3 Maximum Principles for Parabolic Equations

3.1 Maximum Principle for the Heat Equation

3.1.1 Weak maximum principle for the heat equation

• In this subsection we consider the following **heat equation**, one of the parabolic equations,

$$u_t - \Delta u = 0 \tag{3.1}$$

in $D = (0,T) \times U$, where T > 0 and $U \subset \mathbb{R}^N$ is a domain. Here

$$(0,T) \times U := \{(t,x) \in \mathbb{R}^{N+1} : 0 < t < T, x \in U\}.$$

• For $D = (0,T) \times U$ we define its **parabolic boundary** $\partial_p D$ as follows:

$$\partial_p D = \{(t, x) : t = 0, x \in \overline{U}\} \cup \{(t, x) : 0 < t \le T, x \in \partial U\}.$$

• Let us define function space $C^{1,2}(D)$ for the solution to parabolic equations:

$$C^{1,2}(D) := \{ u = u(t,x) : u_t, u_{x_i}, u_{x_i x_j} \in C(D) \text{ for } i, j = 1, \dots, N \}.$$

Theorem 3.1(Weak maximum principle for the heat equations) —

Let U be a bounded domain and let $D=(0,T)\times U$ and let $u\in C(\overline{D})\cap C^{1,2}(D)$ be a solution of (3.1). Then

$$\max_{(t,x)\in\overline{D}} u(t,x) = \max_{(t,x)\in\partial_p D} u(t,x)$$

and

$$\min_{(t,x)\in\overline{D}} u(t,x) = \min_{(t,x)\in\partial_p D} u(t,x)$$

hold.

Proof: We prove only for max.

• It is enough to prove that

$$\max_{(t,x)\in\overline{D}} u(t,x) \le \max_{(t,x)\in\partial_p D} u(t,x) \tag{3.2}$$

since $\partial_p D \subset \overline{D}$.

• Since U is bounded, there exists R > 0 such that $U \subset B_R(0)$, where

$$B_R(0) = \{ x \in \mathbb{R}^N : |x| < R \}.$$

• For any $\varepsilon > 0$ define

$$v(t,x) = u(t,x) + \varepsilon |x|^2.$$

• By direct calculation we have

$$v_t - \Delta v = (u_t - \Delta u) + \varepsilon (\partial_t |x|^2 - \Delta |x|^2) = -2\varepsilon N < 0.$$

- Take any $\tau \in (0,T)$ and consider $K_{\tau} = (0,\tau] \times U$. We note that v does not achieve $\max_{(t,x)\in\overline{K_{\tau}}}v(t,x)$ at any point of K_{τ} . In fact, if v takes it maximum over $\overline{K_{\tau}}$ for some $(t_0,x_0) \in K_{\tau}$, then we have $v_t(t_0,x_0) \geq 0$ and $\Delta v(t_0,x_0) \leq 0$ and thus $v_t(t_0,x_0) \Delta v(t_0,x_0) \geq 0$, which is a contradiction to $v_t \Delta v < 0$.
- Therefore we obtain

$$\max_{(t,x)\in \overline{K_{\tau}}} u(t,x) \le \max_{(t,x)\in \overline{K_{\tau}}} v(t,x) = \max_{(t,x)\in \partial_{p}K_{\tau}} v(t,x)
\le \max_{(t,x)\in \partial_{p}D} v(t,x) \le \max_{(t,x)\in \partial_{p}D} u(t,x) + \varepsilon R^{2}$$
(3.3)

Here we have used the fact $\max_{(t,x)\in\partial_n K_\tau} u(t,x) \leq \max_{(t,x)\in\partial_n D} u(t,x)$.

• Since we can show that

$$\lim_{\tau \uparrow T} \max_{(t,x) \in \overline{K_{\tau}}} u(t,x) = \max_{(t,x) \in \overline{D}} u(t,x), \tag{3.4}$$

by letting $\tau \uparrow T$ in (3.3) we get

$$\max_{(t,x)\in\overline{D}} u(t,x) \le \max_{(t,x)\in\partial_p D} u(t,x) + \varepsilon R^2.$$

- By letting $\varepsilon \to 0$ we obtain (3.2).
- It remains to prove (3.4). We note that $m(\tau) := \max_{(t,x) \in \overline{K_{\tau}}} u(t,x)$ is nondecreasing in τ . Let $m = \max_{(t,x) \in \overline{D}} u(t,x)$.
- Suppose $m = u(t_1, x_1)$ for some $(t_1, x_1) \in \overline{D}$. If $0 \le t_1 < T$, then m(t) = m for $t \ge t_1$ and (3.4) is obvious.
- Now we assume $t_1 = T$. Take any $\eta > 0$. Since u is continuous at $(t_1, x_1) = (T, x_1)$, there exists $\delta > 0$ such that

$$(t,x) \in \overline{D}, |t-T| + |x-x_1| < \delta \Rightarrow |u(t,x) - u(T,x_1)| < \eta.$$

• If $0 < T - \tau < \delta$, then we have

$$m - \eta = u(T, x_1) - \eta \le u(\tau, x_1) \le m$$

and then $m - \eta \le m(\tau) \le m$.

- This means that $\lim_{\tau \uparrow T} m(\tau) = m$. The proof has been completed. \square
- Now we consider the following initial-boundary value problem:

$$\begin{cases} u_t - \Delta u = f(t, x), & 0 < t < T, \ x \in U, \\ u(t, x) = g(x), & 0 < t < T, \ x \in \partial U, \\ u(0, x) = u_0(x), & x \in U \end{cases}$$
 (3.5)

where $U \subset \mathbb{R}^N$ is a bounded domain, $f \in C((0,T) \times U)$, $g \in C(\partial U)$ and $u_0 \in C(U)$ are given.

Corollary 3.2

Suppose that U is a bounded domain and $D = (0,T) \times U$. Let $u \in C(\overline{D}) \times C^{1,2}(D)$.

(1) If $u_t - \Delta u \leq 0$ in D, then

$$\max_{(t,x)\in\overline{D}} u(t,x) = \max_{(t,x)\in\partial_p D} u(t,x).$$

(2) If $u_t - \Delta u \ge 0$ in D, then

$$\min_{(t,x)\in\overline{D}} u(t,x) = \min_{(t,x)\in\partial_p D} u(t,x).$$

Corollary 3.3

Suppose that U is a bounded domain. The initial-boundary value problem (3.5) has at most one solution in $C(\overline{D}) \cap C^{1,2}(D)$, where $D = (0,T) \times U$.

- Proposition 3.4(Comparison Principle) -

Let U be a bounded domain and $D=(0,T)\times U$ and let $u_1, u_2\in C(\overline{D})\cap C^{1,2}(D)$ be the solution to initial-boundary value problem (3.5) with $f=f_i, g=g_i$ and $u_0=u_{0,i}$ (i=1,2). If $f_1\geq f_2, g_1\geq g_2$ and $u_{0,1}\geq u_{0,2}$ then $u_1\geq u_2$ in D.

• Now we consider the case where $U = \mathbb{R}^N$.

Theorem 3.5

Let $D=(0,T)\times\mathbb{R}^N$ and $u\in C(\overline{D})\cap C^{1,2}(D)$ be a solution of (3.1) with initial condition $u(0,x)=u_0(x)$ and suppose u_0 is bounded on \mathbb{R}^N . If there exists positive constants M and c such that $|u(t,x)|\leq Me^{c|x|^2}$ in D, then $|u(t,x)|\leq \sup_{\xi\in\mathbb{R}^N}|u_0(\xi)|$ in D.

Proof:

- Considering -u, it is enough to prove that $u(t,x) \leq \sup_{\xi \in \mathbb{R}^N} u_0(\xi)$ holds.
- We first assume that 4cT < 1. We take $\varepsilon > 0$ so that $4c(T + \varepsilon) < 1$ holds. Fix any $y \in \mathbb{R}^N$.
- Consider

$$u_{\theta}(t,x) = u(t,x) - \theta \{4\pi (T+\varepsilon-t)\}^{-N/2} e^{\frac{|x-y|^2}{4(T+\varepsilon-t)}},$$

where $\theta > 0$ is any small constant.

- We note that the second term of u_{θ} satisfies the heat equation. Thus u_{θ} also satisfies the heat equation.
- Now we consider $E = \{(t, x) : 0 < t < T, |x y| < \rho\}$ for any $\rho > 0$. By Theorem 3.1 we have

$$u_{\theta}(t,x) \le \max_{(\tau,\xi)\in\partial_p E} u_{\theta}(\tau,\xi) \text{ for } 0 \le t \le T, |x-y| \le \rho.$$

- On $\{(t,x): t = 0, |x-y| < \rho\}$ we have $u_{\theta}(t,x) \le u(t,x) \le \sup_{\xi \in \mathbb{R}^N} u_0(\xi)$.
- On $\{(t, x) : 0 < t < T, |x y| = \rho\}$ we have

$$u_{\theta}(t,x) \leq M e^{c|x|^{2}} - \theta \{4\pi (T+\varepsilon-t)\}^{-N/2} e^{\frac{|x-y|^{2}}{4(T+\varepsilon-t)}}$$

$$\leq M e^{c(|y|+\rho)^{2}} - \theta \{4\pi (T+\varepsilon-t)\}^{-N/2} e^{\frac{\rho^{2}}{4(T+\varepsilon-t)}} \leq \sup_{\xi \in \mathbb{R}^{N}} u_{0}(\xi)$$

for sufficiently large ρ since 4cT < 1. Therefore $\max_{(\tau,\xi) \in \partial_p E} u_{\theta}(\tau,\xi) \leq \sup_{\xi \in \mathbb{R}^N} u_0(\xi)$ and

$$u_{\theta}(t,y) = u(t,y) - \theta \{4\pi(T+\varepsilon-t)\}^{-N/2} \le \sup_{\xi \in \mathbb{R}^N} u_0(\xi) \text{ for } 0 \le t \le T.$$

By letting $\theta \to 0$ we obtain the desired inequality.

- If $4cT \ge 1$, take l > 0 so that 4cl < 1 holds.
- By the above argument we have $|u(t,x)| \leq \sup_{\xi \in \mathbb{R}^N} |u_0(\xi)|$ for $0 \leq t \leq l$, $x \in \mathbb{R}^N$. We next use the above argument by regarding t = l as an initial time to obtain

$$|u(t,x)| \le \sup_{\xi \in \mathbb{R}^N} |u(l,\xi)| \le \sup_{\xi \in \mathbb{R}^N} |u_0(\xi)| \text{ for } l \le t \le 2l, x \in \mathbb{R}^N$$

and therefore

$$|u(t,x)| \le \sup_{\xi \in \mathbb{R}^N} |u_0(\xi)| \text{ for } 0 \le t \le 2l, x \in \mathbb{R}^N.$$

holds.

• By repeating this argument N times so that Nl > T holds we obtain

$$|u(t,x)| \le \sup_{\xi \in \mathbb{R}^N} |u_0(\xi)| \text{ for } 0 \le t \le T, \ x \in \mathbb{R}^N$$

The proof has been completed. \square

• For the initial value problem:

$$\begin{cases} u_t - \Delta u = f(t, x), & 0 < t < T, \quad x \in \mathbb{R}^N, \\ u(0, x) = u_0(x), & x \in \mathbb{R}^N \end{cases}$$
(3.6)

we have the following uniqueness result.

Corollary 3.6 —

Let $D=(0,T)\times\mathbb{R}^N$ and suppose that u_0 is a bounded function on \mathbb{R}^N . Then initial value problem (3.6) has at most one solution $u\in C(\overline{D})\cap C^{1,2}(D)$ which satisfies the growth condition $|u(t,x)|\leq Me^{c|x|^2}$ for some M>0 and c>0.

Remark: If we do note impose any growth condition, the uniqueness result does not hold.

3.1.2 Strong maximum principle for the heat equation*

- As the harmonic functions, we can obtain the strong maximum principle via a mean value property for the heat equations.
- Let us define the fundamental solution of heat equation (3.1):

$$G(t,x) = \frac{1}{(4\pi t)^{N/2}} e^{-\frac{|x|^2}{4t}}.$$

This function is called the **heat kernel**. This function satisfies the heat equation.

• It is well known that u(t,x) defined by

$$u(t,x) = \int_{\mathbb{R}^N} G(t-s, x-y)u_0(y)dy$$

satisfies

$$\begin{cases} u_t - \Delta u = 0, & t > 0, \ x \in \mathbb{R}^N, \\ u(0, x) = u_0(x), & x \in \mathbb{R}^N. \end{cases}$$
(3.7)

under a suitable condition on u_0 . Therefore by Corollary 3.4, this u is a unique solution to (3.7) under the growth condition in the corollary.

• For fixed $x \in \mathbb{R}^N$ and $t \in \mathbb{R}$ and r > 0 we define

$$E(t, x; r) = \left\{ (y, s) \in \mathbb{R}^{N+1} : s \le t, \ G(x - y, t - s) \ge \frac{1}{r^N} \right\}.$$

This set is called **heat ball**.

• Let us consider the case for N=1, x=0, t=0 to illustrate the heat ball in \mathbb{R}^2 . A point $(s,y) \in E(0,0;r)$ if and only if (note that s<0)

$$\frac{1}{\sqrt{4\pi(-s)}}e^{-\frac{y^2}{4(-s)}} \ge \frac{1}{r},$$

$$re^{\frac{y^2}{4s}} \ge 2\sqrt{\pi(-s)},$$

$$\log r + \frac{y^2}{4s} \ge \frac{1}{2}\log 4\pi + \log(-s),$$

$$\frac{y^2}{4s} \ge \frac{1}{2}\log \frac{4\pi(-s)}{r^2},$$

$$y^2 \le 2s\log \frac{4\pi(-s)}{r^2},$$

$$y^2 \le 2(-s)\log \frac{r^2}{4\pi(-s)},$$

• The following figure expresses E(0,0;1):

• Now we give the mean value formula for the heat equation.

Theorem 3.7(Mean value propaety for the heat equation) -

Let $D=(0,T)\times U$ with domain $U\subset\mathbb{R}^N$ and $u\in C^{1,2}(D)$ solve (3.1). Then for each $E(t,x;r)\subset D$ it holds that

$$u(t,x) = \frac{1}{4r^N} \iint_{E(t,x;r)} u(s,y) \frac{|x-y|^2}{(t-s)^2} ds dy.$$

- For the proof see [Evans].
- It holds that

$$\frac{1}{4r^N} \iint_{E(t,x;r)} \frac{|x-y|^2}{(t-s)^2} ds dy = 1.$$

Theorem 3.8(Strong maximum principle for the heat equation) -

Let $D=(0,T)\times U$ with a bounded domain $U\subset\mathbb{R}^N$ and $u\in C^{1,2}(D)$ solve (3.1). If there exists $(t_0,x_0)\in D$ such that

$$u(t_0, x_0) = \max_{(t, x) \in \overline{D}} u(t, x),$$

then u is constant in $\{(t,x): 0 \le t \le t_0, x \in \overline{U}\}.$

Proof: Step 1

- Let $u(t_0, x_0) = \max_{(t,x) \in \overline{D}} u(t,x) =: M$.
- For all sufficiently small r > 0, $E(t_0, x_0; r) \subset D$ and we use the mean-value property to obtain

$$M = u(t_0, x_0) = \frac{1}{4r^N} \iint_{E(t_0, x_0; r)} u(y, s) \frac{|x_0 - y|^2}{(t_0 - s)} ds dy \le M$$

and $u \equiv M$ in $E(t_0, x_0; r)$ since

$$\frac{1}{4r^N} \iint_{E(t,x;r)} \frac{|x-y|^2}{(t-s)^2} ds dy = 1.$$

• Now we draw any line segment L in D connecting (t_0, x_0) with some other point $(s_0, y_0) \in D$ with $0 \le s_0 < t_0$. Define

$$r_0 = \inf\{s \ge s_0 : u(t, x) = M \ \forall (t, x) \in L, s \le t \le t_0\}.$$

- Since $u \equiv M$ in $E(t_0, x_0; r)$, $r_0 < t_0$. Moreover since u is continuous, the above minimum is attained. Assume $r_0 > s_0$. Then tere exists $(r_0, z_0) \in L \cap D$ such that $u(r_0, z_0) = M$. Taking r > 0 sucfficiently small so that $E(r_0, z_0; r) \subset D$ we obtain $u \equiv M$ in $E(r_0, z_0; r)$.
- Since $E(r_0, z_0; r)$ contains $L \cap \{r_0 \sigma \le t \le r_0\}$ for some small $\sigma > 0$, we get a contradiction. Therefore $r_0 = s_0$ and thus $u \equiv M$ on L.

Step 2

- Take any point $(t,x) \in D$. Since U is connected there exists a polygonal arc which connects (t_0,x_0) with (t,x): there exists points $x_0,x_1,\dots,x_m=x$ in U such that each segment connects x_i with x_{i+1} $(i=1,\dots,m)$. Choose times $t_0 > t_1 > \dots > t_m = t$.
- By the argument in Step 1 we obtain: $u(t_0, x_0) = u(t_1, x_1) = \cdots = u(t_m, x_m) = u(t, x)$. The proof has been completed. \square

3.2 Maximum principles for general parabolic equations

• Now we introduce the following operator

$$\mathcal{L}u = -\sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij}(t, x) u_{x_i x_j} + \sum_{i=1}^{N} b_i(t, x) u_{x_i} + c(t, x) u_{x_i}$$

for given coefficients a_{ij} , b_i , c. For simplicity we assume that these coefficients are continuous and bounded functions.

Definition -

Let $D \subset \mathbb{R}^{N+1}$ be a domain. The operator $\frac{\partial}{\partial t} + L$ is called **uniformly parabolic** if there exists a constant $\theta > 0$ such that

$$\sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij}(t, x) \xi_{i} \xi_{j} \ge \theta |\xi|^{2}$$

for $(t, x) \in D$ and $\xi = {}^{t}(\xi_1, \dots, \xi_N) \in \mathbb{R}^N$.

• We define

$$\mathcal{P} := \frac{\partial}{\partial t} + \mathcal{L}.$$

3.2.1 Weak maximum principle

· Lemma 3.9 –

Let $D \subset \mathbb{R}^{N+1}$ be a domain and \mathcal{P} be uniformly parabolic and $c(t,x) \geq 0$ in D. Assume $u \in C(\overline{D}) \cap C^{1,2}(D)$ satisfies $\mathcal{P}u < 0$. If u has a nonnegative maximum over \overline{D} , then u cannot attain this maximum at any point in D.

Proof:

• Suppose that u takes it nonnegative maximum at $(t_0, x_0) \in D$.

• By the same argument as in the proof of Lemma 2.1 we can see

$$\sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij}(t_0, x_0) u_{x_i x_j}(t_0, x_0) \ge 0.$$

• Since $(t_0, x_0) \in D$ which is interior point of D, we also have $u_{x_i}(t_0, x_0) = 0$ and $u_t(t_0, x_0) = 0$. Therefore

$$\mathcal{P}u(t_0, x_0) = u_t(t_0, x_0) - \sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij}(t_0, x_0) u_{x_i x_j}(t_0, x_0) + \sum_{i=1}^{N} b_i(t_0, x_0) u_{x_i}(t_0, x_0) + c(t_0, x_0) u(t_0, x_0) \ge 0,$$

which is a contradiction to $\mathcal{P}u < 0$. \square

Remark:

- (1) If $c(t,x) \equiv 0$, then the requirement for nonnegativeness of the maximum can be removed.
- (2) When $D = (0,T) \times U$ with a domain U and if $u(t_0,T) = \max_{(t,x)\in\overline{D}} u(t,x)$, then $u_t(T,x_0) \geq 0$ and $u_{x_i}(T,x_0) = 0$. Hence we obtain a contradiction. Therefore u cannot attain the maximum at any point in $\overline{D} \setminus \partial_p D$.

Theorem 3.10(Weak maximum principle) —

Let $U \subset \mathbb{R}^N$ be a bounded domain, T>0 and $D=(0,T)\times U$. Suppose that \mathcal{P} is uniformly parabolic and $c(t,x)\geq 0$ in D. Assume $u\in C(\overline{D})\cap C^{1,2}(D)$ satisfies $\mathcal{P}u\leq 0$ and $M=\max_{(t,x)\in \overline{D}}u(t,x)\geq 0$. Then it holds that

$$\max_{(t,x)\in\overline{D}} u(t,x) = \max_{(t,x)\in\partial_p D} u(t,x)$$

Proof:

• It suffices to show that

$$\max_{(t,x)\in\overline{D}} u(t,x) \le \max_{(t,x)\in\partial_p D} u(t,x)$$
(3.8)

• Let $v(t,x) = u(t,x) + \varepsilon e^{-kt}$ for $\varepsilon > 0$. Then

$$\mathcal{P}v = \mathcal{P}u + \varepsilon \mathcal{P}e^{-kt} = \mathcal{P}u + \varepsilon(-k + c(t, x))e^{-kt} \le \varepsilon(-k + c(t, x))e^{-kt} \le 0$$

for sufficiently large k > 0 since c is a bounded function.

• Moreover $\max_{(t,x)\in \overline{D}} v(t,x) > M \ge 0$. Hence by Lemma 3.9 and its Remark-(2),

$$\max_{(t,x)\in\overline{D}}u(t,x)\leq \max_{(t,x)\in\overline{D}}v(t,x)=\max_{(t,x)\in\partial_p D}v(t,x)\leq \max_{(t,x)\in\partial_p D}u(t,x)+\varepsilon.$$

• By letting $\varepsilon \to 0$ we obtain (3.8). \square

Remark: If $c(t, x) \equiv 0$, then the requirement for nonnegativeness of M can be removed.

3.2.2 Strong maximum principle

Theorem 3.11

Let $D \subset \mathbb{R}^{N+1}$ be a domain and \mathcal{P} be uniformly parabolic and $c(t,x) \geq 0$ (resp. ≤ 0) in D. Assume $u \in C(\overline{D}) \cap C^{1,2}(D)$ satisfies $\mathcal{P}u \leq 0$ (resp. ≥ 0) and $M := \max_{(t,x)\in\overline{D}}u(t,x) \geq 0$ (resp. $M := \inf_{(t,x)\in\overline{D}}\leq 0$). Suppose that $u(\overline{t},\overline{x}) < M$ (resp. > M) for some $(\overline{t},\overline{x}) \in D$. Then u(t,x) < M (resp. > M) at all points (t,x) in D which can be connected to $(\overline{t},\overline{x})$ by an arc in D consisting of finite number of horizontal and **upward** vertical segments.

Remark: If $c(t, x) \equiv 0$, then the requirement for nonnegativeness (resp. nonpositivensess) of M can be removed.

- Corollary 3.12 —

Suppse the same assumptions of Theorem 3.11 on D, \mathcal{P} and $c(t,x) \geq 0$ in D. Let $M := \sup_{(t,x) \in \overline{D}} u(t,x) \geq 0$ and $u(\overline{t},\overline{x}) = M$ for some $(\overline{t},\overline{x}) \in D$. Then u(t,x) = M at any points (t,x) which can be connected to $(\overline{t},\overline{x})$ by an arc in D consisting of finite number of horizontal and **downward** vertical segments.

• When $D = (T_1, T_2) \times U$ with a domain $U \subset \mathbb{R}^N$ we obtain the following corollary.

Corollary 3.13 -

Let $U \subset \mathbb{R}^N$ be a domain, $D = (T_1, T_2) \times U$, with $-\infty < T_1 < T_2 \le \infty$, and \mathcal{P} be uniformly parabolic and $c(t, x) \ge 0$ in D. Assume $u \in C(\overline{D}) \cap C^{1,2}(D)$ satisfies $\mathcal{P}u \le 0$ and $M := \max_{(t,x)\in \overline{D}} u(t,x) \ge 0$. Suppose that $u(\overline{t},\overline{x}) = M$ for some $(\overline{t},\overline{x}) \in D$. Then u(t,x) = M in $\{(t,x) \in D : T_1 \le t \le \overline{t}\}$.

- For the proof of Theorem 3.11 we need some lemmas.
- Hereafter we assume $c(t, x) \equiv 0$.

Lemma 3.14

Let $D \subset \mathbb{R}^{N+1}$ be a domain and \mathcal{P} be uniformly parabolic in D and $K \subset \mathbb{R}^{N+1}$ be a ball with $\overline{K} \subset D$. Assume $u \in C(\overline{D}) \cap C^{1,2}(D)$ satisfies $\mathcal{P}u \leq 0$. Let $M := \max_{(t,x) \in \overline{D}} u(t,x)$ and u(t,x) < M for $(t,x) \in K$. If $u(\overline{t},\overline{x}) = M$ for some $(\overline{t},\overline{x}) \in \partial K$, then $(\overline{t},\overline{x})$ is a "north pole" or "south pole" of K. More precisely, if

$$K = B_r(t^*, x^*) = \{(t, x) \in \mathbb{R}^{N+1} : (t - t^*)^2 + |x - x^*|^2 < r^2\},$$

then $\bar{x} = x^*$ and $\bar{t} = x^* + r$ or $\bar{t} = x^* - r$.

Proof:

- Set $x^* = {}^t(x_1^*, \dots, x_N^*)$ amd $\bar{x} = {}^t(\bar{x}_1, \dots, \bar{x}_N)$.
- By considering smaller ball which is tangent to $B_r(t^*, x^*)$ at (\bar{t}, \bar{x}) we may assume that (\bar{t}, \bar{x}) is a only point in ∂K such that $u(\bar{t}, \bar{x}) = M$.
- Consider $w(t,x) = e^{-\alpha(|x-x^*|^2 + (t-t^*)^2)} e^{-\alpha r^2}$ with constant $\alpha > 0$ is determined later. w satisfies w = 0 on ∂K , w > 0 in K and w < 0 in \overline{K}^c .
- Suppose that (\bar{t}, \bar{x}) is neither the north pole of K nor the south pole of K. Then $|x^* \bar{x}| > 0$
- Take $\delta \in (0, |x^* \bar{x}|)$ so that $B_{\delta}(\bar{t}, \bar{x}) \subset D$ holds.

• By the direct calculation we obtain

$$\mathcal{P}w = \left\{ -2\alpha(t - t^*) - \sum_{i,j=1}^{N} 4a_{ij}\alpha^2(x_i - x_i^*)(x_j - x_j^*) + \sum_{i=1}^{N} (2a_{ii}\alpha - 2b_i\alpha(x_i - x_i^*)) \right\} e^{-\alpha(|x - x^*|^2 + (t - t^*)^2)}.$$

• Since

$$\sum_{i,j=1}^{N} a_{ij}(x_i - x_i^*)(x_j - x_j^*) \ge \theta |x - x^*|^2$$

and a_{ii} and b_i are bounded in D, there exists a constants $C_1, C_2 > 0$ such that

$$\mathcal{P}w \le \left\{ -2\alpha(t-t^*) - 4\alpha^2\theta|x-x^*|^2 + \alpha C_1 + C_2\alpha|x-x^*| \right\} e^{-\alpha(|x-x^*|^2 + (t-t_0)^2)}.$$

• On $\overline{B_{\delta}(\bar{t},\bar{x})}$ we have

$$|x - x^*| = |x^* - x| = |(x^* - \bar{x}) - (x - \bar{x})| \ge |x^* - \bar{x}| - |x - \bar{x}| \ge r - \delta > 0,$$

$$|x - x^*| \le |x - \bar{x}| + |\bar{x} - x^*| \le r + \delta.$$

Hence

$$\mathcal{P}w \leq \left\{ 2\alpha(r+\delta) - 4\alpha^2(r-\delta)^2 + C_1\alpha + C_2\alpha(r+\delta)^2 \right\} e^{-\alpha(|x-x^*|^2 + (t-t^*)^2)} < 0 \text{ in } B_{\delta}(\bar{t},\bar{x})$$
 for sufficiently large $\alpha > 0$.

- Let $v(t,x) = u(t,x) + \varepsilon w(t,x)$ for $\varepsilon > 0$.
- Since u < M on compact set $\partial B_{\delta}(\bar{t}, \bar{x}) \cap \overline{K}$, $v \leq M$ in $\partial B_{\delta}(\bar{t}, \bar{x}) \cap \overline{K}$ for small $\varepsilon > 0$.
- Since w < 0 on $\partial B_{\delta}(\bar{t}, \bar{x}) \cap \overline{K}^c$ and $u \leq M$ on D, v < M on $\partial B_{\delta}(\bar{t}, \bar{x}) \cap \overline{K}^c$.
- Hence v < M on $\partial B_{\delta}(\bar{t}, \bar{x})$ and $\mathcal{P}v < 0$ in $B_{\delta}(\bar{t}, \bar{x})$.
- However since $v(\bar{t}, \bar{x}) = u(\bar{t}, \bar{x}) = M$ and v must achieve its maximum an interior point of $B_{\delta}(\bar{t}, \bar{x})$, which contradicts Lemma 3.9 with $c \equiv 0$. The proof has been completed. \square

Remark: When $c(t,x) \geq 0$. The above lemma is still valid if $M \geq 0$. In fact for sufficiently large $\alpha > 0$

$$\mathcal{P}w \le \left\{ 2\alpha r - 4\alpha^2 (r - \delta)^2 + C_1 + C_2 \alpha (r - \delta)^2 + ||c||_{L^{\infty}} \right\} e^{-\alpha(|x - x^*|^2 + (t - t_0)^2)} - c(t, x) e^{-\alpha r^2} < 0 \text{ in } B_{\delta}(\bar{t}, \bar{x})$$

and use Lemma 3.9.

Lemma 3.15

Let $D \subset \mathbb{R}^{N+1}$ be a domain and \mathcal{P} is uniformly parabolic in D. Assume $u \in C^{1,2}(D)$ satisfies $\mathcal{P}u \leq 0$. Let $u \leq M$ in D for some $M \in \mathbb{R}$ and $u(t_0, x_0) < M$ for some $(t_0, x_0) \in D$. Then u(t, x) < M holds in the component of $\{(t, x) \in D : t = t_0\}$ which contains (t_0, x_0) .

Proof: For simplicity we give the proof only for the case where N=1.

- Let Γ is the component of $\{(t,x) \in D : t = t_0\}$ which contains (t_0,x_0) .
- Suppose that $u(t_0, x_1) = M$ for some $(t_0, x_1) \in \Gamma$ and we will get a contradiction. We may assume that

$$u(t,x) < M$$
 for $|x - x_0| < |x_0 - x_1|$.

- Let $d_0 = \min\{|x_1 x_0|, \operatorname{dist}(x_1, \partial D)\}.$
- For $0 < |x x_1| < d_0$ we define d(x) as the distance from (t_0, x) to the nearest point in D where u = M. Since $u(t_0, x_1) = M$, $d(x) \le |x x_1|$.
- Since u is continuous and $u(t_0, x) < M$ for $0 < |x x_1| < d_0$, for any $(t_0, x) \in D$ with $0 < |x x_1| < d_0$ there exists a ball centered at (t_0, x) in which u < M. Hence d(x) > 0.
- Applying Lemma 3.14 we obtain for any $(t_0, x) \in D$ with $0 < |x x_1| < d_0$, $u(t_0 + d(x), x) = M$ or $u(t_0 d(x), x) = M$.
- Let $\varepsilon > 0$ be a small number and $|\eta| = 1$. By the definition of d(x) we have

$$d(x + \varepsilon \eta) \le \sqrt{\varepsilon^2 + d(x)^2} < \sqrt{\left(d(x) + \frac{\varepsilon^2}{2d(x)}\right)^2} = d(x) + \frac{\varepsilon^2}{2d(x)}.$$
 (3.9)

• By exchanging x and $x + \varepsilon \eta$ we obtain $d(x) \leq \sqrt{\varepsilon^2 + d(x + \varepsilon \eta)^2}$ and also

$$d(x + \varepsilon \eta) \ge \sqrt{d(x)^2 - \varepsilon^2}.$$
 (3.10)

- Let us show $d(x) \equiv 0$ for $0 < |x x_1| < \delta_0$. If this were shown, then $u(t_0, x) \equiv M$ for $|x x_1| < \delta_0$ which is a contradiction.
- Take x with $0 < |x x_1| < \delta_0$ and $\varepsilon \in (0, d(x))$. We subdivide the interval $(x, x + \varepsilon)$ (or $(x \varepsilon, x)$) into k equal parts and apply (3.9) and (3.10) to get

$$d\left(x + \frac{j+1}{k}\varepsilon\eta\right) - d\left(x + \frac{j}{k}\varepsilon\eta\right)$$

$$\leq d\left(x + \frac{j}{k}\varepsilon\eta\right) + \frac{\varepsilon^2}{2k^2d(x + (j/k)\varepsilon\eta)} - d\left(x + \frac{j}{k}\varepsilon\eta\right)$$

$$\leq \frac{\varepsilon^2}{2k^2\sqrt{d(x)^2 - (j/k)^2\varepsilon^2}} \leq \frac{\varepsilon^2}{2k^2\sqrt{d(x)^2 - \varepsilon^2}}$$

for $j = 0, \dots, k - 1$.

• By summing the above inequalities from j = 0 to j = k - 1 we obtain

$$d(x + \varepsilon \eta) - d(x) \le \frac{\varepsilon^2}{2k\sqrt{d(x)^2 - \varepsilon^2}}.$$

• Letting $k \to \infty$ we obtain $d(x + \varepsilon \eta) \le d(x)$ for each small $\varepsilon > 0$ and $|\eta| = 1$. Since $0 \le d(x) \le |x - x_1|$, we can conclude that $d(x) \equiv 0$. \square

Lemma 3.16

Let $D \subset \mathbb{R}^{N+1}$ be a domain and \mathcal{P} is uniformly parabolic in D. Assume $u \in C^{1,2}(D)$ satisfies $\mathcal{P}u \leq 0$ and

$$u < M$$
 in $\{(t, x) \in D : t_0 < t < t_1\},\$

for some $t_0 < t_1$. Then

$$u < M$$
 on $\{(t, x) \in D : t = t_1\}.$

Proof:

• Suppose that $u(t_1, x^*) = M$. Take r > 0 so that

$$B_r(t_1, x^*) \subset \{(t, x) \in D : t > t_0\}.$$

• Define

$$w(t,x) := e^{-|x-x^*|^2 - \alpha(t-t_1)} - 1,$$

where $\alpha > 0$ is choosen later.

• A direct calculation implies that

$$\mathcal{P}w = e^{-|x-x^*|^2 - \alpha(t-t_1)} \times \left\{ -\alpha - 4 \sum_{i,j=1}^{N} a_{ij}(x_i - x_i^*)(x_j - x_j^*) + 2 \sum_{j=1}^{N} (a_{ii} + b_i(x_i - x_i^*)) \right\}$$

$$\leq e^{-|x-x^*|^2 - \alpha(t-t_1)} \times \left\{ -\alpha - 4\theta |x - x^*|^2 + 2 \sum_{i=1}^{N} (a_{ii} + b_i(x_i - x_i^*)) \right\}$$

Thus we can choose $\alpha > 0$ so that $\mathcal{P}w < 0$ in $B_r(t_1, x^*)$.

• Next we consider the paraboloid

$$|x - x^*|^2 + \alpha(t - t_1) = 0,$$

which is tangent to the hyperplane $\{(t,x): t=t_1\}$ at (t_1,x^*) .

• Let $P = \{(t, x) \in D : \alpha(t - t_1) < -|x - x^*|^2\}$, $\Gamma_1 = \partial B_r(t_1, x^*) \cap P$, $\Gamma_2 = \partial P \cap B_r(t_1, x^*)$ and let U denote the domain determined by Γ_1 and Γ_2 .

- Let $v(t,x) = u(t,x) + \varepsilon w(t,x)$ for $\varepsilon > 0$. Then we have $\mathcal{P}v < 0$ in $B_r(t_1,x^*)$.
- Since u < M on compact set Γ_1 there exists $\delta > 0$ such that $u \leq M \delta$ on Γ_1 , thus for sufficiently small $\varepsilon > 0$ it holds that $v \leq M$ on Γ_2 .
- On Γ_2 it holds that $u \leq M$ since w = 0 on Γ_2 . Moreover v = M at $(t_1, x^*) \in \Gamma_2$. Therefore $v \leq M$ on ∂U .
- By $\mathcal{P}v < 0$ in $B_r(t_1, x^*)$ and Lemma 3.9, v cannot attain its maximum over \overline{U} at any point in U.
- Thus v attains its maximum over \overline{U} at a point on ∂U . Therefore M is the maximum of v and it is attained at (t_1, x^*) .
- Hence at (t_1, x^*) we obtain $\frac{\partial v}{\partial t} \ge 0$. But $\frac{\partial w}{\partial t} = -\alpha < 0$, therefore $\frac{\partial u}{\partial t} > 0$ at (t_1, x^*) .
- Since u attaines its maximum at (t_1, x^*) we have

$$u_{x_i}(t_1, x^*) = 0 \quad i = 1, \dots, N,$$

$$\sum_{i,j=1}^{N} a_{ij}(t_1, x^*) u_{x_i x_j}(t_1, x^*) \le 0.$$

and then $\mathcal{P}u > 0$ at (t_1, x^*) . However this is a contradiction to $\mathcal{P}u \leq 0$ in D. \square

Remark: When $c(t,x) \geq 0$ in D, Lemma 3.16 is still valid if $M \geq 0$. In fact when $c(t,x) \geq 0$ and α is sufficiently large

$$\mathcal{P}w \le e^{-|x-x^*|^2 - \alpha(t_1 - t)} \times \left\{ -\alpha - 4\theta |x - x^*|^2 + 2\sum_{i=1}^{N} \left(a_{ii} + b_i(x_i - x_i^*) \right) \right\} - c(t, x) \le 0.$$

Therefore we can use Lemma 3.9.

Proof of Theorem 3.11:

Step 1: If $u(\overline{t}, \overline{x}) < M$ then

$$u < M$$
 on $l = \{(t, \overline{x}) : \overline{t} \le t \le t_1\} \subset D$.

- Let $\tau = \sup\{t \ge \overline{t} : u(\cdot, \overline{x}) < M \text{ on } [\overline{t}, t]\}.$
- Suppose that $\tau \leq t_1$. By continuity $u(\tau, \overline{x}) = M$.
- By Lemma 3.14 u < M on the component of $\{(t,x) \in D : \overline{t} \leq t < \tau\}$ which contains $(\overline{t}, \overline{x})$.

• By Lemma 3.16, $u(\tau, \overline{x}) < M$ which is a contradiction.

Step 2: Completion of the proof of Theorem 3.11.

- Let $\overline{P}(\overline{t}, \overline{x}) \in D$ be a point such that $u(\overline{t}, \overline{x}) < M$ and $P(t, x) \in D$ be any point which can be connected to \overline{P} by an arc in D consisting of a finite number of hrizontal and vertical upward segments.
- Hence there are points $\overline{P} = P_0, P_1, \dots, P_k = P$ in D where P_i is connected to P_{i+1} by either a horizontal or upward vertical segment contained in D.
- By Lemmas 3.14 and Step 1 we obtain u(t,x) < M. The proof has been completed. \square
- Next theorem is the parabolic version of the Hopf lemma.

Theorem 3.17

Let $D \subset \mathbb{R}^{N+1}$ be a bounded domain and \mathcal{P} be uniformly parabolic in D. Assume $u \in C^{1,2}(D) \cap C(\overline{D})$ satisfies $\mathcal{P}u \leq 0$. Suppose

- $\max_{(t,x)\in\overline{D}} u(t,x) = M(\geq 0)$ is attained at $p = (t_0,x_0) \in \partial D$,
- D satisfies the interior sphere condition at p, that is, there is a ball $B_r(p_1) \subset D$ with $\partial D \cap \partial B_r(p_1) = \{p\}$,
- u < M in D,
- the radial direction from p_1 to p is not parallel to the t-axis.

Then $\frac{\partial u}{\partial \nu}(t_0, x_0) > 0$ for every outward direction ν .

Proof:

- $S = B_r(t_1, x_1)$.
- By the assumption $|x_1 x_0| > 0$. Take $0 < \rho < |x_1 x_0|$ and conider $S_1 = B_{\rho}(t_0, x_0)$.
- Let $\Gamma_1 = \partial S_1 \cap \overline{S}$, $\Gamma_2 = \partial S \cap S_1$ and U be the region enclosed by Γ_1 and Γ_2 .

- Since u < M on compact set Γ_1 , there exists $\delta > 0$ such that $u \leq M \delta$ on Γ_1 .
- We also have u < M on $\Gamma_2 \setminus \{(t_0, x_0)\}$ and $u(t_0, x_0) = M$.
- Let w(t,x) be the auxiliary function defined by

$$w(t,x) = e^{-\alpha\{|x-x_1|^2 + (t-t_1)^2\}} - e^{-\alpha r^2}$$

for $\alpha > 0$.

- Cleary w = 0 on ∂S .
- By the same computation as in the proof of Lemma 3.14 (and its remark) we obtain $\mathcal{P}w < 0$ in S_1 for sufficiently large $\alpha > 0$.
- Let $v = u + \varepsilon w$ with $\varepsilon > 0$. Then $\mathcal{P}v < 0$ in D.
- Since $u \leq M \delta$ on Γ_1 , there exists $\varepsilon > 0$ such that v < M on Γ_1 .
- Since w = 0 on ∂S we have v < M on $\Gamma_2 \setminus \{(t_0, x_0)\}$ and $v(t_0, x_0) = M$.
- Hence by Lemma 3.9, v cannot have nonnegative maximum over \overline{U} in any point U and therefore the maximum of v over \overline{U} attains at only (t_0, x_0) .
- Hence at (t_0, x_0) we obtain

$$\frac{\partial v}{\partial \nu} = \frac{\partial u}{\partial \nu} + \varepsilon \frac{\partial w}{\partial \nu} \ge 0$$

for any outward direction ν .

• But

$$D_{(t,x)}w(t_0,x_0) := (u_t(t_0,x_0), D_x u(t_0,x_0))$$

= $-2\alpha(t_0 - t_1, x_0 - x_1)e^{-\alpha\{|x-x_1|^2 + (t-t_1)^2\}}$

and

$$\frac{\partial w}{\partial \nu} = -2\alpha(t_0 - t_1, x_0 - x_1) \cdot \nu e^{-\alpha\{|x - x_1|^2 + (t - t_1)^2\}} < 0$$

since ν is outward direction.

• Therefore we obtain

$$\frac{\partial u}{\partial \nu} \ge -\varepsilon \frac{\partial w}{\partial \nu} \ge 2\varepsilon \alpha (t_0 - t_1, x_0 - x_1) \cdot \nu e^{-\alpha \{|x - x_1|^2 + (t - t_1)^2\}} > 0$$

at (t_0, x_0) . \Box

3.2.3 The Phragmèn-Lindelöf Principle

Theorem 3.18(Phragmèn-Lindelöf Principle) -

Let $U \subset \mathbb{R}^N$ be an unbounded domain, T > 0 and $D = (0, T) \times U$ and suppose that \mathcal{P} is uniformly parabolic in D and $u \in C^{1,2}(D) \cap C(\overline{D})$ satisfies $\mathcal{P}u \leq 0$. Assume that there exists c > 0 such that

$$\liminf_{R \to \infty} e^{-cR^2} \left(\max_{|x| = R, 0 \le t \le T, x \in U} u(t, x) \right) \le 0$$
(3.11)

and $u(t,x) \leq 0$ in $\partial_p D$. Then $u(t,x) \leq 0$ in D.

Proof:

- Let $\rho(t,x) = e^{c\gamma|x|^2/(\gamma-ct)+\beta t}$, where $|x| = \sqrt{x_1^2 + \cdots + x_N^2}$ for $x = t(x_1, \ldots, x_N)$, c is the constant in (3.11) and β , γ are constant to be determined.
- Define $w(t,x) = u(t,x)/\rho(t,x)$. Since $\mathcal{P}u \leq 0$ in D we have

$$\mathcal{P}u = \rho_t w + \rho w_t - \sum_{i,j=1}^{N} a_{ij} \left(\rho_{x_i} w + \rho w_{x_i} \right)_{x_j} + \sum_{i=1}^{N} b_i \left(\rho_{x_i} w + \rho w_{x_i} \right) + c\rho h \le 0$$

Direct caluculation implies that

$$\mathcal{P}u = \rho_{t}w + \rho w_{t} - \sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} \left(\rho_{x_{i}}w + \rho w_{x_{i}}\right)_{x_{j}} + \sum_{i=1}^{N} b_{i} \left(\rho_{x_{i}}w + \rho w_{x_{i}}\right) + c\rho$$

$$= \rho w_{t} - \rho \sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} w_{x_{i}x_{j}} - \sum_{i=1}^{N} \sum_{j=1}^{N} (a_{ij} \rho_{x_{i}} w_{x_{j}} + a_{ij} \rho_{x_{j}} w_{x_{i}})$$

$$+ \rho \sum_{i=1}^{N} b_{i} w_{x_{i}} + \left(-\sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} \rho_{x_{i}x_{j}} + \rho_{t} + \sum_{i=1}^{N} b_{i} \rho_{x_{i}} + c\right) w$$

$$= \rho w_{t} - \rho \sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} w_{x_{i}x_{j}} + \sum_{i=1}^{N} \left(\rho b_{i} - \sum_{j=1}^{N} 2 a_{ij} \rho_{x_{j}}\right) w_{x_{i}}$$

$$+ \rho \sum_{i=1}^{N} b_{i} w_{x_{i}} + \left(-\sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} \rho_{x_{i}x_{j}} + \rho_{t} + \sum_{i=1}^{N} b_{i} \rho_{x_{i}} + c\right) w$$

Since $\rho > 0$ we obtain $\tilde{\mathcal{P}}w \leq 0$, where

$$\begin{split} \tilde{\mathcal{P}}w &:= w_t - \sum_{i,j=1}^N a_{ij} w_{x_i x_j} + \sum_{i=1}^N \left(b_i - \sum_{j=1}^N \frac{2a_{ij} \rho_{x_j}}{\rho} \right) w_{x_i} + \tilde{c}(t,x) w \\ &= w_t - \sum_{i,j=1}^N a_{ij} w_{x_i x_j} + \sum_{i=1}^N \left(b_i(t,x) - \sum_{j=1}^N \frac{4c \gamma x_j a_{ij}}{\gamma - ct} \right) w_{x_i} + \tilde{c}(t,x) w \\ &= w_t - \sum_{i,j=1}^N a_{ij} w_{x_i x_j} + \sum_{i=1}^N \tilde{b}_i(t,x) w_{x_i} + \tilde{c}(t,x) w, \\ \tilde{b}_i(t,x) &= b_i(t,x) - \sum_{j=1}^N \frac{4c \gamma x_j a_{ij}}{\gamma - ct} \end{split}$$

and

$$\begin{split} \tilde{c}(t,x) &:= \frac{\rho_t}{\rho} - \sum_{i,j=1}^N a_{ij} \frac{\rho_{x_i x_j}}{\rho} + \sum_{i=1}^N b_i \frac{\rho_{x_i}}{\rho} + c(t,x) \\ &= \beta + \frac{c^2 \gamma |x|^2}{(\gamma - ct)^2} - \sum_{i=1}^N a_{ii} \frac{2c\gamma}{\gamma - ct} - \sum_{i,j=1}^N a_{ij} \frac{4c^2 \gamma^2}{(\gamma - ct)^2} x_i x_j \\ &\qquad + \sum_{i=1}^N b_i x_i \frac{2c\gamma}{\gamma - ct} + c(t,x) \\ &= \beta + \frac{c^2 \gamma |x|^2}{(\gamma - ct)^2} - \frac{4c^2 \gamma^2}{(\gamma - ct)^2} \sum_{i=1}^N a_{ij} x_i x_j + \frac{2c\gamma}{\gamma - ct} \sum_{i=1}^N (-a_{ii} + b_i x_i) + c(t,x) \end{split}$$

• To use maximum principle, let us obtain some estimates for coefficients of $\tilde{\mathcal{L}}$. Since a_{ij} are bounded functions, there exists M > 0 such that $|a_{ij}| \leq M$ for $i, j = 1, \ldots, N$ and $(t, x) \in D$. Thus

$$|\tilde{b}_i(t,x)| \le ||b_i||_{L^{\infty}} + \frac{4c\gamma}{\gamma - ct} NM|x| \tag{3.12}$$

and

$$|\tilde{c}(t,x)| \leq \beta + \frac{c^2 \gamma |x|^2}{(\gamma - ct)^2} + \frac{4c^2 \gamma^2}{(\gamma - ct)^2} NM|x|^2 + \frac{2c\gamma}{\gamma - ct} \left(NM + N \max_{i=1,\dots,N} \|b_i\|_{L^{\infty}} |x| \right) + \|c\|_{L^{\infty}}.$$
(3.13)

• Moreover we see if $\gamma - ct > 0$

$$\tilde{c}(t,x) \geq \beta + \frac{c^{2}\gamma|x|^{2}}{(\gamma - ct)^{2}} - \frac{4c^{2}\gamma^{2}NM|x|^{2}}{(\gamma - ct)^{2}} - \frac{2c\gamma NM}{\gamma - ct}$$

$$- \frac{2c\gamma}{\gamma - ct} N \max_{i=1,\dots,N} \|b_{i}\|_{L^{\infty}} |x| - \|c\|_{L^{\infty}}$$

$$\geq \beta + \frac{c^{2}\gamma|x|^{2}}{(\gamma - ct)^{2}} (1 - 4\gamma NM) - \frac{2c\gamma NM}{\gamma - ct}$$

$$- \frac{2c^{2}\gamma^{2}|x|^{2}}{(\gamma - ct)^{2}} - \frac{1}{2}N^{2} \left(\max_{i=1,\dots,N} \|b_{i}\|_{L^{\infty}}\right)^{2} - \|c\|_{L^{\infty}}$$

$$= \beta + \frac{c^{2}\gamma|x|^{2}}{(\gamma - ct)^{2}} (1 - 4\gamma NM - 2\gamma) - \frac{2c\gamma NM}{\gamma - ct}$$

$$- \frac{1}{2}N^{2} \left(\max_{i=1,\dots,N} \|b_{i}\|_{L^{\infty}}\right)^{2} - \|c\|_{L^{\infty}}$$

$$(3.14)$$

• For R > 0 let us consider the region

$$D_{\gamma/2c,R} = \left(0, \frac{\gamma}{2c}\right) \times \{x \in U : |x| < R\}.$$

- For $(t,x) \in D_{\gamma/2c,R}$, $\gamma/2 < \gamma ct < \gamma$ and |x| < R. By (3.12) and (3.13) we see that \tilde{b}_i and \tilde{c} are bounded in $D_{\gamma/2c,R}$.
- We next choose $\gamma > 0$ small so that $1 4\gamma NM 2\gamma > 0$. Then, by (3.14), we obtain

$$\tilde{c}(t,x) \ge \beta - \frac{2c\gamma NM}{\gamma/2} - \frac{1}{2}N^2 \left(\max_{i=1,\dots,N} \|b_i\|_{L^{\infty}} \right)^2 - \|c\|_{L^{\infty}}$$
$$= \beta - 4cNM - \frac{1}{2}N^2 \left(\max_{i=1,\dots,N} \|b_i\|_{L^{\infty}} \right)^2 - \|c\|_{L^{\infty}}.$$

Therefore we can choose $\beta > 0$ large enough so that $\tilde{c}(t,x) \geq 0$ in $D_{\gamma/2c,R}$. Note that we can choose γ and β independently R.

• Fix any $(s,y) \in (0,\gamma/2c) \times U$ and $\varepsilon > 0$. By (3.11) there exists $R_n \to \infty$ such that

$$e^{-cR_n^2} \left(\max_{|x|=R_n, \ 0 \le t \le T, x \in U} u(t,x) \right) < \varepsilon.$$

Since $\rho(t,x)^{-1} \leq e^{-cR_n^2}$ when $|x| = R_n$, we have $w < \varepsilon$ on $\partial_p D_{\gamma/2c,R_n}$ for any $n \in \mathbb{N}$.

- By the maximum principle (Theorem 3.8 or Collorary 3.9), $w < \varepsilon$ in $D_{\gamma/2c,R_n}$ for any n.
- Letting $n \to \infty$ and $\varepsilon \to 0$ we obtain $w(s,y) \le 0$ and then $u(s,y) \le 0$. In particular we obtain $u(\gamma/2c,y) \le 0$ on U.
- We can repeat the above argument with $t = \gamma/2c$ as the initial time to obtain $u \le 0$ in $(\gamma/2c, 2(\gamma/2c)) \times U$. In a finite number of steps we arrive at the conclusion.