3 Maximum Principles for Parabolic Equations

3.1 Maximum Principle for the Heat Equation
3.1.1 Weak maximum principle for the heat equation

e In this subsection we consider the following heat equation, one of the parabolic
equations,

ug — Au=0 (3.1)
in D= (0,T) x U, where T'> 0 and U C R" is a domain. Here
0,T)x U :={(t,z) e R :0<t < T,z €U}
e For D = (0,7) x U we define its parabolic boundary 90,D as follows:
0,D={(t,r):t=0,2€ Ut U{(t,x):0<t < T,z €dU}.

e Let us define function space C1?(D) for the solution to parabolic equations:

C"*(D) = {u=u(t,z) : up, Uy, , Us,e; € C(D) for i,j=1,--- N}

-~ Theorem 3.1(Weak maximum principle for the heat equations) —

Let U be a bounded domain and let D = (0,7T) x U and let u € C(D) N C“?(D)
be a solution of (3.1). Then

max u(t,r) = max u(t,z)
(t)eD (t,0)€0,D
and
min u(t,z) = min u(t, z)
(t,x)eD (t,x)€0p D
hold.
N J

Proof: We prove only for max.

e [t is enough to prove that

max Ut737 < max ut,x 3.9
(t,w)eD (t,2) (t,x)€8,D (t, ) (3.2)

since 9,D C D.
e Since U is bounded, there exists R > 0 such that U C Bg(0), where

Br(0) = {z € RY : |z| < R}.
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For any € > 0 define

v(t,z) = u(t, z) + ||

By direct calculation we have

vy — Av = (u; — Au) + €(9|z)* — Alz|*) = —2eN < 0.

Take any 7 € (0,7") and consider K, = (0,7] x U. We note that v does not
achieve MaX ;1) v(t,x) at any point of K. In fact, if v takes it maximum over

K, for some (tg,z9) € K, then we have v;(to, zo) > 0 and Av(ty, zo) < 0 and

thus vy (tg, zo) — Av(to, o) > 0, which is a contradiction to v, — Av < 0.

Therefore we obtain

max u(t,z) < max v(t,r) = max o(t,x)
(t,z)eK, (t,z)eK, (t,x)€0p K7
< max o(t,z) < max u(t,x)+cR?
(t.z)€d, D (t.x)€d, D

Here we have used the fact max( z)eo,x, u(t, r) < max yea,p u(t, ).

Since we can show that

lim max wu(t,z) = max u(t,z),

T (t,x)eK, (t,x)eD
by letting 7 T 7" in (3.3) we get

max u(t,z) < max u(t,z)+eR%
(t,x)eD (t,x)edpD

By letting € — 0 we obtain (3.2).

(3.3)

(3.4)

It remains to prove (3.4). We note that m(7) := max, , -z u(t, ¥) is nondecreas-

ing in 7. Let m = max, , .5 u(l, ).

Suppose m = u(ty,x1) for some (t;,71) € D. If 0 < t; < T, then m(t) = m for

t >ty and (3.4) is obvious.

Now we assume t; = T'. Take any > 0. Since u is continuous at (t1,z1) = (T, x1),

there exists § > 0 such that

(t,x) €D, [t—T|+|x—x|<6 = |ult,r) —u(T, z1)| <n.

If 0 <T — 7 <9, then we have
m—n=u(T,z1) —n <u(r,r;) <m

and then m —n < m(7) < m.
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e This means that lim,+7 m(7) = m. The proof has been completed. [
e Now we consider the following initial-boundary value problem:

u—Au= f(t,x), 0<t<T, zeUl,
u(t,z) = g(x), 0<t<T, zedl, (3.5)
u(0,z) = ug(x), relU

where U C R is a bounded domain, f € C((0,T)xU), g € C(0U) and ug € C(U)

are given.

-~ Corollary 3.2 ~
Suppose that U is a bounded domain and D = (0,7) x U. Let u € C(D) x C*?(D).

(1) If uy — Au < 01in D, then

max u(t,z) = max u(t,z).
(t,z)eD (t,x)€dp D

(2) If uy — Au > 0in D, then

min w(t,z) = min u(t,z).
(t,x)eD (t,x)€dpD

N J
-~ Corollary 3.3 ~

Suppose that U is a bounded domain. The initial-boundary value problem (3.5)

has at most one solution in C'(D) N CY2(D), where D = (0,T) x U.
J

- Proposition 3.4(Comparison Principle) ~

Let U be a bounded domain and D = (0,T) x U and let u;, uy € C(D) N CY2?(D)
be the solution to initial-boundary value problem (3.5) with f = f;; ¢ = ¢; and
up = uo,; (1=1,2). If f1 > fo, g1 > g2 and ug1 > w2 then uy > uy in D.

J

e Now we consider the case where U = RV,

Theorem 3.5
Let D = (0,7) x RN and u € C(D) N C%*(D) be a solution of (3.1) with initial

condition u(0, ) = ug(z) and suppose g is bounded on RY. If there exists positive
constants M and ¢ such that |u(t, z)| < Me* in D, then |u(t, z)| < supgegpn |to(§)]
in D.
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Proof:

Considering —u, it is enough to prove that u(t, z) < supgcpn ug(§) holds.

We first assume that 4¢7° < 1. We take ¢ > 0 so that 4¢(T' 4 ¢) < 1 holds. Fix
any y € RV,

Consider

lz—y|?

up(t, x) = u(t,x) — 0{dn(T + & — t)} N Petrre=n |
where ¢ > 0 is any small constant.

We note that the second term of wug satisfies the heat equation. Thus uy also
satisfies the heat equation.

Now we consider £ = {(¢,z) : 0 <t < T, |x —y| < p} for any p > 0. By Theorem
3.1 we have

up(t,z) < max wuy(r,&) for 0 <t <T, |z —y| <p.
(1,6)€0p E

On {(t,z) : t =0, |z —y| < p} we have uy(t,z) < u(t,r) < supgegn uo(§)-
On {(t,x): 0 <t <T,|x—y| = p} we have

| 2

|z —
up(t,z) < Me™” — 0{dn(T + & — t)} N2eqrTen

2
< MefWHo® _ gfan(T + ¢ — t)}’N/ze‘l(TiE*t) < sup up(§)
EERN

for sufficiently large p since 4cT" < 1. Therefore max(; ¢)ca,  uo (7, §) < SUpgern uo(§)
and

ug(t,y) = u(t,y) — 0{4n(T + e —t)} V2 < sup up(§) for 0 <t <T.
¢eR

By letting # — 0 we obtain the desired inequality.
If 4¢T > 1, take | > 0 so that 4¢cl < 1 holds.

By the above argument we have [u(t, z)| < supgcgn |ug(€)| for 0 <¢ <1, z € RV,
We next use the above argument by regarding ¢ = [ as an initial time to obtain

lu(t,z)| < sup |u(l,€)] < sup |ug(€)| for 1<t <2, xRN
£ERN £eRN

and therefore

lu(t,z)| < sup |ug(€)| for 0 <t <2, xR
{eRN

holds.
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e By repeating this argument N times so that NI > T holds we obtain

lu(t,z)| < sup |ug(€)] for 0<t<T, xRV
EeRN

The proof has been completed. [J
e For the initial value problem:

u— Au= f(t,z), 0<t<T, xecRY,
u(0, ) = up(x), reRN

we have the following uniqueness result.

Corollary 3.6

(3.6)

Let D = (0,T) x RY and suppose that v is a bounded function on RY. Then initial
value problem (3.6) has at most one solution u € C(D) N C"?(D) which satisfies

the growth condition |u(t,z)| < Me* for some M > 0 and ¢ > 0.

3.1.2 Strong maximum principle for the heat equation®

Remark: If we do note impose any growth condition, the uniqueness result does not
hold.

e As the harmonic functions, we can obtain the strong maximum principle via a

mean value property for the heat equations.
e Let us define the fundamental solution of heat equation (3.1):

1 _l=?
G(t,x) = WG 4t

This function is called the heat kernel. This function satisfies the heat equation.

e It is well known that u(¢, ) defined by

uta) = [ Gt s — puolu)dy
]RN
satisfies

u — Au =0, t>0, v € RV,
u(0,7) = up(z), xRN,

(3.7)

under a suitable condition on uy. Therefore by Corollary 3.4, this u is a unique

solution to (3.7) under the growth condition in the corollary.
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e For fixed x € RN and t € R and r > 0 we define

1
E(t,z;r) = {(y,s) cRY s <t, Gl —y,t—s)> —N}
r

This set is called heat ball.

e Let us consider the case for N =1, z = 0, t = 0 to illustrate the heat ball in R2.
A point (s,y) € E(0,0;r) if and only if (note that s < 0)

1 _ 2
— ¢ 4(-9) Z
4 (—s)

2
refs > 2y/m(—s),
2

Y 1
1 = > —log4 log(—
0g7"+45 2 5 log 7+ log(—s),

2 1 An(—s
o (—s)

S | =

Y

e The following figure expresses E(0,0;1):

E(0,0;1)

e Now we give the mean value formula for the heat equation.

a Theorem 3.7(Mean value propaety for the heat equation) ~

Let D = (0,T) x U with domain U C RY and u € C*?(D) solve (3.1). Then for
each FE(t,z;r) C D it holds that

1 x —y|?
u(t,z) = Y //E(MIT) u(s,y) ‘(t — s)‘stdy.
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e For the proof see [Evans].

e It holds that

2
// yl Sdsdy =
t:pr) t—S

- Theorem 3.8(Strong maximum principle for the heat equation) —

Let D = (0,T) x U with a bounded domain U C RY and v € C*?(D) solve (3.1).
If there exists (to, zo) € D such that

ulto, 70) = max_u(t,),
(t,x)eD

then u is constant in {(¢,7): 0 <t <tg,x € U}.
N J

Proof: Step 1

o Let u(to, z9) = max ,cpu(t,r) = M.

e For all sufficiently small » > 0, E(ty,zo;7) C D and we use the mean-value
property to obtain

1 w0 — y[?
M = u(to, zo) = N [ )U(?Ja S)Wdé‘dy <M
0,207

and u = M in E(tg, zo;7) since

[z — yI?
Sdsd
4TN//txr) t—S .

e Now we draw any line segment L in D connecting (%o, z¢) with some other point
(So,yo) € D with 0 < 59 < tg. Define

ro = inf{s > so 1 u(t,x) = M "(t,x) € L,s <t <ty}.

e Since u = M in E(ty, zo;7), 70 < to. Moreover since u is continuous, the above
minimum is attained. Assume ry > sg. Then tere exists (rg,29) € L N D such
that u(rg, z0) = M. Taking r > 0 sucfficiently small so that E(rg, zo;7) C D we
obtain u = M in E(rg, 29; 7).

e Since E(rg, zo;r) contains L N {rg — o <t < ro} for some small o > 0, we get a
contradiction. Therefore ro = sg and thus w = M on L.
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Step 2

e Take any point (t,z) € D. Since U is connected there exists a polygonal arc
which connects (tg,z9) with (¢,z): there exists points zg, 1, -+ , &, = x in U
such that each segment connects x; with z;.1 (¢ = 1,...,m). Choose times
to >t > >t, =L

e By the argument in Step 1 we obtain: wu(ty, zo) = u(ti,x1) = -+ = u(tm, Tm) =
u(t,z). The proof has been completed. [

3.2 Maximum principles for general parabolic equations
e Now we introduce the following operator

N

N N
——ZZ th:vu%xJ%—Zb t, x)uy, + c(t, z)u

=1

for given coefficients a;;, b;, c. For simplicity we assume that these coefficients are
continuous and bounded functions.

e Definition ~

Let D C RV*! be a domain. The operator % + L is called uniformly parabolic
if there exists a constant # > 0 such that

N N

Yo > ayltz)Eg = 0l

i=1 j=1

for (t,z) € D and £ = (&y,..., &) € RY.
NS J

e We define

3.2.1 Weak maximum principle

Lemma 3.9

Let D C RM*! be a domain and P be uniformly parabolic and ¢(t,z) > 0 in D,
Assume u € C(D) N CH?(D) satisfies Pu < 0. If u has a nonnegative maximum
over D, then u cannot attain this maximum at any point in D.

Proof:

e Suppose that u takes it nonnegative maximum at (o, xg) € D.
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e By the same argument as in the proof of Lemma 2.1 we can see

N N
Zzam tvaO Ug, x]<t07x0) > 0.

i=1 j=1

e Since (tg,z9) € D which is interior point of D, we also have u,, (to, z9) = 0 and
u(to, xp) = 0. Therefore

N N
Pulto, vo) =uq(to, o) — ZZCLU to, 0)Usz,z; (to, To)

=1 j=1
N

+ Z bi(to, xo)uz, (to, o) + c(to, To)u(to, x0) = 0,

i=1
which is a contradiction to Pu < 0. O

Remark:

(1) If ¢(t,z) = 0, then the requirement for nonnegativeness of the maximum can be
removed.

(2) When D = (0,7) x U with a domain U and if u(ty,T) = max, ,cp u(t, ), then
u (T, z0) > 0 and u,, (T, z9) = 0. Hence we obtain a contradiction. Therefore u
cannot attain the maximum at any point in D \ 9,D.

- Theorem 3.10(Weak maximum principle) ~

Let U C RY be a bounded domain, 7' > 0 and D = (0,7T) X U. Suppose that P
is uniformly parabolic and c(t,z) > 0 in D. Assume u € C(D) N C*?(D) satisfies
Pu <0 and M = max ,cp u(t, x) > 0. Then it holds that

max u(t,z) = max u(t,x)
(t,x)eD (t,x)edpD
. J
Proof:
o It suffices to show that
max u(t,z) < max u(t,x 3.8
Jnax (t,z) ax (t,x) (3.8)

e Let v(t,z) = u(t,x) + e for ¢ > 0. Then
Pv = Pu+ePe ™™ =Pu+e(—k +c(t,z))e™ < e(—k + c(t,r))e ™ < 0

for sufficiently large £ > 0 since c is a bounded function.
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e Moreover max, , .5 v(t,2) > M > 0. Hence by Lemma 3.9 and its Remark-(2),

max u(t,r) < max v(t,z) = max ov(t,x) < max wu(t,x)+e.
(t,z)eD (t,x)eD (t,x)€0pD (t,x)€0pD

e By letting ¢ — 0 we obtain (3.8). O

Remark: If ¢(t,2) = 0, then the requirement for nonnegativeness of M can be removed.

3.2.2 Strong maximum principle

s Theorem 3.11 ~

Let D € RY*! be a domain and P be uniformly parabolic and c(t,z) > 0 (resp.
< 0)in D. Assume u € C(D) N CY%(D) satisfies Pu < 0 (resp. > 0) and M :=
max, ,cp u(t, x) > 0 (resp. M :=inf, 5 <0). Suppose that u(¢,7) < M (resp.
> M) for some (¢,Z) € D. Then u(t,x) < M (resp. > M) at all points (¢, z) in
D which can be connected to (¢,Z) by an arc in D consisting of finite number of
horizontal and upward vertical segments.

J
Remark: If ¢(t, z) = 0, then the requirement for nonnegativeness (resp. nonpositivens-
ess ) of M can be removed.

Corollary 3.12

Suppse the same assumptions of Theorem 3.11 on D, P and ¢(t,z) > 0 in D. Let
M = sup, ,ycp ult,z) > 0 and u(t,7) = M for some (,7) € D. Then u(t,z) = M
at any points (¢, z) which can be connected to (¢,7) by an arc in D consisting of
finite number of horizontal and downward vertical segments.
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e When D = (T}, Ty) x U with a domain U C R" we obtain the following corollary.

Corollary 3.13

Let U C RY be a domain, D = (T1,T3) x U, with —oo < Ty < Ty < oo, and P
be uniformly parabolic and ¢(¢,z) > 0 in D. Assume u € C(D) N CY2?(D) satisfies
7zu < 0 and M := maxg pu(t,z) > 0. Suppose ‘Ehat u(t,T) = M for some
(t,7) € D. Then u(t,z) = M in {(t,z) € D : Ty <t <t}

e For the proof of Theorem 3.11 we need some lemmas.

e Hereafter we assume c(t, ) = 0.
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s Lemma 3.14 ~

Let D C RM*! be a domain and P be uniformly parabolic in D and K C RN*!
be a ball with K C D. Assume u € C(D) N CY%(D) satisfies Pu < 0. Let
M = max, pu(t,z) and u(t,z) < M for (t,r) € K. If u(t,z) = M for some
(t,7) € OK, then (t,Z) is a “north pole” or “south pole” of K. More precisely, if

K = B.(t"2*) = {(t,z) € RN . (t — ") + |z — 2*|? < r?},

thenz =z*andt=x*+rort=a"—r.

Proof:
e Set a* ="(zf,...,2%) amd T ="(Ty,...,TN).

e By considering smaller ball which is tangent to B, (t*, z*) at (¢, T) we may assume
that (¢, ) is a only point in K such that u(t,7) = M.

Consider w(t, z) = e-®e=#"P+1=1")%) _ o= with constant a > 0 is determined
later. w satisfies w =0 on K, w>0in K and w <0 in K .

Suppose that (¢, ) is neither the north pole of K nor the south pole of K. Then
|lz* —z| >0

Take § € (0, |x* — Z|) so that Bs(t,z) C D holds.

2" — 7|
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e By the direct calculation we obtain

N
Pu = {—za@ — ) = Y daya®(w; — o})(e; — )
ij=1

N

i=1

e Since
N
> iz — o)) (w; — ) > Olz — 27
ij=1

and a; and b; are bounded in D, there exists a constants C,Cy > 0 such that
Pw < {—2a(t — t*) — 40’0z — z*|* + aC) + Cralz — 27|} o—alle—a" P +(t—t0)?)

e On Bs(t, ) we have
lz —a*| =" —z|=|(a"—2)— (e —Z)| > |z" —Z|— |z —Z]| >r—0 >0,
|z —2*| <l|z—Z|+|T — 2" <r+4d.
Hence
Pw < {2a(r +6) — 4a*(r — 6)> + Cra + Coa(r + )} e=lle=" P+ < 0 in By(f, 7)
for sufficiently large o > 0.
o Let u(t,x) = u(t,z) + ew(t,x) for € > 0.

e Since u < M on compact set Bs(f,Z) N K, v < M in 0Bs(t,z) N K for small
e > 0.

C

e Since w < 0 on dBs(t,Z) N K" and u < M on D, v < M on 0Bs(t,7) N K".
e Hence v < M on dBs(t,Z) and Pv < 0 in Bs(t, 7).

e However since v(t,Z) = u(t,Z) = M and v must achieve its maximum an interior
point of Bs(t,Z), which contradicts Lemma 3.9 with ¢ = 0. The proof has been
completed. []

Remark: When c(t,z) > 0. The above lemma is still valid if M > 0. In fact for
sufficiently large a > 0

Pw < {2ar — 40*(r — §)* + C1 + Coa(r — 8)* + ||¢]| =} e~ ollz=a"PH+(t=t0)?)
—c(t,z)e ™" <0 in Bs(t,T)
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and use Lemma 3.9.

Lemma 3.15

Let D € R¥*! be a domain and P is uniformly parabolic in D. Assume u € C'?(D)
satisfies Pu < 0. Let w < M in D for some M € R and u(tg, z9) < M for some
(to,x0) € D. Then u(t,x) < M holds in the component of {(t,z) € D : t = ty}
which contains (to, o).

Proof: For simplicity we give the proof only for the case where N = 1.
e Let I' is the component of {(¢,2) € D : t = ty} which contains (%o, z).

e Suppose that u(ty,z;) = M for some (o, z1) € I' and we will get a contradiction.
We may assume that

u(t,z) < M for |z —xo| < |zo— 21|

o Let dy = min{|z; — x|, dist(z1,0D)}.

e For 0 < |z — x| < dy we define d(z) as the distance from (ty,x) to the nearest
point in D where v = M. Since u(ty,x1) = M, d(z) < |z — 4]

e Since wu is continuous and u(ty, z) < M for 0 < |z — x1| < do, for any (ty,x) € D
with 0 < |z — 21| < dp there exists a ball centered at (fo,z) in which v < M.
Hence d(z) > 0.

e Applying Lemma 3.14 we obtain for any (tg,z) € D with 0 < |z — 21| < do,
u(to + d(x),x) = M or u(ty — d(z),z) = M.

e Let € > 0 be a small number and |n| = 1. By the definition of d(x) we have

dx +en) < Ve +d(x)? < \/(d(az) + 2;&)) =d(z) + 25(91:) (3.9)
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(to + d(z), z)
(to +d(z +en), x + en)

€2 +d(x)?

t=t,

(lOaZL‘) (tO»x‘f‘EU)
e By exchanging x and z + en we obtain d(z) < /&2 + d(z + en)? and also

d(x+en) > /d(x)? — &2 (3.10)

e Let us show d(x) =0 for 0 < |z — z1| < do. If this were shown, then u(ty,z) = M
for |z — x| < §y which is a contradiction.

e Take z with 0 < |z — 21| < &y and € € (0,d(x)). We subdivide the interval
(x,z+¢) (or (x —e,x) ) into k equal parts and apply (3.9) and (3.10) to get

1 .
d<x—|—y—£ ET}) —d(az—l—%an)

2

J £ J
<d = —d <
= <x+kw>+2ﬁﬂx+UMkm (x+k”)

g2 g2

< <
T 2k2\/d(x)? — (j/k)22 T 2k2\/d(x)? — &2
for j =0, k— 1.

e By summing the above inequalities from 7 =0 to j = k — 1 we obtain

Ao+ en) — d(z) < ——=

T 2k /d(x)? — 2

o Letting & — oo we obtain d(z + en) < d(x) for each small ¢ > 0 and |n| = 1.
Since 0 < d(x) < |z — x1], we can conclude that d(z) = 0. O

s Lemma 3.16 ~

N

Let D C R¥*! be a domain and P is uniformly parabolic in D. Assume u € C*?(D)
satisfies Pu < 0 and

u<M in {(t,x) € D:ty<t<ti},
for some ty < t;. Then

u<M on {(t,x) € D:t="1}.
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Proof:

e Suppose that u(ty,z*) = M. Take r > 0 so that

B,(t,z") C {(t,x) € D : t > to}.

e Define

w(t,x) = e lr—aPralt—t) _ 1,

where a > 0 is choosen later.
e A direct calculation implies that

—p—x*|2— _
Pw = e |z—x*|*—a(t tl)x

{_O‘ — 4 " agi(wi — a}) (z; — ) + QZ (ai; + bi(w; — 33?))}

1,j=1
* |2
< €7|:1371 | fa(t7t1)><

N
{—a — 40|z — =*]* + 22 (ay; + bi(z; — xf))}
i=1
Thus we can choose o > 0 so that Pw < 0 in B, (t1, z").
e Next we consider the paraboloid
|z — 2" P+ alt—t) =0,
which is tangent to the hyperplane {(t,z) : t = t,} at (t;,2%).

o Let P = {(t,x) € D : alt—t) < —|x —2**}, Ty = IB.(t1,z*) N P, [y =
OP N B,(t1,z*) and let U denote the domain determined by I'; and I's.

(t1,$*)
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Let v(t,z) = u(t,x) + ew(t,z) for € > 0. Then we have Pv < 0 in B, (t;, x*).

Since u < M on compact set I'y there exists 6 > 0 such that « < M — § on I'y,
thus for sufficiently small € > 0 it holds that v < M on I's.

On I'y it holds that u < M since w = 0 on I'y. Moreover v = M at (t1,2*) € ['s.
Therefore v < M on 9U.

By Pv < 0 in B,(t1,z*) and Lemma 3.9, v cannot attain its maximum over U at
any point in U.

Thus v attains its maximum over U at a point on OU. Therefore M is the
maximum of v and it is attained at (¢;,2%).

0 0 0
Hence at (t1,2*) we obtain 7 > 0. But o ac< 0, therefore TS 0 at
(t1, 2 ot ot ot
1,37* .

Since u attaines its maximum at (1, 2*) we have

Uy, (t1,2") =0 1=1,--- | N,
N

Z aij(t1, T°)Uge,; (T, 27) < 0.

ij=1

and then Pu > 0 at (t1,2*). However this is a contradiction to Pu < 0 in D. [

Remark: When c(t,z) > 0 in D, Lemma 3.16 is still valid if A > 0. In fact when
¢(t,z) > 0 and « is sufficiently large

Pw < e—\x—x*\2—o¢(t1—t)><

N
{—a — 40|z — z*|* + QZ (@i + bi(z; — x;‘))} —c(t,x) <0.

=1

Therefore we can use Lemma 3.9.

Proof of Theorem 3.11:
Step 1: If u(t,7) < M then

u<M on I={(t,T):t<t<t}CD.
o Let 7 =sup{t >¢:u(-,T) < M on [t,t]}.
e Suppose that 7 < t;. By continuity u(7,7) = M.

e By Lemma 3.14 v < M on the component of {(t,z) € D : t <t < 7} which
contains (¢, T).
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e By Lemma 3.16, u(7,7) < M which is a contradiction.
Step 2: Completion of the proof of Theorem 3.11.

e Let P(£,T) € D be a point such that u(f,Z) < M and P(t,x) € D be any point
which can be connected to P by an arc in D consisting of a finite number of
hrizontal and vertical upward segments.

e Hence there are points P = Py, Py,..., P, = P in D where P; is connected to Pii1
by either a horizontal or upward vertical segment contained in D.

e By Lemmas 3.14 and Step 1 we obtain u(¢,z) < M. The proof has been com-
pleted. [J

e Next theorem is the parabolic version of the Hopf lemma.

- Theorem 3.17 ™~

Let D c RV+! be a bounded domain and P be uniformly parabolic in D. Assume
u € C*(D) N C(D) satisfies Pu < 0. Suppose

® MaX( ,)cp u(t,x) = M (> 0) is attained at p = (to, o) € 0D,

e D satisfies the interior sphere condition at p, that is, there is a ball B,.(p;) C D
with 0D N 0B, (p1) = {p},

e u< Min D,

e the radial direction from p; to p is not parallel to the t-axis.

0
Then a—u(to, xg) > 0 for every outward direction v.
v
N J

Proof:

o S = Br(tl,ﬁl).

e By the assumption |27 — x¢| > 0. Take 0 < p < |z1 — x| and conider S; =
Bp(t(),ZL'o).

o Let I, =05:NS, 'y =095NS; and U be the region enclosed by I'y and T's.
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Since u < M on compact set I'y, there exists > 0 such that u < M — ¢ on I'y.

We also have u < M on I's \ {(to, o)} and u(to, zg) = M.
Let w(t, z) be the auxiliary function defined by

_ e 120 (fp )2 2
):e af|lz—z1|*+(t tl)}_B ar

w(t, z
for a > 0.
Cleary w = 0 on 0S.

By the same computation as in the proof of Lemma 3.14 (and its remark) we
obtain Pw < 0 in 57 for sufficiently large a > 0.

Let v = u + cw with € > 0. Then Pv < 0in D.
Since u < M — 6 on I'y, there exists € > 0 such that v < M on I'y.
Since w = 0 on 95 we have v < M on I's \ {(t9, z0)} and v(ty, z9) = M.

Hence by Lemma 3.9, v cannot have nonnegative maximum over U in any point
U and therefore the maximum of v over U attains at only (¢, zo).

Hence at (tg, zo) we obtain

ov  Ou ow
= >

5—54—65_0

for any outward direction v.
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e But

D myw(to, zo) := (u(to, To), Dru(to, o))

= —2a(to — t1, 20 — 331)6_0‘{‘x—x1|2+(t—t1)2}

and

8_w
ov

= —2a(ty —t1, 00 — 1) - ve~olle=aPH=t)"}

since v is outward direction.

e Therefore we obtain

0 0
8_5 = _58_111/) > 2ea(ty — ty, x — 1) - ve Um0 5 g
at (to,[ﬁo). O

3.2.3 The Phragmen-Lindelof Principle

- Theorem 3.18(Phragmen-Lindel6f Principle) ~

Let U C RY be an unbounded domain, 7" > 0 and D = (0,T) x U and suppose that
P is uniformly parabolic in D and v € C*?(D) N C(D) satisfies Pu < 0. Assume
that there exists ¢ > 0 sucht that

lim inf e =% ( max u(t,x)) <0 (3.11)
R—o0 |z|=R,0<t<T,z€U
and u(t,z) < 0in 9,D. Then u(t,z) < 0in D.
N J
Proof:

o Let p(t,x) = e PP/Om=e)tbt where |z] = \/22 + -+ 2% for x = Y(zy,...,2y), €

is the constant in (3.11) and 3, v are constant to be determined.
e Define w(t,z) = u(t,x)/p(t,z). Since Pu < 0 in D we have

N N
Pu = paw + pwy — Y aij (pr,w + pg,), + > by (paw + pw,) + cph < 0

ij=1 i=1
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Direct caluculation implies that

N N N
Pu = ptw + pwr — Z Z aij (pxzw + pwxz)xj + Z bl (pwzw =+ pwl"z) + cp
=1 5= =1
N N o N N
= pW —p Z Z aiijizj - Z Z(aijpxiwxj + aijpa:j wxl)
i=1 j=1 i=1 j:l
N
+ P Z bzwml + ( Z Z az]pwlmj + Pt + Z bzpatz + C)
=1 =1 j=1
N
= pw; — pz Z AWy + Z (pbz — Z 205z, ) Wy,
i=1 1
” N N
+p Z biwg,; + ( Z Z AijPziz; + Pt + Z bipz; + C) w
i=1 i=1 j=1 =1

Since p > 0 we obtain Pw < 0, where

Pw = w; — Z AijWa,z, + Z (b — Z 2a”%> Wy, + ¢(t, v)w

,j=1 Jj=1
N N devziay;
= Wy — Z aiijmj + Z (bi(t, l‘) — Z 7_];]) Wy, + 6(t, :L’)’LU
ij=1 i=1 - ¢
N N
ij=1 i=1
al deyxiaq;
7j=1
and
Yo
e(t,x)::&—za “J+pr””’+c(t )
P4 P i=1
Aylz)? al 2cy il 4c2~?
=0+ —=— Qs - Qij 75 TiT;
(v —ct)? 2 vt ]Zl Ty =t
al 2cy
biri—— t,
—l—; x y—ct—i_C( )

Y 207 —
Z QijTi%j + ~ ! (—aii + biw;) + c(t, z)



e To use maximum principle, let us obtain some estimates for coefficients of L.
Since a;; are bounded functions, there exists M > 0 such that |a;;| < M for
i,j=1,...,N and (¢t,z) € D. Thus

dery

bi(t, )] < bl poe
I(xN_HM;+7_d

NM|z| (3.12)

and
Aylz)? 4c2~?
(v —ct)*  (y—ct)?

2
v ffyct (NM + Niznll,%),(N Hbi"L“|$|) + [le]| poe-

c(t, z)] < B+ NM|z|?

(3.13)

e Moreover we see if 7 —ct > 0
Aylx]2 4AAENM|z]? 2eyNM

(y—ct)> (v —ct) y—ct
2cy

¥ —ct
(1—4yNM) —

(t,r) > B+

N max_|[bif| g |2] = [|ef|
i=1,...,N

2cyNM
v —ct

x|

(v — ct)?
22012 2

e (W P

cAylz)? 2cYN M

(v — ct)? oy —ct

> [+
(3.14)

=p+ (1 —4yNM — 2v)

e For R > 0 let us considerthe region
D’Y/ZC,R = (O, %) X {l‘ eU: |I| < R}
o For (t,x) € Dyjocr, 7/2 <y —ct <vand |z] < R. By (3.12) and (3.13) we sce
that b; and ¢ are bounded in D, 5. .

e We next choose v > 0 small so that 1 — 4yNM — 2y > 0. Then, by (3.14), we
obtain

2evyNM 1 2
) 2 5 - 20 e ( :rg{a;;Nnbz-an) el
1 2
=p—4cNM — §N2 (l:HllaXN ||bi||Loo) — el pee-

Therefore we can choose > 0 large enough so that ¢(¢,z) > 0 in D, /5. z. Note
that we can choose 7 and 3 independently R.
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Fix any (s,y) € (0,7v/2¢) x U and € > 0. By (3.11) there exists R, — oo such
that

|z|=R,, 0<t<T,z€U

e~cfn ( max u(t,a:)) <e.
Since p(t,z)"' < e “®i when |z| = R,, we have w < £ on OpD. joc,r, for any
n € N.

By the maximum principle (Theorem 3.8 or Collorary 3.9), w < € in D, /s g, for
any n.

Letting n — oo and ¢ — 0 we obtain w(s,y) < 0 and then u(s,y) < 0. In
particular we obtain u(y/2¢,y) < 0 on U.

We can repeat the above argument with ¢ = y/2c¢ as the initial time to obtain u <
0 in (7/2¢,2(7y/2¢)) x U. In a finite number of steps we arrive at the conclusion.
OJ
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