
4 Applications to Nonlinear Problems

4.1 Comparisom Principle for a single reaction diffusion equa-
tion

• In this section, we will apply the maximum principles for some nonlinear problems,
in particular, a certain class of reaction-diffusion equations. Let us first consider
the following equation:

ut = ∆u+ f(u), 0 < t < T, x ∈ U,

where T > 0, U ⊂ RN and f ∈ C1(R).

Lemma 4.1� �
Let U ⊂ RN be a domain, T > 0 and D = (0, T )× U . Suppose that c ∈ L∞(D) ∩
C(D) and u ∈ C(D) ∩ C1,2(D) ∩ L∞(D) satisfies

ut ≤ ∆u+ c(t, x)u, (t, x) ∈ D,

u(t, x) ≤ 0, 0 < t ≤ T, x ∈ ∂U,

u(0, x) ≤ 0, x ∈ U.

(4.1)

Then it holds that u(t, x) ≤ 0 in D.� �
Remark: It is not necessary to impose that c(t, x) ≥ 0 in D. This lemma is still valid
if ∂t −∆ is replaced by a general uniformly parabolic operator.
Proof:

• Let M > sup(t,x)∈D |c(t, x)| and v(t, x) = eMtu(t, x), that is u(t, x) = e−Mtu(t, x).
Then v satisfies

vt −∆v − (c(t, x) +M)v = eMt{Mu+ ut −∆u− (c(t, x) +M)u}
= eMt{ut −∆u− c(t, x)u} ≤ 0

and clearly v(t, x) ≤ 0 on ∂pD. We remark that c(t, x) +M ≥ 0 in D.

• If U is bounded, from Theorem 3.10, we obtain v(t, x) ≤ 0, that is, u(t, x) ≤ 0 in
D.

• If U is unbounded, from Theorem 3.18, we obtain v(t, x) ≤ 0 that is, u(t, x) ≤ 0
in D. □

Remark: When U is a bounded domain, if condition “u+(t, x) ≥ u−(t, x) for 0 < t ≤ T ,

x ∈ ∂U” is replaced by “
∂u−

∂ν
≤ ∂u+

∂ν
for 0 < t ≤ T , x ∈ ∂U”, then we also obtain

u(t, x) ≤ 0 in D.
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Theorem 4.2(Comparison Principle)� �
Let U ⊂ RN be a domain, T > 0 and D = (0, T ) × U , f ∈ C1(R). Suppose that
u+, u− ∈ C(R) ∩ C1,2(D) ∩ L∞(R) satisfy

u+
t −∆u+ − f(u+) ≥ u−

t −∆u− − f(u−), (t, x) ∈ D,

u+(t, x) ≥ u−(t, x), (t, x) ∈ ∂pD.

Then it holds that u+(t, x) ≥ u−(t, x) in D.� �
Proof:

• Because u−, u+ are bounded, there exist M > m > 0 such that

m ≤ u−(t, x), u+(t, x) ≤ M

holds for (t, x) ∈ D.

• Let us define w(t, x) := u−(t, x)− u+(t, x) and

c(t, x) :=


f(u−(t, x))− f(u+(t, x))

u−(t, x)− u+(t, x)
if u−(t, x) ̸= u+(t, x),

f ′(u−(t, x)) if u−(t, x) = u+(t, x).

• We note that c ∈ C(D) ∩ L∞(D).

• From w satisfies

wt −∆w = u−
t − u+

t − (∆u− −∆u+)

= (u−
t −∆u−)− (u+

t −∆u∗)

≤ f(u−(t, x))− f(u+(t, x)) = c(t, x)w

Hence wt − ∆w − c(t, x)w ≤ 0 for (t, x) ∈ D. Moreover w(t, x) ≤ 0 holds for
(t, x) ∈ ∂pD.

• Therefore by Lemma 4.1, we obtain that w(t, x) ≤ 0, that is, u−(t, x) ≤ u+(t, x)
for (t, x) ∈ D.□

Remark: When U is a bounded domain, if condition “u(t, x) ≤ 0 for 0 < t ≤ T ,

x ∈ ∂U” is replaced by “
∂u

∂ν
≤ 0 for 0 < t ≤ T , x ∈ ∂U”, then we also obtain

u(t, x) ≤ 0 in D.

• Consider the initial-boundary value problem

ut = ∆u+ f(u), (t, x) ∈ D = (0, T )× U,

u(t, x) = g(t, x), x ∈ ∂U,

u(0, x) = u0(x), x ∈ U.

(4.2)

where g ∈ C((0, T ] × ∂U), u0 ∈ C(U) are given functions (when U = RN we do
not impose any boundary condition in the second line).
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• We say u+ ∈ C(U) ∩ C1,2(D) is an upper solution of (4.2) if

u+
t ≥ ∆u+ + f(u+), (t, x) ∈ D = (0, T )× U,

u+(t, x) ≥ g(t, x), 0 < t ≤ T, x ∈ ∂U,

u+(0, x) ≥ u0(x), x ∈ U.

• We say u− ∈ C(D) ∩ C1,2(D) is a lower solution of (4.2) if

u−
t ≤ ∆u− + f(u−), (t, x) ∈ D = (0, T )× U,

u−(t, x) ≤ g(t, x), 0 < t ≤ T, x ∈ ∂U,

u−(0, x) ≤ u0(x), x ∈ U.

4.2 Comparisom Principle for a system of reaction diffusion
equations

• We next consider the following reaction-diffusion system:

ut = d1∆u+ f(u, v), t > 0, x ∈ U,

vt = d2∆v + g(u, v), t > 0, x ∈ U,
(4.3)

where d1, d2 > 0 are constants and f , g are smooth functions.

Lemma 4.3� �
Let U ⊂ RN be a domain, T > 0 and D = (0, T ) × U . Suppose that u, v ∈
C(R) ∩ C1,2(D) ∩ L∞(R) satisfy

ut ≤ d1∆u+ c11(t, x)u+ c12(t, x)v (t, x) ∈ D,

vt ≤ d2∆v + c21(t, x)u+ c22(t, x)v (t, x) ∈ D,

u(t, x), v(t, x) ≤ 0, 0 < t ≤ T, x ∈ ∂U,

u(0, x), v(0, x) ≤ 0, x ∈ U,

with some cij ∈ C(D) ∩ L∞(D) (i, j = 1, 2). If c12(t, x) ≥ 0, c21(t, x) ≥ 0 in D.
Then it holds that u(t, x), v(t, x) ≤ 0 in D.� �

Proof:

• Suppose that there exists (t0, x0) ∈ D such that u(t0, x0) > 0 or v(t0, x0) > 0.

• Take M > 0 so that cj1(t, x) + cj2(t, x) ≤ M in D holds.

• Define U := u− εeMt, V := v − εeMt for small ε > 0.

• Take ε > 0 so that U(t0, x0) > 0, V (t0, x0) > 0 holds.
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• Define tε := inf{t ≥ 0 : ∃(t, x) ∈ [0, t0)× U s.t. U(t, x) > 0 or V (t, x) > 0}.

• Since U(0, x) < 0 and V (t, x) < 0, tε > 0 and there exists xε ∈ U such that
U(tε, xε) = 0 or V (tε, xε) = 0 and

U(t, x) < 0, V (t, x) < 0 (t, x) ∈ [0, tε)× U.

• Suppose U(tε, xε) = 0. On (0, tε]× U we have

Ut − d1∆U − c11U = ut − d1∆u− c11u− εMeMt + c11εe
Mt

= c12v − c11u− εMeMt + c11εe
Mt

= c12V − εeMt(M − c11 − c12) < 0.

• We also have U < 0 on ∂p((0, tε)× U). By Lemma 4.1 and Corollary 3.12(strong
maximum principle) we obtain

U(t, x) < 0 for (t, x) ∈ [0, tε]×D,

which is a contradiction to U(tε, xε) = 0. We can get a contradiction in the case
where V (tε, xε) = 0. □

Remark: When U is a bounded domain, if condition “u(t, x), v(t, x) ≤ 0 for 0 < t ≤ T ,

x ∈ ∂U” is replaced by “
∂u

∂ν
≤ 0,

∂v

∂ν
≤ 0 for 0 < t ≤ T , x ∈ ∂U”, then we also obtain

u(t, x), v(t, x) ≤ 0 in D.

• In general, the comparison principle does not hold for reaction-diffusion system.
However under some conditions on f and g, some comparison principle is available.
We assume the following conditions:

∂f

∂v
≥ 0,

∂g

∂u
≥ 0. (4.4)
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Theorem 4.4� �
Let U ⊂ RN be a domain, T > 0 and D = (0, T ) × U . Suppose that u±, v± ∈
C(D) ∩ C1,2(D) satisfy

(u+)t − d1∆(u+) + f(u+, v+) ≥ (u−)t −∆u− − f(u−, v−), (t, x) ∈ D,

(v+)t − d2∆(v+) + g(u+, v+) ≥ (v−)t −∆v− − g(u−, v−), (t, x) ∈ D,

u+(t, x) ≥ u−(t, x), v+(t, x) ≥ v−(t, x) 0 < t ≤ T, x ∈ ∂U,

u+(0, x) ≥ u−(0, x), v+(0, x) ≥ v−(0, x) x ∈ U.

and moreover there exists 0 < m < M such that

m ≤ u±(t, x), v±(t, x) ≤ M for (t, x) ∈ D

and (4.4) holds on [m,M ]× [m,M ]. Then we have

u+(t, x) ≥ u−(t, x), v+(t, x) ≥ v−(t, x) for (t, x) ∈ D.� �
Proof:

• Let u = u− − u+, v = v− − v+. Then u and v satisfy

ut ≤ d1∆u+ c11(t, x)u+ c12(t, x)v (t, x) ∈ D,

vt ≤ d2∆v + c21(t, x)u+ c22(t, x)v (t, x) ∈ D,

u(t, x), v(t, x) ≤ 0, 0 < t ≤ T, x ∈ ∂U,

u(0, x), v(0, x) ≤ 0, x ∈ U,

where

c11 =

∫ 1

0

fu(θu
− + (1− θ)u+, θv− + (1− θ)v+)dθ,

c12 =

∫ 1

0

fv(θu
− + (1− θ)u+, θv− + (1− θ)v+)dθ,

c21 =

∫ 1

0

gu(θu
− + (1− θ)u+, θv− + (1− θ)v+)dθ,

c22 =

∫ 1

0

gv(θu
− + (1− θ)u+, θv− + (1− θ)v+)dθ.

Here it should be noted that c12, c21 ≥ 0 and cij are bounded continuous functions.

• Therefore we can use Lemma 4.3 to conclude that u− ≤ u+ and v− ≤ v+. □
Remark: When U is a bounded domain, if condition “u+(t, x) ≥ u−(t, x) and v−(t, x) ≤

v+(t, x) for 0 < t ≤ T , x ∈ ∂U” is replaced by “
∂u−

∂ν
≤ ∂u+

∂ν
and

∂v−

∂ν
≤ ∂v+

∂ν
for

0 < t ≤ T , x ∈ ∂U”, then we also obtain u−(t, x) ≤ u+(t, x) and v−(t, x) ≤ v+(t, x) in
D.
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4.3 Invariant Rectangle

• Let U be a bounded domain. Consider the following reaction-diffusion system:

ut = d1∆u+ f(u, v), t > 0, x ∈ U,

vt = d2∆v + g(u, v), t > 0, x ∈ U,

∂u

∂ν
=

∂v

∂ν
= 0, t > 0, x ∈ ∂U.

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ U.

(4.5)

and corresponding ODE system:

dU

dt
= f(U, V ),

dV

dt
= g(U, V ).

(4.6)

• K ⊂ R2 is said to be a positively invariant region of (4.6) if

(U(0), V (0)) ∈ K ⇒ (U(t), V (t)) : solution to (4.6) satisies (U(t), V (t)) ∈ K(t ≥ 0).

• K ⊂ R2 is said to be a positively invariant region of (4.5) if

(u0(x), v0(x)) ∈ K(x ∈ U)

⇒ (u(t, x), v(t, x)) : solution to (4.5) satisies (u(t, x), v(t, x)) ∈ K (x ∈ U, t ≥ 0).

Proposition 4.5� �
(1) If f(a, v) ≥ 0 for any v ∈ R, then {(u, v) : u ≥ a} is a invariant region of (4.5).

(2) If f(a, v) ≤ 0 for any v ∈ R, then {(u, v) : u ≤ a} is a invariant region of (4.5).

(3) If g(u, c) ≥ 0 for any u ∈ R, then {(u, v) : v ≥ c} is a invariant region of (4.5).

(4) If g(u, c) ≤ 0 for any u ∈ R, then {(u, v) : v ≤ c} is a invariant region of (4.5).� �
Proof:

• We only give the proof of (1).

• Let w(t, x) = a− u(t, x). Then we obtain

wt = −ut = −d1∆u− f(u, v)

≤ d1∆w + f(a, v)− f(u, v)

= d1∆w + c(t, x)w,

where

c(t, x) =

∫ 1

0

fu(θa+ (1− θ)u), v)dθ.
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• By Lemma 4.1, we obtain u(t, x) ≥ a for t ≥ 0. □
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