, x_{\varepsilon}\right)=0$.

Remark: When U is a bounded domain, if condition " $u(t, x), v(t, x) \leq 0$ for $0<t \leq T$, $x \in \partial U$ " is replaced by " $\frac{\partial u}{\partial \nu} \leq 0, \frac{\partial v}{\partial \nu} \leq 0$ for $0<t \leq T, x \in \partial U$ ", then we also obtain $u(t, x), v(t, x) \leq 0$ in D.

- In general, the comparison principle does not hold for reaction-diffusion system. However under some conditions on f and g, some comparison principle is available. We assume the following conditions:

$$
\begin{equation*}
\frac{\partial f}{\partial v} \geq 0, \quad \frac{\partial g}{\partial u} \geq 0 \tag{4.4}
\end{equation*}
$$

Theorem 4.4

Let $U \subset \mathbb{R}^{N}$ be a domain, $T>0$ and $D=(0, T) \times U$. Suppose that $u^{ \pm}, v^{ \pm} \in$ $C(\bar{D}) \cap C^{1,2}(D)$ satisfy

$$
\begin{aligned}
& \left(u^{+}\right)_{t}-d_{1} \Delta\left(u^{+}\right)+f\left(u^{+}, v^{+}\right) \geq\left(u^{-}\right)_{t}-\Delta u^{-}-f\left(u_{-}, v_{-}\right), \quad(t, x) \in D \\
& \left(v^{+}\right)_{t}-d_{2} \Delta\left(v^{+}\right)+g\left(u^{+}, v^{+}\right) \geq\left(v^{-}\right)_{t}-\Delta v^{-}-g\left(u_{-}, v_{-}\right), \quad(t, x) \in D \\
& u^{+}(t, x) \geq u^{-}(t, x), \quad v^{+}(t, x) \geq v^{-}(t, x) 0<t \leq T, x \in \partial U \\
& u^{+}(0, x) \geq u^{-}(0, x), \quad v^{+}(0, x) \geq v^{-}(0, x) x \in \bar{U} .
\end{aligned}
$$

and moreover there exists $0<m<M$ such that

$$
m \leq u^{ \pm}(t, x), v^{ \pm}(t, x) \leq M \text { for }(t, x) \in D
$$

and (4.4) holds on $[m, M] \times[m, M]$. Then we have

$$
u^{+}(t, x) \geq u^{-}(t, x), \quad v^{+}(t, x) \geq v^{-}(t, x) \text { for }(t, x) \in D .
$$

Proof:

- Let $u=u^{-}-u^{+}, v=v^{-}-v^{+}$. Then u and v satisfy

$$
\begin{aligned}
& u_{t} \leq d_{1} \Delta u+c_{11}(t, x) u+c_{12}(t, x) v \quad(t, x) \in D \\
& v_{t} \leq d_{2} \Delta v+c_{21}(t, x) u+c_{22}(t, x) v \quad(t, x) \in D \\
& u(t, x), v(t, x) \leq 0, \quad 0<t \leq T, x \in \partial U \\
& u(0, x), v(0, x) \leq 0, \quad x \in \bar{U},
\end{aligned}
$$

where

$$
\begin{aligned}
& c_{11}=\int_{0}^{1} f_{u}\left(\theta u^{-}+(1-\theta) u^{+}, \theta v^{-}+(1-\theta) v^{+}\right) d \theta, \\
& c_{12}=\int_{0}^{1} f_{v}\left(\theta u^{-}+(1-\theta) u^{+}, \theta v^{-}+(1-\theta) v^{+}\right) d \theta, \\
& c_{21}=\int_{0}^{1} g_{u}\left(\theta u^{-}+(1-\theta) u^{+}, \theta v^{-}+(1-\theta) v^{+}\right) d \theta, \\
& c_{22}=\int_{0}^{1} g_{v}\left(\theta u^{-}+(1-\theta) u^{+}, \theta v^{-}+(1-\theta) v^{+}\right) d \theta .
\end{aligned}
$$

Here it should be noted that $c_{12}, c_{21} \geq 0$ and $c_{i j}$ are bounded continuous functions.

- Therefore we can use Lemma 4.3 to conclude that $u^{-} \leq u^{+}$and $v^{-} \leq v^{+}$.

Remark: When U is a bounded domain, if condition " $u^{+}(t, x) \geq u^{-}(t, x)$ and $v^{-}(t, x) \leq$ $v^{+}(t, x)$ for $0<t \leq T, x \in \partial U^{\prime}$ " is replaced by " $\frac{\partial u^{-}}{\partial \nu} \leq \frac{\partial u^{+}}{\partial \nu}$ and $\frac{\partial v^{-}}{\partial \nu} \leq \frac{\partial v^{+}}{\partial \nu}$ for $0<t \leq T, x \in \partial U^{\prime \prime}$, then we also obtain $u^{-}(t, x) \leq u^{+}(t, x)$ and $v^{-}(t, x) \leq v^{+}(t, x)$ in D.

4.3 Invariant Rectangle

- Let U be a bounded domain. Consider the following reaction-diffusion system:

$$
\begin{align*}
& u_{t}=d_{1} \Delta u+f(u, v), \quad t>0, \quad x \in U \\
& v_{t}=d_{2} \Delta v+g(u, v), \quad t>0, \quad x \in U \\
& \frac{\partial u}{\partial \nu}=\frac{\partial v}{\partial \nu}=0, \quad t>0, \quad x \in \partial U \tag{4.5}\\
& u(0, x)=u_{0}(x), \quad v(0, x)=v_{0}(x), \quad x \in U .
\end{align*}
$$

and corresponding ODE system:

$$
\begin{align*}
\frac{d U}{d t} & =f(U, V) \tag{4.6}\\
\frac{d V}{d t} & =g(U, V)
\end{align*}
$$

- $K \subset \mathbb{R}^{2}$ is said to be a positively invariant region of (4.6) if $(U(0), V(0)) \in K \Rightarrow(U(t), V(t))$: solution to (4.6) satisies $(U(t), V(t)) \in K(t \geq 0)$.
- $K \subset \mathbb{R}^{2}$ is said to be a positively invariant region of (4.5) if

$$
\begin{aligned}
& \left(u_{0}(x), v_{0}(x)\right) \in K(x \in U) \\
& \quad \Rightarrow(u(t, x), v(t, x)): \text { solution to }(4.5) \text { satisies }(u(t, x), v(t, x)) \in K \quad(x \in U, t \geq 0)
\end{aligned}
$$

Proposition 4.5

(1) If $f(a, v) \geq 0$ for any $v \in \mathbb{R}$, then $\{(u, v): u \geq a\}$ is a invariant region of (4.5).
(2) If $f(a, v) \leq 0$ for any $v \in \mathbb{R}$, then $\{(u, v): u \leq a\}$ is a invariant region of (4.5).
(3) If $g(u, c) \geq 0$ for any $u \in \mathbb{R}$, then $\{(u, v): v \geq c\}$ is a invariant region of (4.5).
(4) If $g(u, c) \leq 0$ for any $u \in \mathbb{R}$, then $\{(u, v): v \leq c\}$ is a invariant region of (4.5).

Proof:

- We only give the proof of (1).
- Let $w(t, x)=a-u(t, x)$. Then we obtain

$$
\begin{aligned}
w_{t}=-u_{t} & =-d_{1} \Delta u-f(u, v) \\
& \leq d_{1} \Delta w+f(a, v)-f(u, v) \\
& =d_{1} \Delta w+c(t, x) w
\end{aligned}
$$

where

$$
\left.c(t, x)=\int_{0}^{1} f_{u}(\theta a+(1-\theta) u), v\right) d \theta
$$

- By Lemma 4.1, we obtain $u(t, x) \geq a$ for $t \geq 0$.

