4 Applications to Nonlinear Problems

4.1 Comparisom Principle for a single reaction diffusion equation

• In this section, we will apply the maximum principles for some nonlinear problems, in particular, a certain class of reaction-diffusion equations. Let us first consider the following equation:

$$u_t = \Delta u + f(u), \quad 0 < t < T, \ x \in U,$$

where T > 0, $U \subset \mathbb{R}^N$ and $f \in C^1(\mathbb{R})$.

Lemma 4.1 -

Let $U \subset \mathbb{R}^N$ be a domain, T > 0 and $D = (0,T) \times U$. Suppose that $c \in L^{\infty}(D) \cap C(\overline{D})$ and $u \in C(\overline{D}) \cap C^{1,2}(D) \cap L^{\infty}(D)$ satisfies

$$u_{t} \leq \Delta u + c(t, x)u, \quad (t, x) \in D,$$

$$u(t, x) \leq 0, \quad 0 < t \leq T, \quad x \in \partial U,$$

$$u(0, x) \leq 0, \quad x \in \overline{U}.$$

$$(4.1)$$

Then it holds that $u(t, x) \leq 0$ in D.

Remark: It is not necessary to impose that $c(t, x) \ge 0$ in D. This lemma is still valid if $\partial_t - \Delta$ is replaced by a general uniformly parabolic operator. **Proof:**

• Let $M > \sup_{(t,x) \in D} |c(t,x)|$ and $v(t,x) = e^{Mt}u(t,x)$, that is $u(t,x) = e^{-Mt}u(t,x)$. Then v satisfies

$$v_t - \Delta v - (c(t, x) + M)v = e^{Mt} \{ Mu + u_t - \Delta u - (c(t, x) + M)u \}$$
$$= e^{Mt} \{ u_t - \Delta u - c(t, x)u \} \le 0$$

and clearly $v(t,x) \leq 0$ on $\partial_p D$. We remark that $c(t,x) + M \geq 0$ in D.

- If U is bounded, from Theorem 3.10, we obtain $v(t,x) \leq 0$, that is, $u(t,x) \leq 0$ in D.
- If U is unbounded, from Theorem 3.18, we obtain $v(t,x) \leq 0$ that is, $u(t,x) \leq 0$ in D. \square

Remark: When U is a bounded domain, if condition " $u^+(t,x) \ge u^-(t,x)$ for $0 < t \le T$, $x \in \partial U$ " is replaced by " $\frac{\partial u^-}{\partial \nu} \le \frac{\partial u^+}{\partial \nu}$ for $0 < t \le T$, $x \in \partial U$ ", then we also obtain $u(t,x) \le 0$ in D.

Theorem 4.2(Comparison Principle) –

Let $U \subset \mathbb{R}^N$ be a domain, T > 0 and $D = (0,T) \times U$, $f \in C^1(\mathbb{R})$. Suppose that $u^+, u^- \in C(\mathbb{R}) \cap C^{1,2}(D) \cap L^{\infty}(\mathbb{R})$ satisfy

$$u_t^+ - \Delta u^+ - f(u^+) \ge u_t^- - \Delta u^- - f(u^-), \quad (t, x) \in D,$$

 $u^+(t, x) \ge u^-(t, x), \quad (t, x) \in \partial_p D.$

Then it holds that $u^+(t,x) \ge u^-(t,x)$ in D.

Proof:

• Because u^- , u^+ are bounded, there exist M > m > 0 such that

$$m \le u^-(t, x), u^+(t, x) \le M$$

holds for $(t, x) \in D$.

• Let us define $w(t,x) := u^-(t,x) - u^+(t,x)$ and

$$c(t,x) := \begin{cases} \frac{f(u^{-}(t,x)) - f(u^{+}(t,x))}{u^{-}(t,x) - u^{+}(t,x)} & \text{if } u^{-}(t,x) \neq u^{+}(t,x), \\ f'(u^{-}(t,x)) & \text{if } u^{-}(t,x) = u^{+}(t,x). \end{cases}$$

- We note that $c \in C(\overline{D}) \cap L^{\infty}(D)$.
- \bullet From w satisfies

$$w_{t} - \Delta w = u_{t}^{-} - u_{t}^{+} - (\Delta u^{-} - \Delta u^{+})$$

$$= (u_{t}^{-} - \Delta u^{-}) - (u_{t}^{+} - \Delta u^{*})$$

$$\leq f(u^{-}(t, x)) - f(u^{+}(t, x)) = c(t, x)w$$

Hence $w_t - \Delta w - c(t,x)w \le 0$ for $(t,x) \in D$. Moreover $w(t,x) \le 0$ holds for $(t,x) \in \partial_p D$.

• Therefore by Lemma 4.1, we obtain that $w(t,x) \leq 0$, that is, $u^-(t,x) \leq u^+(t,x)$ for $(t,x) \in D.\square$

Remark: When U is a bounded domain, if condition " $u(t,x) \leq 0$ for $0 < t \leq T$, $x \in \partial U$ " is replaced by " $\frac{\partial u}{\partial \nu} \leq 0$ for $0 < t \leq T$, $x \in \partial U$ ", then we also obtain $u(t,x) \leq 0$ in D.

• Consider the initial-boundary value problem

$$u_{t} = \Delta u + f(u), \quad (t, x) \in D = (0, T) \times U,$$

$$u(t, x) = g(t, x), \quad x \in \partial U,$$

$$u(0, x) = u_{0}(x), \quad x \in \overline{U}.$$

$$(4.2)$$

where $g \in C((0,T] \times \partial U)$, $u_0 \in C(\overline{U})$ are given functions (when $U = \mathbb{R}^N$ we do not impose any boundary condition in the second line).

• We say $u^+ \in C(\overline{U}) \cap C^{1,2}(D)$ is an **upper solution** of (4.2) if

$$u_t^+ \ge \Delta u^+ + f(u^+), \quad (t, x) \in D = (0, T) \times U,$$

 $u^+(t, x) \ge g(t, x), \quad 0 < t \le T, \ x \in \partial U,$
 $u^+(0, x) \ge u_0(x), \quad x \in \overline{U}.$

• We say $u^- \in C(\overline{D}) \cap C^{1,2}(D)$ is a **lower solution** of (4.2) if

$$u_t^- \le \Delta u^- + f(u^-), \quad (t, x) \in D = (0, T) \times U,$$

 $u^-(t, x) \le g(t, x), \quad 0 < t \le T, \ x \in \partial U,$
 $u^-(0, x) \le u_0(x), \quad x \in \overline{U}.$

4.2 Comparisom Principle for a system of reaction diffusion equations

• We next consider the following reaction-diffusion system:

$$u_t = d_1 \Delta u + f(u, v), \quad t > 0, \quad x \in U,$$

 $v_t = d_2 \Delta v + g(u, v), \quad t > 0, \quad x \in U,$

$$(4.3)$$

where $d_1, d_2 > 0$ are constants and f, g are smooth functions.

Lemma 4.3 -

Let $U \subset \mathbb{R}^N$ be a domain, T>0 and $D=(0,T)\times U$. Suppose that $u,v\in C(\mathbb{R})\cap C^{1,2}(D)\cap L^\infty(\mathbb{R})$ satisfy

$$u_t \le d_1 \Delta u + c_{11}(t, x)u + c_{12}(t, x)v \quad (t, x) \in D,$$

 $v_t \le d_2 \Delta v + c_{21}(t, x)u + c_{22}(t, x)v \quad (t, x) \in D,$
 $u(t, x), v(t, x) \le 0, \quad 0 < t \le T, \ x \in \partial U,$
 $u(0, x), v(0, x) < 0, \quad x \in \overline{U}.$

with some $c_{ij} \in C(\overline{D}) \cap L^{\infty}(D)$ (i, j = 1, 2). If $c_{12}(t, x) \geq 0$, $c_{21}(t, x) \geq 0$ in D. Then it holds that $u(t, x), v(t, x) \leq 0$ in D.

Proof:

- Suppose that there exists $(t_0, x_0) \in D$ such that $u(t_0, x_0) > 0$ or $v(t_0, x_0) > 0$.
- Take M > 0 so that $c_{j1}(t, x) + c_{j2}(t, x) \leq M$ in D holds.
- Define $U := u \varepsilon e^{Mt}$, $V := v \varepsilon e^{Mt}$ for small $\varepsilon > 0$.
- Take $\varepsilon > 0$ so that $U(t_0, x_0) > 0$, $V(t_0, x_0) > 0$ holds.

- Define $t_{\varepsilon} := \inf\{t \geq 0 : \exists (t, x) \in [0, t_0) \times U \text{ s.t. } U(t, x) > 0 \text{ or } V(t, x) > 0\}.$
- Since U(0,x) < 0 and V(t,x) < 0, $t_{\varepsilon} > 0$ and there exists $x_{\varepsilon} \in U$ such that $U(t_{\varepsilon},x_{\varepsilon})=0$ or $V(t_{\varepsilon},x_{\varepsilon})=0$ and

$$U(t,x) < 0$$
, $V(t,x) < 0$ $(t,x) \in [0,t_{\varepsilon}) \times U$.

• Suppose $U(t_{\varepsilon}, x_{\varepsilon}) = 0$. On $(0, t_{\varepsilon}] \times U$ we have

$$U_{t} - d_{1}\Delta U - c_{11}U = u_{t} - d_{1}\Delta u - c_{11}u - \varepsilon Me^{Mt} + c_{11}\varepsilon e^{Mt}$$
$$= c_{12}v - c_{11}u - \varepsilon Me^{Mt} + c_{11}\varepsilon e^{Mt}$$
$$= c_{12}V - \varepsilon e^{Mt}(M - c_{11} - c_{12}) < 0.$$

• We also have U < 0 on $\partial_p((0, t_{\varepsilon}) \times U)$. By Lemma 4.1 and Corollary 3.12(strong maximum principle) we obtain

$$U(t,x) < 0$$
 for $(t,x) \in [0,t_{\varepsilon}] \times D$,

which is a contradiction to $U(t_{\varepsilon}, x_{\varepsilon}) = 0$. We can get a contradiction in the case where $V(t_{\varepsilon}, x_{\varepsilon}) = 0$. \square

Remark: When U is a bounded domain, if condition " $u(t,x), v(t,x) \leq 0$ for $0 < t \leq T$, $x \in \partial U$ " is replaced by " $\frac{\partial u}{\partial \nu} \leq 0$, $\frac{\partial v}{\partial \nu} \leq 0$ for $0 < t \leq T$, $x \in \partial U$ ", then we also obtain $u(t,x), v(t,x) \leq 0$ in D.

• In general, the comparison principle does not hold for reaction-diffusion system. However under some conditions on f and g, some comparison principle is available. We assume the following conditions:

$$\frac{\partial f}{\partial v} \ge 0, \quad \frac{\partial g}{\partial u} \ge 0.$$
 (4.4)

Theorem 4.4

Let $U \subset \mathbb{R}^N$ be a domain, T>0 and $D=(0,T)\times U$. Suppose that $u^\pm,v^\pm\in C(\overline{D})\cap C^{1,2}(D)$ satisfy

$$(u^{+})_{t} - d_{1}\Delta(u^{+}) + f(u^{+}, v^{+}) \ge (u^{-})_{t} - \Delta u^{-} - f(u_{-}, v_{-}), \quad (t, x) \in D,$$

$$(v^{+})_{t} - d_{2}\Delta(v^{+}) + g(u^{+}, v^{+}) \ge (v^{-})_{t} - \Delta v^{-} - g(u_{-}, v_{-}), \quad (t, x) \in D,$$

$$u^{+}(t, x) \ge u^{-}(t, x), \quad v^{+}(t, x) \ge v^{-}(t, x) \quad 0 < t \le T, \quad x \in \partial U,$$

$$u^{+}(0, x) \ge u^{-}(0, x), \quad v^{+}(0, x) \ge v^{-}(0, x) \quad x \in \overline{U}.$$

and moreover there exists 0 < m < M such that

$$m \le u^{\pm}(t, x), v^{\pm}(t, x) \le M \text{ for } (t, x) \in D$$

and (4.4) holds on $[m, M] \times [m, M]$. Then we have

$$u^+(t,x) \ge u^-(t,x), \quad v^+(t,x) \ge v^-(t,x) \quad \text{for} \quad (t,x) \in D.$$

Proof:

• Let $u = u^{-} - u^{+}$, $v = v^{-} - v^{+}$. Then u and v satisfy $u_{t} \leq d_{1}\Delta u + c_{11}(t, x)u + c_{12}(t, x)v \quad (t, x) \in D,$ $v_{t} \leq d_{2}\Delta v + c_{21}(t, x)u + c_{22}(t, x)v \quad (t, x) \in D,$ $u(t, x), v(t, x) \leq 0, \quad 0 < t \leq T, \ x \in \partial U,$ $u(0, x), v(0, x) < 0, \quad x \in \overline{U},$

where

$$c_{11} = \int_{0}^{1} f_{u}(\theta u^{-} + (1 - \theta)u^{+}, \theta v^{-} + (1 - \theta)v^{+})d\theta,$$

$$c_{12} = \int_{0}^{1} f_{v}(\theta u^{-} + (1 - \theta)u^{+}, \theta v^{-} + (1 - \theta)v^{+})d\theta,$$

$$c_{21} = \int_{0}^{1} g_{u}(\theta u^{-} + (1 - \theta)u^{+}, \theta v^{-} + (1 - \theta)v^{+})d\theta,$$

$$c_{22} = \int_{0}^{1} g_{v}(\theta u^{-} + (1 - \theta)u^{+}, \theta v^{-} + (1 - \theta)v^{+})d\theta.$$

Here it should be noted that $c_{12}, c_{21} \geq 0$ and c_{ij} are bounded continuous functions.

• Therefore we can use Lemma 4.3 to conclude that $u^- \leq u^+$ and $v^- \leq v^+$. \square

Remark: When U is a bounded domain, if condition " $u^+(t,x) \ge u^-(t,x)$ and $v^-(t,x) \le v^+(t,x)$ for $0 < t \le T$, $x \in \partial U$ " is replaced by " $\frac{\partial u^-}{\partial \nu} \le \frac{\partial u^+}{\partial \nu}$ and $\frac{\partial v^-}{\partial \nu} \le \frac{\partial v^+}{\partial \nu}$ for $0 < t \le T$, $x \in \partial U$ ", then we also obtain $u^-(t,x) \le u^+(t,x)$ and $v^-(t,x) \le v^+(t,x)$ in D.

4.3 Invariant Rectangle

• Let U be a bounded domain. Consider the following reaction-diffusion system:

$$u_{t} = d_{1}\Delta u + f(u, v), \quad t > 0, \quad x \in U,$$

$$v_{t} = d_{2}\Delta v + g(u, v), \quad t > 0, \quad x \in U,$$

$$\frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} = 0, \quad t > 0, \quad x \in \partial U.$$

$$u(0, x) = u_{0}(x), \quad v(0, x) = v_{0}(x), \quad x \in U.$$
(4.5)

and corresponding ODE system:

$$\frac{dU}{dt} = f(U, V),
\frac{dV}{dt} = g(U, V).$$
(4.6)

- $K \subset \mathbb{R}^2$ is said to be a **positively invariant region** of (4.6) if $(U(0),V(0))\in K \implies (U(t),V(t)):$ solution to (4.6) satisfies $(U(t),V(t))\in K(t\geq 0).$
- $K \subset \mathbb{R}^2$ is said to be a **positively invariant region** of (4.5) if $(u_0(x), v_0(x)) \in K(x \in U)$ $\Rightarrow (u(t,x),v(t,x))$: solution to (4.5) satisfies $(u(t,x),v(t,x)) \in K \ (x \in U,\ t \geq 0)$.

- (1) If f(a, v) ≥ 0 for any v ∈ ℝ, then {(u, v) : u ≥ a} is a invariant region of (4.5).
 (2) If f(a, v) ≤ 0 for any v ∈ ℝ, then {(u, v) : u ≤ a} is a invariant region of (4.5).
 (3) If g(u, c) ≥ 0 for any u ∈ ℝ, then {(u, v) : v ≥ c} is a invariant region of (4.5).
- (4) If $g(u,c) \leq 0$ for any $u \in \mathbb{R}$, then $\{(u,v) : v \leq c\}$ is a invariant region of (4.5).

Proof:

- We only give the proof of (1).
- Let w(t, x) = a u(t, x). Then we obtain

$$w_t = -u_t = -d_1 \Delta u - f(u, v)$$

$$\leq d_1 \Delta w + f(a, v) - f(u, v)$$

$$= d_1 \Delta w + c(t, x)w,$$

where

$$c(t,x) = \int_0^1 f_u(\theta a + (1-\theta)u), v)d\theta.$$

• By Lemma 4.1, we obtain $u(t,x) \ge a$ for $t \ge 0$. \square