3 Maximum Principles for Parabolic Equations

3.1 Maximum Principle for the Heat Equation

3.1.1 Weak maximum principle for the heat equation

- In this subsection we consider the following heat equation, one of the parabolic equations,

$$
\begin{equation*}
u_{t}-\Delta u=0 \tag{3.1}
\end{equation*}
$$

in $D=(0, T) \times U$, where $T>0$ and $U \subset \mathbb{R}^{N}$ is a domain. Here

$$
(0, T) \times U:=\left\{(t, x) \in \mathbb{R}^{N+1}: 0<t<T, x \in U\right\}
$$

- For $D=(0, T) \times U$ we define its parabolic boundary $\partial_{p} D$ as follows:

$$
\partial_{p} D=\{(t, x): t=0, x \in \bar{U}\} \cup\{(t, x): 0<t \leq T, x \in \partial U\} .
$$

- Let us define function space $C^{1,2}(D)$ for the solution to parabolic equations:

$$
C^{1,2}(D):=\left\{u=u(t, x): u_{t}, u_{x_{i}}, u_{x_{i} x_{j}} \in C(D) \text { for } i, j=1, \cdots, N\right\}
$$

Theorem 3.1(Weak maximum principle for the heat equations)

Let U be a bounded domain and let $D=(0, T) \times U$ and let $u \in C(\bar{D}) \cap C^{1,2}(D)$ be a solution of (3.1). Then

$$
\max _{(t, x) \in \bar{D}} u(t, x)=\max _{(t, x) \in \partial_{p} D} u(t, x)
$$

and

$$
\min _{(t, x) \in \bar{D}} u(t, x)=\min _{(t, x) \in \partial_{p} D} u(t, x)
$$

hold.
Proof: We prove only for max.

- It is enough to prove that

$$
\begin{equation*}
\max _{(t, x) \in \bar{D}} u(t, x) \leq \max _{(t, x) \in \partial_{p} D} u(t, x) \tag{3.2}
\end{equation*}
$$

since $\partial_{p} D \subset \bar{D}$.

- Since U is bounded, there exists $R>0$ such that $U \subset B_{R}(0)$, where

$$
B_{R}(0)=\left\{x \in \mathbb{R}^{N}:|x|<R\right\} .
$$

- For any $\varepsilon>0$ define

$$
v(t, x)=u(t, x)+\varepsilon|x|^{2} .
$$

- By direct calculation we have

$$
v_{t}-\Delta v=\left(u_{t}-\Delta u\right)+\varepsilon\left(\partial_{t}|x|^{2}-\Delta|x|^{2}\right)=-2 \varepsilon N<0
$$

- Take any $\tau \in(0, T)$ and consider $K_{\tau}=(0, \tau] \times U$. We note that v does not achieve $\max _{(t, x) \in \overline{K_{\tau}}} v(t, x)$ at any point of K_{τ}. In fact, if v takes it maximum over $\overline{K_{\tau}}$ for some $\left(t_{0}, x_{0}\right) \in K_{\tau}$, then we have $v_{t}\left(t_{0}, x_{0}\right) \geq 0$ and $\Delta v\left(t_{0}, x_{0}\right) \leq 0$ and thus $v_{t}\left(t_{0}, x_{0}\right)-\Delta v\left(t_{0}, x_{0}\right) \geq 0$, which is a contradiction to $v_{t}-\Delta v<0$.
- Therefore we obtain

$$
\begin{align*}
\max _{(t, x) \in \overline{K_{\tau}}} u(t, x) \leq & \max _{(t, x) \in \overline{K_{\tau}}} v(t, x)=\max _{(t, x) \in \partial_{p} K_{\tau}} v(t, x) \tag{3.3}\\
& \leq \max _{(t, x) \in \partial_{p} D} v(t, x) \leq \max _{(t, x) \in \partial_{p} D} u(t, x)+\varepsilon R^{2}
\end{align*}
$$

Here we have used the fact $\max _{(t, x) \in \partial_{p} K_{\tau}} u(t, x) \leq \max _{(t, x) \in \partial_{p} D} u(t, x)$.

- Since we can show that

$$
\begin{equation*}
\lim _{\tau \uparrow T} \max _{(t, x) \in \overline{K_{\tau}}} u(t, x)=\max _{(t, x) \in \bar{D}} u(t, x) \tag{3.4}
\end{equation*}
$$

by letting $\tau \uparrow T$ in (3.3) we get

$$
\max _{(t, x) \in \bar{D}} u(t, x) \leq \max _{(t, x) \in \partial_{p} D} u(t, x)+\varepsilon R^{2} .
$$

- By letting $\varepsilon \rightarrow 0$ we obtain (3.2).
- It remains to prove (3.4). We note that $m(\tau):=\max _{(t, x) \in \overline{K_{\tau}}} u(t, x)$ is nondecreasing in τ. Let $m=\max _{(t, x) \in \bar{D}} u(t, x)$.
- Suppose $m=u\left(t_{1}, x_{1}\right)$ for some $\left(t_{1}, x_{1}\right) \in \bar{D}$. If $0 \leq t_{1}<T$, then $m(t)=m$ for $t \geq t_{1}$ and (3.4) is obvious.
- Now we assume $t_{1}=T$. Take any $\eta>0$. Since u is continuous at $\left(t_{1}, x_{1}\right)=\left(T, x_{1}\right)$, there exists $\delta>0$ such that

$$
(t, x) \in \bar{D}, \quad|t-T|+\left|x-x_{1}\right|<\delta \Rightarrow\left|u(t, x)-u\left(T, x_{1}\right)\right|<\eta
$$

- If $0<T-\tau<\delta$, then we have

$$
m-\eta=u\left(T, x_{1}\right)-\eta \leq u\left(\tau, x_{1}\right) \leq m
$$

and then $m-\eta \leq m(\tau) \leq m$.

- This means that $\lim _{\tau \uparrow T} m(\tau)=m$. The proof has been completed.
- Now we consider the following initial-boundary value problem:

$$
\left\{\begin{array}{lc}
u_{t}-\Delta u=f(t, x), & 0<t<T, \quad x \in U \tag{3.5}\\
u(t, x)=g(x), & 0<t<T, \quad x \in \partial U \\
u(0, x)=u_{0}(x), & x \in U
\end{array}\right.
$$

where $U \subset \mathbb{R}^{N}$ is a bounded domain, $f \in C((0, T) \times U), g \in C(\partial U)$ and $u_{0} \in C(U)$ are given.

Corollary 3.2

Suppose that U is a bounded domain and $D=(0, T) \times U$. Let $u \in C(\bar{D}) \times C^{1,2}(D)$.
(1) If $u_{t}-\Delta u \leq 0$ in D, then

$$
\max _{(t, x) \in \bar{D}} u(t, x)=\max _{(t, x) \in \partial_{p} D} u(t, x)
$$

(2) If $u_{t}-\Delta u \geq 0$ in D, then

$$
\min _{(t, x) \in \bar{D}} u(t, x)=\min _{(t, x) \in \partial_{p} D} u(t, x) .
$$

Corollary 3.3

Suppose that U is a bounded domain. The initial-boundary value problem (3.5) has at most one solution in $C(\bar{D}) \cap C^{1,2}(D)$, where $D=(0, T) \times U$.

Proposition 3.4(Comparison Principle)

Let U be a bounded domain and $D=(0, T) \times U$ and let $u_{1}, u_{2} \in C(\bar{D}) \cap C^{1,2}(D)$ be the solution to initial-boundary value problem (3.5) with $f=f_{i}, g=g_{i}$ and $u_{0}=u_{0, i}(i=1,2)$. If $f_{1} \geq f_{2}, g_{1} \geq g_{2}$ and $u_{0,1} \geq u_{0,2}$ then $u_{1} \geq u_{2}$ in D.

- Now we consider the case where $U=\mathbb{R}^{N}$.

Theorem 3.5

Let $D=(0, T) \times \mathbb{R}^{N}$ and $u \in C(\bar{D}) \cap C^{1,2}(D)$ be a solution of (3.1) with initial condition $u(0, x)=u_{0}(x)$ and suppose u_{0} is bounded on \mathbb{R}^{N}. If there exists positive constants M and c such that $|u(t, x)| \leq M e^{c|x|^{2}}$ in D, then $|u(t, x)| \leq \sup _{\xi \in \mathbb{R}^{N}}\left|u_{0}(\xi)\right|$ in D.

Proof:

- Considering $-u$, it is enough to prove that $u(t, x) \leq \sup _{\xi \in \mathbb{R}^{N}} u_{0}(\xi)$ holds.
- We first assume that $4 c T<1$. We take $\varepsilon>0$ so that $4 c(T+\varepsilon)<1$ holds. Fix any $y \in \mathbb{R}^{N}$.
- Consider

$$
u_{\theta}(t, x)=u(t, x)-\theta\{4 \pi(T+\varepsilon-t)\}^{-N / 2} e^{\frac{|x-y|^{2}}{4(T+\varepsilon-t)}}
$$

where $\theta>0$ is any small constant.

- We note that the second term of u_{θ} satisfies the heat equation. Thus u_{θ} also satisfies the heat equation.
- Now we consider $E=\{(t, x): 0<t<T,|x-y|<\rho\}$ for any $\rho>0$. By Theorem 3.1 we have

$$
u_{\theta}(t, x) \leq \max _{(\tau, \xi) \in \partial_{p} E} u_{\theta}(\tau, \xi) \text { for } 0 \leq t \leq T,|x-y| \leq \rho
$$

- On $\{(t, x): t=0,|x-y|<\rho\}$ we have $u_{\theta}(t, x) \leq u(t, x) \leq \sup _{\xi \in \mathbb{R}^{N}} u_{0}(\xi)$.
- On $\{(t, x): 0<t<T,|x-y|=\rho\}$ we have

$$
\begin{aligned}
u_{\theta}(t, x) & \leq M e^{c|x|^{2}}-\theta\{4 \pi(T+\varepsilon-t)\}^{-N / 2} e^{\frac{|x-y|^{2}}{4(T+\varepsilon-t)}} \\
& \leq M e^{c| | y \mid+\rho)^{2}}-\theta\{4 \pi(T+\varepsilon-t)\}^{-N / 2} e^{\frac{\rho^{2}}{4(T+\varepsilon-t)}} \leq \sup _{\xi \in \mathbb{R}^{N}} u_{0}(\xi)
\end{aligned}
$$

for sufficiently large ρ since $4 c T<1$. Therefore $\max _{(\tau, \xi) \in \partial_{p} E} u_{\theta}(\tau, \xi) \leq \sup _{\xi \in \mathbb{R}^{N}} u_{0}(\xi)$ and

$$
u_{\theta}(t, y)=u(t, y)-\theta\{4 \pi(T+\varepsilon-t)\}^{-N / 2} \leq \sup _{\xi \in \mathbb{R}^{N}} u_{0}(\xi) \text { for } 0 \leq t \leq T
$$

By letting $\theta \rightarrow 0$ we obtain the desired inequality.

- If $4 c T \geq 1$, take $l>0$ so that $4 c l<1$ holds.
- By the above argument we have $|u(t, x)| \leq \sup _{\xi \in \mathbb{R}^{N}}\left|u_{0}(\xi)\right|$ for $0 \leq t \leq l, x \in \mathbb{R}^{N}$. We next use the above argument by regarding $t=l$ as an initial time to obtain

$$
|u(t, x)| \leq \sup _{\xi \in \mathbb{R}^{N}}|u(l, \xi)| \leq \sup _{\xi \in \mathbb{R}^{N}}\left|u_{0}(\xi)\right| \text { for } l \leq t \leq 2 l, x \in \mathbb{R}^{N}
$$

and therefore

$$
|u(t, x)| \leq \sup _{\xi \in \mathbb{R}^{N}}\left|u_{0}(\xi)\right| \text { for } 0 \leq t \leq 2 l, \quad x \in \mathbb{R}^{N}
$$

holds.

- By repeating this argument N times so that $N l>T$ holds we obtain

$$
|u(t, x)| \leq \sup _{\xi \in \mathbb{R}^{N}}\left|u_{0}(\xi)\right| \text { for } 0 \leq t \leq T, \quad x \in \mathbb{R}^{N}
$$

The proof has been completed.

- For the initial value problem:

$$
\begin{cases}u_{t}-\Delta u=f(t, x), & 0<t<T, \quad x \in \mathbb{R}^{N} \tag{3.6}\\ u(0, x)=u_{0}(x), & x \in \mathbb{R}^{N}\end{cases}
$$

we have the following uniqueness result.

Corollary 3.6

Let $D=(0, T) \times \mathbb{R}^{N}$ and suppose that u_{0} is a bounded function on \mathbb{R}^{N}. Then initial value problem (3.6) has at most one solution $u \in C(\bar{D}) \cap C^{1,2}(D)$ which satisfies the growth condition $|u(t, x)| \leq M e^{c|x|^{2}}$ for some $M>0$ and $c>0$.

Remark: If we do note impose any growth condition, the uniqueness result does not hold.

3.1.2 Strong maximum principle for the heat equation*

- As the harmonic functions, we can obtain the strong maximum principle via a mean value property for the heat equations.
- Let us define the fundamental solution of heat equation (3.1):

$$
G(t, x)=\frac{1}{(4 \pi t)^{N / 2}} e^{-\frac{|x|^{2}}{4 t}} .
$$

This function is called the heat kernel. This function satisfies the heat equation.

- It is well known that $u(t, x)$ defined by

$$
u(t, x)=\int_{\mathbb{R}^{N}} G(t-s, x-y) u_{0}(y) d y
$$

satisfies

$$
\begin{cases}u_{t}-\Delta u=0, & t>0, x \in \mathbb{R}^{N}, \tag{3.7}\\ u(0, x)=u_{0}(x), & x \in \mathbb{R}^{N}\end{cases}
$$

under a suitable condition on u_{0}. Therefore by Corollary 3.4, this u is a unique solution to (3.7) under the growth condition in the corollary.

- For fixed $x \in \mathbb{R}^{N}$ and $t \in \mathbb{R}$ and $r>0$ we define

$$
E(t, x ; r)=\left\{(y, s) \in \mathbb{R}^{N+1}: s \leq t, \quad G(x-y, t-s) \geq \frac{1}{r^{N}}\right\}
$$

This set is called heat ball.

- Let us consider the case for $N=1, x=0, t=0$ to illustrate the heat ball in \mathbb{R}^{2}. A point $(s, y) \in E(0,0 ; r)$ if and only if (note that $s<0$)

$$
\begin{aligned}
& \frac{1}{\sqrt{4 \pi(-s)}} e^{-\frac{y^{2}}{4(-s)}} \geq \frac{1}{r} \\
& r e^{\frac{y^{2}}{4 s}} \geq 2 \sqrt{\pi(-s)} \\
& \log r+\frac{y^{2}}{4 s} \geq \frac{1}{2} \log 4 \pi+\log (-s), \\
& \frac{y^{2}}{4 s} \geq \frac{1}{2} \log \frac{4 \pi(-s)}{r^{2}} \\
& y^{2} \leq 2 s \log \frac{4 \pi(-s)}{r^{2}} \\
& y^{2} \leq 2(-s) \log \frac{r^{2}}{4 \pi(-s)}
\end{aligned}
$$

- The following figure expresses $E(0,0 ; 1)$:

- Now we give the mean value formula for the heat equation.

Theorem 3.7(Mean value propaety for the heat equation)

Let $D=(0, T) \times U$ with domain $U \subset \mathbb{R}^{N}$ and $u \in C^{1,2}(D)$ solve (3.1). Then for each $E(t, x ; r) \subset D$ it holds that

$$
u(t, x)=\frac{1}{4 r^{N}} \iint_{E(t, x ; r)} u(s, y) \frac{|x-y|^{2}}{(t-s)^{2}} d s d y .
$$

- For the proof see [Evans].
- It holds that

$$
\frac{1}{4 r^{N}} \iint_{E(t, x ; r)} \frac{|x-y|^{2}}{(t-s)^{2}} d s d y=1
$$

Theorem 3.8(Strong maximum principle for the heat equation)

Let $D=(0, T) \times U$ with a bounded domain $U \subset \mathbb{R}^{N}$ and $u \in C^{1,2}(D)$ solve (3.1). If there exists $\left(t_{0}, x_{0}\right) \in D$ such that

$$
u\left(t_{0}, x_{0}\right)=\max _{(t, x) \in \bar{D}} u(t, x)
$$

then u is constant in $\left\{(t, x): 0 \leq t \leq t_{0}, x \in \bar{U}\right\}$.
Proof: Step 1

- Let $u\left(t_{0}, x_{0}\right)=\max _{(t, x) \in \bar{D}} u(t, x)=: M$.
- For all sufficiently small $r>0, E\left(t_{0}, x_{0} ; r\right) \subset D$ and we use the mean-value property to obtain

$$
M=u\left(t_{0}, x_{0}\right)=\frac{1}{4 r^{N}} \iint_{E\left(t_{0}, x_{0} ; r\right)} u(y, s) \frac{\left|x_{0}-y\right|^{2}}{\left(t_{0}-s\right)} d s d y \leq M
$$

and $u \equiv M$ in $E\left(t_{0}, x_{0} ; r\right)$ since

$$
\frac{1}{4 r^{N}} \iint_{E(t, x ; r)} \frac{|x-y|^{2}}{(t-s)^{2}} d s d y=1
$$

- Now we draw any line segment L in D connecting $\left(t_{0}, x_{0}\right)$ with some other point $\left(s_{0}, y_{0}\right) \in D$ with $0 \leq s_{0}<t_{0}$. Define

$$
r_{0}=\inf \left\{s \geq s_{0}: u(t, x)=M \quad \forall(t, x) \in L, s \leq t \leq t_{0}\right\}
$$

- Since $u \equiv M$ in $E\left(t_{0}, x_{0} ; r\right), r_{0}<t_{0}$. Moreover since u is continuous, the above minimum is attained. Assume $r_{0}>s_{0}$. Then tere exists $\left(r_{0}, z_{0}\right) \in L \cap D$ such that $u\left(r_{0}, z_{0}\right)=M$. Taking $r>0$ sucfficiently small so that $E\left(r_{0}, z_{0} ; r\right) \subset D$ we obtain $u \equiv M$ in $E\left(r_{0}, z_{0} ; r\right)$.
- Since $E\left(r_{0}, z_{0} ; r\right)$ contains $L \cap\left\{r_{0}-\sigma \leq t \leq r_{0}\right\}$ for some small $\sigma>0$, we get a contradiction. Therefore $r_{0}=s_{0}$ and thus $u \equiv M$ on L.

Step 2

- Take any point $(t, x) \in D$. Since U is connected there exists a polygonal arc which connects $\left(t_{0}, x_{0}\right)$ with (t, x) : there exists points $x_{0}, x_{1}, \cdots, x_{m}=x$ in U such that each segment connects x_{i} with $x_{i+1}(i=1, \ldots, m)$. Choose times $t_{0}>t_{1}>\cdots>t_{m}=t$.
- By the argument in Step 1 we obtain: $u\left(t_{0}, x_{0}\right)=u\left(t_{1}, x_{1}\right)=\cdots=u\left(t_{m}, x_{m}\right)=$ $u(t, x)$. The proof has been completed.

3.2 Maximum principles for general parabolic equations

- Now we introduce the following operator

$$
\mathcal{L} u=-\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i j}(t, x) u_{x_{i} x_{j}}+\sum_{i=1}^{N} b_{i}(t, x) u_{x_{i}}+c(t, x) u
$$

for given coefficients $a_{i j}, b_{i}, c$. For simplicity we assume that these coefficients are continuous and bounded functions.

Definition

Let $D \subset \mathbb{R}^{N+1}$ be a domain. The operator $\frac{\partial}{\partial t}+L$ is called uniformly parabolic if there exists a constant $\theta>0$ such that

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i j}(t, x) \xi_{i} \xi_{j} \geq \theta|\xi|^{2}
$$

for $(t, x) \in D$ and $\xi={ }^{t}\left(\xi_{1}, \ldots, \xi_{N}\right) \in \mathbb{R}^{N}$.

- We define

$$
\mathcal{P}:=\frac{\partial}{\partial t}+\mathcal{L} .
$$

3.2.1 Weak maximum principle

Lemma 3.9

Let $D \subset \mathbb{R}^{N+1}$ be a domain and \mathcal{P} be uniformly parabolic and $c(t, x) \geq 0$ in D. Assume $u \in C(\bar{D}) \cap C^{1,2}(D)$ satisfies $\mathcal{P} u<0$. If u has a nonnegative maximum over \bar{D}, then u cannot attain this maximum at any point in D.

Proof:

- Suppose that u takes it nonnegative maximum at $\left(t_{0}, x_{0}\right) \in D$.
- By the same argument as in the proof of Lemma 2.1 we can see

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i j}\left(t_{0}, x_{0}\right) u_{x_{i} x_{j}}\left(t_{0}, x_{0}\right) \geq 0
$$

- Since $\left(t_{0}, x_{0}\right) \in D$ which is interior point of D, we also have $u_{x_{i}}\left(t_{0}, x_{0}\right)=0$ and $u_{t}\left(t_{0}, x_{0}\right)=0$. Therefore

$$
\begin{aligned}
\mathcal{P} u\left(t_{0}, x_{0}\right)=u_{t}\left(t_{0}, x_{0}\right)-\sum_{i=1}^{N} & \sum_{j=1}^{N}
\end{aligned} a_{i j}\left(t_{0}, x_{0}\right) u_{x_{i} x_{j}}\left(t_{0}, x_{0}\right) .
$$

which is a contradiction to $\mathcal{P} u<0$.

Remark:

(1) If $c(t, x) \equiv 0$, then the requirement for nonnegativeness of the maximum can be removed.
(2) When $D=(0, T) \times U$ with a domain U and if $u\left(t_{0}, T\right)=\max _{(t, x) \in \bar{D}} u(t, x)$, then $u_{t}\left(T, x_{0}\right) \geq 0$ and $u_{x_{i}}\left(T, x_{0}\right)=0$. Hence we obtain a contradiction. Therefore u cannot attain the maximum at any point in $\bar{D} \backslash \partial_{p} D$.

Theorem 3.10(Weak maximum principle)

Let $U \subset \mathbb{R}^{N}$ be a bounded domain, $T>0$ and $D=(0, T) \times U$. Suppose that \mathcal{P} is uniformly parabolic and $c(t, x) \geq 0$ in D. Assume $u \in C(\bar{D}) \cap C^{1,2}(D)$ satisfies $\mathcal{P} u \leq 0$ and $M=\max _{(t, x) \in \bar{D}} u(t, x) \geq 0$. Then it holds that

$$
\max _{(t, x) \in \bar{D}} u(t, x)=\max _{(t, x) \in \partial_{p} D} u(t, x)
$$

Proof:

- It suffices to show that

$$
\begin{equation*}
\max _{(t, x) \in \bar{D}} u(t, x) \leq \max _{(t, x) \in \partial_{p} D} u(t, x) \tag{3.8}
\end{equation*}
$$

- Let $v(t, x)=u(t, x)+\varepsilon e^{-k t}$ for $\varepsilon>0$. Then

$$
\mathcal{P} v=\mathcal{P} u+\varepsilon \mathcal{P} e^{-k t}=\mathcal{P} u+\varepsilon(-k+c(t, x)) e^{-k t} \leq \varepsilon(-k+c(t, x)) e^{-k t}<0
$$

for sufficiently large $k>0$ since c is a bounded function.

- Moreover $\max _{(t, x) \in \bar{D}} v(t, x)>M \geq 0$. Hence by Lemma 3.9 and its Remark-(2),

$$
\max _{(t, x) \in \bar{D}} u(t, x) \leq \max _{(t, x) \in \bar{D}} v(t, x)=\max _{(t, x) \in \partial_{p} D} v(t, x) \leq \max _{(t, x) \in \partial_{p} D} u(t, x)+\varepsilon .
$$

- By letting $\varepsilon \rightarrow 0$ we obtain (3.8).

Remark: If $c(t, x) \equiv 0$, then the requirement for nonnegativeness of M can be removed.

3.2.2 Strong maximum principle

Theorem 3.11

Let $D \subset \mathbb{R}^{N+1}$ be a domain and \mathcal{P} be uniformly parabolic and $c(t, x) \geq 0$ (resp. ≤ 0)in D. Assume $u \in C(\bar{D}) \cap C^{1,2}(D)$ satisfies $\mathcal{P} u \leq 0$ (resp. ≥ 0) and $M:=$ $\max _{(t, x) \in \bar{D}} u(t, x) \geq 0\left(\right.$ resp. $\left.M:=\inf _{(t, x) \in \bar{D}} \leq 0\right)$. Suppose that $u(\bar{t}, \bar{x})<M$ (resp. $>M)$ for some $(\bar{t}, \bar{x}) \in D$. Then $u(t, x)<M$ (resp. $>M)$ at all points (t, x) in D which can be connected to (\bar{t}, \bar{x}) by an arc in D consisting of finite number of horizontal and upward vertical segments.

Remark: If $c(t, x) \equiv 0$, then the requirement for nonnegativeness (resp. nonpositivensess) of M can be removed.

Corollary 3.12

Suppse the same assumptions of Theorem 3.11 on D, \mathcal{P} and $c(t, x) \geq 0$ in D. Let $M:=\sup _{(t, x) \in \bar{D}} u(t, x) \geq 0$ and $u(\bar{t}, \bar{x})=M$ for some $(\bar{t}, \bar{x}) \in D$. Then $u(t, x)=M$ at any points (t, x) which can be connected to (\bar{t}, \bar{x}) by an arc in D consisting of finite number of horizontal and downward vertical segments.

- When $D=\left(T_{1}, T_{2}\right) \times U$ with a domain $U \subset \mathbb{R}^{N}$ we obtain the following corollary.

Corollary 3.13

Let $U \subset \mathbb{R}^{N}$ be a domain, $D=\left(T_{1}, T_{2}\right) \times U$, with $-\infty<T_{1}<T_{2} \leq \infty$, and \mathcal{P} be uniformly parabolic and $c(t, x) \geq 0$ in D. Assume $u \in C(\bar{D}) \cap C^{1,2}(D)$ satisfies $\mathcal{P} u \leq 0$ and $M:=\max _{(t, x) \in \bar{D}} u(t, x) \geq 0$. Suppose that $u(\bar{t}, \bar{x})=M$ for some $(\bar{t}, \bar{x}) \in D$. Then $u(t, x)=M$ in $\left\{(t, x) \in D: T_{1} \leq t \leq \bar{t}\right\}$.

- For the proof of Theorem 3.11 we need some lemmas.
- Hereafter we assume $c(t, x) \equiv 0$.

Lemma 3.14

Let $D \subset \mathbb{R}^{N+1}$ be a domain and \mathcal{P} be uniformly parabolic in D and $K \subset \mathbb{R}^{N+1}$ be a ball with $\bar{K} \subset D$. Assume $u \in C(\bar{D}) \cap C^{1,2}(D)$ satisfies $\mathcal{P} u \leq 0$. Let $M:=\max _{(t, x) \in \bar{D}} u(t, x)$ and $u(t, x)<M$ for $(t, x) \in K$. If $u(\bar{t}, \bar{x})=M$ for some $(\bar{t}, \bar{x}) \in \partial K$, then (\bar{t}, \bar{x}) is a "north pole" or "south pole" of K. More precisely, if

$$
K=B_{r}\left(t^{*}, x^{*}\right)=\left\{(t, x) \in \mathbb{R}^{N+1}:\left(t-t^{*}\right)^{2}+\left|x-x^{*}\right|^{2}<r^{2}\right\},
$$

then $\bar{x}=x^{*}$ and $\bar{t}=x^{*}+r$ or $\bar{t}=x^{*}-r$.

Proof:

- Set $x^{*}={ }^{t}\left(x_{1}^{*}, \ldots, x_{N}^{*}\right)$ amd $\bar{x}={ }^{t}\left(\bar{x}_{1}, \ldots, \bar{x}_{N}\right)$.
- By considering smaller ball which is tangent to $B_{r}\left(t^{*}, x^{*}\right)$ at (\bar{t}, \bar{x}) we may assume that (\bar{t}, \bar{x}) is a only point in ∂K such that $u(\bar{t}, \bar{x})=M$.
- Consider $w(t, x)=e^{-\alpha\left(\left|x-x^{*}\right|^{2}+\left(t-t^{*}\right)^{2}\right)}-e^{-\alpha r^{2}}$ with constant $\alpha>0$ is determined later. w satisfies $w=0$ on $\partial K, w>0$ in K and $w<0$ in \bar{K}^{c}.
- Suppose that (\bar{t}, \bar{x}) is neither the north pole of K nor the south pole of K. Then $\left|x^{*}-\bar{x}\right|>0$
- Take $\delta \in\left(0,\left|x^{*}-\bar{x}\right|\right)$ so that $B_{\delta}(\bar{t}, \bar{x}) \subset D$ holds.

- By the direct calculation we obtain

$$
\begin{aligned}
\mathcal{P} w=\{- & 2 \alpha\left(t-t^{*}\right)-\sum_{i, j=1}^{N} 4 a_{i j} \alpha^{2}\left(x_{i}-x_{i}^{*}\right)\left(x_{j}-x_{j}^{*}\right) \\
& \left.+\sum_{i=1}^{N}\left(2 a_{i i} \alpha-2 b_{i} \alpha\left(x_{i}-x_{i}^{*}\right)\right)\right\} e^{-\alpha\left(\left|x-x^{*}\right|^{2}+\left(t-t^{*}\right)^{2}\right)} .
\end{aligned}
$$

- Since

$$
\sum_{i, j=1}^{N} a_{i j}\left(x_{i}-x_{i}^{*}\right)\left(x_{j}-x_{j}^{*}\right) \geq \theta\left|x-x^{*}\right|^{2}
$$

and $a_{i i}$ and b_{i} are bounded in D, there exists a constants $C_{1}, C_{2}>0$ such that

$$
\mathcal{P} w \leq\left\{-2 \alpha\left(t-t^{*}\right)-4 \alpha^{2} \theta\left|x-x^{*}\right|^{2}+\alpha C_{1}+C_{2} \alpha\left|x-x^{*}\right|\right\} e^{-\alpha\left(\left|x-x^{*}\right|^{2}+\left(t-t_{0}\right)^{2}\right)}
$$

- On $\overline{B_{\delta}(\bar{t}, \bar{x})}$ we have

$$
\begin{aligned}
& \left|x-x^{*}\right|=\left|x^{*}-x\right|=\left|\left(x^{*}-\bar{x}\right)-(x-\bar{x})\right| \geq\left|x^{*}-\bar{x}\right|-|x-\bar{x}| \geq r-\delta>0, \\
& \left|x-x^{*}\right| \leq|x-\bar{x}|+\left|\bar{x}-x^{*}\right| \leq r+\delta
\end{aligned}
$$

Hence
$\mathcal{P} w \leq\left\{2 \alpha(r+\delta)-4 \alpha^{2}(r-\delta)^{2}+C_{1} \alpha+C_{2} \alpha(r+\delta)^{2}\right\} e^{-\alpha\left(\left|x-x^{*}\right|^{2}+\left(t-t^{*}\right)^{2}\right)}<0$ in $B_{\delta}(\bar{t}, \bar{x})$ for sufficiently large $\alpha>0$.

- Let $v(t, x)=u(t, x)+\varepsilon w(t, x)$ for $\varepsilon>0$.
- Since $u<M$ on compact set $\partial B_{\delta}(\bar{t}, \bar{x}) \cap \bar{K}, v \leq M$ in $\partial B_{\delta}(\bar{t}, \bar{x}) \cap \bar{K}$ for small $\varepsilon>0$.
- Since $w<0$ on $\partial B_{\delta}(\bar{t}, \bar{x}) \cap \bar{K}^{c}$ and $u \leq M$ on $D, v<M$ on $\partial B_{\delta}(\bar{t}, \bar{x}) \cap \bar{K}^{c}$.
- Hence $v<M$ on $\partial B_{\delta}(\bar{t}, \bar{x})$ and $\mathcal{P} v<0$ in $B_{\delta}(\bar{t}, \bar{x})$.
- However since $v(\bar{t}, \bar{x})=u(\bar{t}, \bar{x})=M$ and v must achieve its maximum an interior point of $B_{\delta}(\bar{t}, \bar{x})$, which contradicts Lemma 3.9 with $c \equiv 0$. The proof has been completed.

Remark: When $c(t, x) \geq 0$. The above lemma is still valid if $M \geq 0$. In fact for sufficiently large $\alpha>0$

$$
\begin{array}{r}
\mathcal{P} w \leq\left\{2 \alpha r-4 \alpha^{2}(r-\delta)^{2}+C_{1}+C_{2} \alpha(r-\delta)^{2}+\|c\|_{L^{\infty}}\right\} e^{-\alpha\left(\left|x-x^{*}\right|^{2}+\left(t-t_{0}\right)^{2}\right)} \\
-c(t, x) e^{-\alpha r^{2}}<0 \text { in } B_{\delta}(\bar{t}, \bar{x})
\end{array}
$$

and use Lemma 3.9.

Lemma 3.15

Let $D \subset \mathbb{R}^{N+1}$ be a domain and \mathcal{P} is uniformly parabolic in D. Assume $u \in C^{1,2}(D)$ satisfies $\mathcal{P} u \leq 0$. Let $u \leq M$ in D for some $M \in \mathbb{R}$ and $u\left(t_{0}, x_{0}\right)<M$ for some $\left(t_{0}, x_{0}\right) \in D$. Then $u(t, x)<M$ holds in the component of $\left\{(t, x) \in D: t=t_{0}\right\}$ which contains $\left(t_{0}, x_{0}\right)$.

Proof: For simplicity we give the proof only for the case where $N=1$.

- Let Γ is the component of $\left\{(t, x) \in D: t=t_{0}\right\}$ which contains $\left(t_{0}, x_{0}\right)$.
- Suppose that $u\left(t_{0}, x_{1}\right)=M$ for some $\left(t_{0}, x_{1}\right) \in \Gamma$ and we will get a contradiction.

We may assume that

$$
u(t, x)<M \text { for }\left|x-x_{0}\right|<\left|x_{0}-x_{1}\right|
$$

- Let $d_{0}=\min \left\{\left|x_{1}-x_{0}\right|, \operatorname{dist}\left(x_{1}, \partial D\right)\right\}$.
- For $0<\left|x-x_{1}\right|<d_{0}$ we define $d(x)$ as the distance from $\left(t_{0}, x\right)$ to the nearest point in D where $u=M$. Since $u\left(t_{0}, x_{1}\right)=M, d(x) \leq\left|x-x_{1}\right|$.
- Since u is continuous and $u\left(t_{0}, x\right)<M$ for $0<\left|x-x_{1}\right|<d_{0}$, for any $\left(t_{0}, x\right) \in D$ with $0<\left|x-x_{1}\right|<d_{0}$ there exists a ball centered at $\left(t_{0}, x\right)$ in which $u<M$. Hence $d(x)>0$.
- Applying Lemma 3.14 we obtain for any $\left(t_{0}, x\right) \in D$ with $0<\left|x-x_{1}\right|<d_{0}$, $u\left(t_{0}+d(x), x\right)=M$ or $u\left(t_{0}-d(x), x\right)=M$.
- Let $\varepsilon>0$ be a small number and $|\eta|=1$. By the definition of $d(x)$ we have

$$
\begin{equation*}
d(x+\varepsilon \eta) \leq \sqrt{\varepsilon^{2}+d(x)^{2}}<\sqrt{\left(d(x)+\frac{\varepsilon^{2}}{2 d(x)}\right)^{2}}=d(x)+\frac{\varepsilon^{2}}{2 d(x)} \tag{3.9}
\end{equation*}
$$

- By exchanging x and $x+\varepsilon \eta$ we obtain $d(x) \leq \sqrt{\varepsilon^{2}+d(x+\varepsilon \eta)^{2}}$ and also

$$
\begin{equation*}
d(x+\varepsilon \eta) \geq \sqrt{d(x)^{2}-\varepsilon^{2}} . \tag{3.10}
\end{equation*}
$$

- Let us show $d(x) \equiv 0$ for $0<\left|x-x_{1}\right|<\delta_{0}$. If this were shown, then $u\left(t_{0}, x\right) \equiv M$ for $\left|x-x_{1}\right|<\delta_{0}$ which is a contradiction.
- Take x with $0<\left|x-x_{1}\right|<\delta_{0}$ and $\varepsilon \in(0, d(x))$. We subdivide the interval $(x, x+\varepsilon)$ (or $(x-\varepsilon, x)$) into k equal parts and apply (3.9) and (3.10) to get

$$
\begin{aligned}
& d\left(x+\frac{j+1}{k} \varepsilon \eta\right)-d\left(x+\frac{j}{k} \varepsilon \eta\right) \\
\leq & d\left(x+\frac{j}{k} \varepsilon \eta\right)+\frac{\varepsilon^{2}}{2 k^{2} d(x+(j / k) \varepsilon \eta)}-d\left(x+\frac{j}{k} \varepsilon \eta\right) \\
\leq & \frac{\varepsilon^{2}}{2 k^{2} \sqrt{d(x)^{2}-(j / k)^{2} \varepsilon^{2}}} \leq \frac{\varepsilon^{2}}{2 k^{2} \sqrt{d(x)^{2}-\varepsilon^{2}}}
\end{aligned}
$$

for $j=0, \cdots, k-1$.

- By summing the above inequalities from $j=0$ to $j=k-1$ we obtain

$$
d(x+\varepsilon \eta)-d(x) \leq \frac{\varepsilon^{2}}{2 k \sqrt{d(x)^{2}-\varepsilon^{2}}}
$$

- Letting $k \rightarrow \infty$ we obtain $d(x+\varepsilon \eta) \leq d(x)$ for each small $\varepsilon>0$ and $|\eta|=1$. Since $0 \leq d(x) \leq\left|x-x_{1}\right|$, we can conclude that $d(x) \equiv 0$.

Lemma 3.16

Let $D \subset \mathbb{R}^{N+1}$ be a domain and \mathcal{P} is uniformly parabolic in D. Assume $u \in C^{1,2}(D)$ satisfies $\mathcal{P} u \leq 0$ and

$$
u<M \text { in }\left\{(t, x) \in D: t_{0}<t<t_{1}\right\}
$$

for some $t_{0}<t_{1}$. Then

$$
u<M \text { on }\left\{(t, x) \in D: t=t_{1}\right\}
$$

Proof:

- Suppose that $u\left(t_{1}, x^{*}\right)=M$. Take $r>0$ so that

$$
B_{r}\left(t_{1}, x^{*}\right) \subset\left\{(t, x) \in D: t>t_{0}\right\}
$$

- Define

$$
w(t, x):=e^{-\left|x-x^{*}\right|^{2}-\alpha\left(t-t_{1}\right)}-1,
$$

where $\alpha>0$ is choosen later.

- A direct calculation implies that

$$
\begin{aligned}
& \mathcal{P} w=e^{-\left|x-x^{*}\right|^{2}-\alpha\left(t-t_{1}\right)} \times \\
&\left\{-\alpha-4 \sum_{i, j=1}^{N} a_{i j}\left(x_{i}-x_{i}^{*}\right)\left(x_{j}-x_{j}^{*}\right)+2 \sum_{j=1}^{N}\left(a_{i i}+b_{i}\left(x_{i}-x_{i}^{*}\right)\right)\right\} \\
& \leq e^{-\left|x-x^{*}\right|^{2}-\alpha\left(t-t_{1}\right)} \times \\
&\left\{-\alpha-4 \theta\left|x-x^{*}\right|^{2}+2 \sum_{i=1}^{N}\left(a_{i i}+b_{i}\left(x_{i}-x_{i}^{*}\right)\right)\right\}
\end{aligned}
$$

Thus we can choose $\alpha>0$ so that $\mathcal{P} w<0$ in $B_{r}\left(t_{1}, x^{*}\right)$.

- Next we consider the paraboloid

$$
\left|x-x^{*}\right|^{2}+\alpha\left(t-t_{1}\right)=0,
$$

which is tangent to the hyperplane $\left\{(t, x): t=t_{1}\right\}$ at $\left(t_{1}, x^{*}\right)$.

- Let $P=\left\{(t, x) \in D: \alpha\left(t-t_{1}\right)<-\left|x-x^{*}\right|^{2}\right\}, \Gamma_{1}=\partial B_{r}\left(t_{1}, x^{*}\right) \cap P, \Gamma_{2}=$ $\partial P \cap B_{r}\left(t_{1}, x^{*}\right)$ and let U denote the domain determined by Γ_{1} and Γ_{2}.

- Let $v(t, x)=u(t, x)+\varepsilon w(t, x)$ for $\varepsilon>0$. Then we have $\mathcal{P} v<0$ in $B_{r}\left(t_{1}, x^{*}\right)$.
- Since $u<M$ on compact set Γ_{1} there exists $\delta>0$ such that $u \leq M-\delta$ on Γ_{1}, thus for sufficiently small $\varepsilon>0$ it holds that $v \leq M$ on Γ_{2}.
- On Γ_{2} it holds that $u \leq M$ since $w=0$ on Γ_{2}. Moreover $v=M$ at $\left(t_{1}, x^{*}\right) \in \Gamma_{2}$. Therefore $v \leq M$ on ∂U.
- By $\mathcal{P} v<0$ in $B_{r}\left(t_{1}, x^{*}\right)$ and Lemma 3.9, v cannot attain its maximum over \bar{U} at any point in U.
- Thus v attains its maximum over \bar{U} at a point on ∂U. Therefore M is the maximum of v and it is attained at $\left(t_{1}, x^{*}\right)$.
- Hence at $\left(t_{1}, x^{*}\right)$ we obtain $\frac{\partial v}{\partial t} \geq 0$. But $\frac{\partial w}{\partial t}=-\alpha<0$, therefore $\frac{\partial u}{\partial t}>0$ at $\left(t_{1}, x^{*}\right)$.
- Since u attaines its maximum at $\left(t_{1}, x^{*}\right)$ we have

$$
\begin{aligned}
& u_{x_{i}}\left(t_{1}, x^{*}\right)=0 \quad i=1, \cdots, N, \\
& \sum_{i, j=1}^{N} a_{i j}\left(t_{1}, x^{*}\right) u_{x_{i} x_{j}}\left(t_{1}, x^{*}\right) \leq 0 .
\end{aligned}
$$

and then $\mathcal{P} u>0$ at $\left(t_{1}, x^{*}\right)$. However this is a contradiction to $\mathcal{P} u \leq 0$ in D.
Remark: When $c(t, x) \geq 0$ in D, Lemma 3.16 is still valid if $M \geq 0$. In fact when $c(t, x) \geq 0$ and α is sufficiently large

$$
\begin{aligned}
& \mathcal{P} w \leq e^{-\left|x-x^{*}\right|^{2}-\alpha\left(t_{1}-t\right)} \times \\
&\left\{-\alpha-4 \theta\left|x-x^{*}\right|^{2}+2 \sum_{j=1}^{N}\left(a_{i i}+b_{i}\left(x_{i}-x_{i}^{*}\right)\right)\right\}-c(t, x) \leq 0 .
\end{aligned}
$$

Therefore we can use Lemma 3.9.

Proof of Theorem 3.11:

Step 1: If $u(\bar{t}, \bar{x})<M$ then

$$
u<M \text { on } l=\left\{(t, \bar{x}): \bar{t} \leq t \leq t_{1}\right\} \subset D
$$

- Let $\tau=\sup \{t \geq \bar{t}: u(\cdot, \bar{x})<M$ on $[\bar{t}, t]\}$.
- Suppose that $\tau \leq t_{1}$. By continuity $u(\tau, \bar{x})=M$.
- By Lemma $3.14 u<M$ on the component of $\{(t, x) \in D: \bar{t} \leq t<\tau\}$ which contains (\bar{t}, \bar{x}).
- By Lemma 3.16, $u(\tau, \bar{x})<M$ which is a contradiction.

Step 2: Completion of the proof of Theorem 3.11.

- Let $\overline{\mathrm{P}}(\bar{t}, \bar{x}) \in D$ be a point such that $u(\bar{t}, \bar{x})<M$ and $\mathrm{P}(t, x) \in D$ be any point which can be connected to \bar{P} by an arc in D consisting of a finite number of hrizontal and vertical upward segments.
- Hence there are points $\overline{\mathrm{P}}=\mathrm{P}_{0}, \mathrm{P}_{1}, \ldots, \mathrm{P}_{k}=\mathrm{P}$ in D where P_{i} is connected to P_{i+1} by either a horizontal or upward vertical segment contained in D.
- By Lemmas 3.14 and Step 1 we obtain $u(t, x)<M$. The proof has been completed.
- Next theorem is the parabolic version of the Hopf lemma.

Theorem 3.17

Let $D \subset \mathbb{R}^{N+1}$ be a bounded domain and \mathcal{P} be uniformly parabolic in D. Assume $u \in C^{1,2}(D) \cap C(\bar{D})$ satisfies $\mathcal{P} u \leq 0$. Suppose

- $\max _{(t, x) \in \bar{D}} u(t, x)=M(\geq 0)$ is attained at $p=\left(t_{0}, x_{0}\right) \in \partial D$,
- D satisfies the interior sphere condition at p, that is, there is a ball $B_{r}\left(p_{1}\right) \subset D$ with $\partial D \cap \partial B_{r}\left(p_{1}\right)=\{p\}$,
- $u<M$ in D,
- the radial direction from p_{1} to p is not parallel to the t-axis.

Then $\frac{\partial u}{\partial \nu}\left(t_{0}, x_{0}\right)>0$ for every outward direction ν.

Proof:

- $S=B_{r}\left(t_{1}, x_{1}\right)$.
- By the assumption $\left|x_{1}-x_{0}\right|>0$. Take $0<\rho<\left|x_{1}-x_{0}\right|$ and conider $S_{1}=$ $B_{\rho}\left(t_{0}, x_{0}\right)$.
- Let $\Gamma_{1}=\partial S_{1} \cap \bar{S}, \Gamma_{2}=\partial S \cap S_{1}$ and U be the region enclosed by Γ_{1} and Γ_{2}.

$$
\frac{\left(t_{1}-t_{0}, x_{0}-x_{1}\right)}{r}
$$

- Since $u<M$ on compact set Γ_{1}, there exists $\delta>0$ such that $u \leq M-\delta$ on Γ_{1}.
- We also have $u<M$ on $\Gamma_{2} \backslash\left\{\left(t_{0}, x_{0}\right)\right\}$ and $u\left(t_{0}, x_{0}\right)=M$.
- Let $w(t, x)$ be the auxiliary function defined by

$$
w(t, x)=e^{-\alpha\left\{\left|x-x_{1}\right|^{2}+\left(t-t_{1}\right)^{2}\right\}}-e^{-\alpha r^{2}}
$$

for $\alpha>0$.

- Cleary $w=0$ on ∂S.
- By the same computation as in the proof of Lemma 3.14 (and its remark) we obtain $\mathcal{P} w<0$ in S_{1} for sufficiently large $\alpha>0$.
- Let $v=u+\varepsilon w$ with $\varepsilon>0$. Then $\mathcal{P} v<0$ in D.
- Since $u \leq M-\delta$ on Γ_{1}, there exists $\varepsilon>0$ such that $v<M$ on Γ_{1}.
- Since $w=0$ on ∂S we have $v<M$ on $\Gamma_{2} \backslash\left\{\left(t_{0}, x_{0}\right)\right\}$ and $v\left(t_{0}, x_{0}\right)=M$.
- Hence by Lemma 3.9, v cannot have nonnegative maximum over \bar{U} in any point U and therefore the maximum of v over \bar{U} attains at only $\left(t_{0}, x_{0}\right)$.
- Hence at $\left(t_{0}, x_{0}\right)$ we obtain

$$
\frac{\partial v}{\partial \nu}=\frac{\partial u}{\partial \nu}+\varepsilon \frac{\partial w}{\partial \nu} \geq 0
$$

for any outward direction ν.

- But

$$
\begin{aligned}
D_{(t, x)} w\left(t_{0}, x_{0}\right) & :=\left(u_{t}\left(t_{0}, x_{0}\right), D_{x} u\left(t_{0}, x_{0}\right)\right) \\
& =-2 \alpha\left(t_{0}-t_{1}, x_{0}-x_{1}\right) e^{-\alpha\left\{\left|x-x_{1}\right|^{2}+\left(t-t_{1}\right)^{2}\right\}}
\end{aligned}
$$

and

$$
\frac{\partial w}{\partial \nu}=-2 \alpha\left(t_{0}-t_{1}, x_{0}-x_{1}\right) \cdot \nu e^{-\alpha\left\{\left|x-x_{1}\right|^{2}+\left(t-t_{1}\right)^{2}\right\}}<0
$$

since ν is outward direction.

- Therefore we obtain

$$
\frac{\partial u}{\partial \nu} \geq-\varepsilon \frac{\partial w}{\partial \nu} \geq 2 \varepsilon \alpha\left(t_{0}-t_{1}, x_{0}-x_{1}\right) \cdot \nu e^{-\alpha\left\{\left|x-x_{1}\right|^{2}+\left(t-t_{1}\right)^{2}\right\}}>0
$$

at $\left(t_{0}, x_{0}\right)$.

3.2.3 The Phragmèn-Lindelöf Principle

Theorem 3.18(Phragmèn-Lindelöf Principle)

Let $U \subset \mathbb{R}^{N}$ be an unbounded domain, $T>0$ and $D=(0, T) \times U$ and suppose that \mathcal{P} is uniformly parabolic in D and $u \in C^{1,2}(D) \cap C(\bar{D})$ satisfies $\mathcal{P} u \leq 0$. Assume that there exists $c>0$ sucht that

$$
\begin{equation*}
\liminf _{R \rightarrow \infty} e^{-c R^{2}}\left(\max _{|x|=R, 0 \leq t \leq T, x \in U} u(t, x)\right) \leq 0 \tag{3.11}
\end{equation*}
$$

and $u(t, x) \leq 0$ in $\partial_{p} D$. Then $u(t, x) \leq 0$ in D.

Proof:

- Let $\rho(t, x)=e^{c \gamma|x|^{2} /(\gamma-c t)+\beta t}$, where $|x|=\sqrt{x_{1}^{2}+\cdots+x_{N}^{2}}$ for $x={ }^{t}\left(x_{1}, \ldots, x_{N}\right), c$ is the constant in (3.11) and β, γ are constant to be determined.
- Define $w(t, x)=u(t, x) / \rho(t, x)$. Since $\mathcal{P} u \leq 0$ in D we have

$$
\mathcal{P} u=\rho_{t} w+\rho w_{t}-\sum_{i, j=1}^{N} a_{i j}\left(\rho_{x_{i}} w+\rho w_{x_{i}}\right)_{x_{j}}+\sum_{i=1}^{N} b_{i}\left(\rho_{x_{i}} w+\rho w_{x_{i}}\right)+c \rho h \leq 0
$$

Direct caluculation implies that

$$
\begin{aligned}
\mathcal{P} u=\rho_{t} w & +\rho w_{t}-\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i j}\left(\rho_{x_{i}} w+\rho w_{x_{i}}\right)_{x_{j}}+\sum_{i=1}^{N} b_{i}\left(\rho_{x_{i}} w+\rho w_{x_{i}}\right)+c \rho \\
= & \rho w_{t}
\end{aligned}-\rho \sum_{i=1}^{N} \sum_{j=1}^{N} a_{i j} w_{x_{i} x_{j}}-\sum_{i=1}^{N} \sum_{j=1}^{N}\left(a_{i j} \rho_{x_{i}} w_{x_{j}}+a_{i j} \rho_{x_{j}} w_{x_{i}}\right) ~ 子 \begin{aligned}
& +\rho \sum_{i=1}^{N} b_{i} w_{x_{i}}+\left(-\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i j} \rho_{x_{i} x_{j}}+\rho_{t}+\sum_{i=1}^{N} b_{i} \rho_{x_{i}}+c\right) w \\
=\rho w_{t} & -\rho \sum_{i=1}^{N} \sum_{j=1}^{N} a_{i j} w_{x_{i} x_{j}}+\sum_{i=1}^{N}\left(\rho b_{i}-\sum_{j=1}^{N} 2 a_{i j} \rho_{x_{j}}\right) w_{x_{i}} \\
& +\rho \sum_{i=1}^{N} b_{i} w_{x_{i}}+\left(-\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i j} \rho_{x_{i} x_{j}}+\rho_{t}+\sum_{i=1}^{N} b_{i} \rho_{x_{i}}+c\right) w
\end{aligned}
$$

Since $\rho>0$ we obtain $\tilde{\mathcal{P}} w \leq 0$, where

$$
\begin{aligned}
\tilde{\mathcal{P}} w & :=w_{t}-\sum_{i, j=1}^{N} a_{i j} w_{x_{i} x_{j}}+\sum_{i=1}^{N}\left(b_{i}-\sum_{j=1}^{N} \frac{2 a_{i j} \rho_{x_{j}}}{\rho}\right) w_{x_{i}}+\tilde{c}(t, x) w \\
& =w_{t}-\sum_{i, j=1}^{N} a_{i j} w_{x_{i} x_{j}}+\sum_{i=1}^{N}\left(b_{i}(t, x)-\sum_{j=1}^{N} \frac{4 c \gamma x_{j} a_{i j}}{\gamma-c t}\right) w_{x_{i}}+\tilde{c}(t, x) w \\
& =w_{t}-\sum_{i, j=1}^{N} a_{i j} w_{x_{i} x_{j}}+\sum_{i=1}^{N} \tilde{b}_{i}(t, x) w_{x_{i}}+\tilde{c}(t, x) w \\
\tilde{b}_{i}(t, x) & =b_{i}(t, x)-\sum_{j=1}^{N} \frac{4 c \gamma x_{j} a_{i j}}{\gamma-c t}
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{c}(t, x):= & \frac{\rho_{t}}{\rho}-\sum_{i, j=1}^{N} a_{i j} \frac{\rho_{x_{i} x_{j}}}{\rho}+\sum_{i=1}^{N} b_{i} \frac{\rho_{x_{i}}}{\rho}+c(t, x) \\
= & \beta+\frac{c^{2} \gamma|x|^{2}}{(\gamma-c t)^{2}}-\sum_{i=1}^{N} a_{i i} \frac{2 c \gamma}{\gamma-c t}-\sum_{i, j=1}^{N} a_{i j} \frac{4 c^{2} \gamma^{2}}{(\gamma-c t)^{2}} x_{i} x_{j} \\
& \quad+\sum_{i=1}^{N} b_{i} x_{i} \frac{2 c \gamma}{\gamma-c t}+c(t, x) \\
= & \beta+\frac{c^{2} \gamma|x|^{2}}{(\gamma-c t)^{2}}-\frac{4 c^{2} \gamma^{2}}{(\gamma-c t)^{2}} \sum_{i, j=1}^{N} a_{i j} x_{i} x_{j}+\frac{2 c \gamma}{\gamma-c t} \sum_{i=1}^{N}\left(-a_{i i}+b_{i} x_{i}\right)+c(t, x)
\end{aligned}
$$

- To use maximum principle, let us obtain some estimates for coefficients of $\tilde{\mathcal{L}}$. Since $a_{i j}$ are bounded functions, there exists $M>0$ such that $\left|a_{i j}\right| \leq M$ for $i, j=1, \ldots, N$ and $(t, x) \in D$. Thus

$$
\begin{equation*}
\left|\tilde{b}_{i}(t, x)\right| \leq\left\|b_{i}\right\|_{L^{\infty}}+\frac{4 c \gamma}{\gamma-c t} N M|x| \tag{3.12}
\end{equation*}
$$

and

$$
\begin{align*}
|\tilde{c}(t, x)| \leq \beta+\frac{c^{2} \gamma|x|^{2}}{(\gamma-c t)^{2}} & +\frac{4 c^{2} \gamma^{2}}{(\gamma-c t)^{2}} N M|x|^{2} \\
& +\frac{2 c \gamma}{\gamma-c t}\left(N M+N \max _{i=1, \ldots, N}\left\|b_{i}\right\|_{L^{\infty}}|x|\right)+\|c\|_{L^{\infty}} \tag{3.13}
\end{align*}
$$

- Moreover we see if $\gamma-c t>0$

$$
\begin{align*}
& \tilde{c}(t, x) \geq \beta+\frac{c^{2} \gamma|x|^{2}}{(\gamma-c t)^{2}}-\frac{4 c^{2} \gamma^{2} N M|x|^{2}}{(\gamma-c t)^{2}}-\frac{2 c \gamma N M}{\gamma-c t} \\
& \quad-\frac{2 c \gamma}{\gamma-c t} N \max _{i=1, \ldots, N}\left\|b_{i}\right\|_{L^{\infty}}|x|-\|c\|_{L^{\infty}} \\
& \geq \beta+\frac{c^{2} \gamma|x|^{2}}{(\gamma-c t)^{2}}(1-4 \gamma N M)-\frac{2 c \gamma N M}{\gamma-c t} \\
& \quad-\frac{2 c^{2} \gamma^{2}|x|^{2}}{(\gamma-c t)^{2}}-\frac{1}{2} N^{2}\left(\max _{i=1, \ldots, N}\left\|b_{i}\right\|_{L^{\infty}}\right)^{2}-\|c\|_{L^{\infty}} \tag{3.14}\\
&=\beta+\frac{c^{2} \gamma|x|^{2}}{(\gamma-c t)^{2}}(1-4 \gamma N M-2 \gamma)-\frac{2 c \gamma N M}{\gamma-c t} \\
& \quad-\frac{1}{2} N^{2}\left(\max _{i=1, \ldots, N}\left\|b_{i}\right\|_{L^{\infty}}\right)^{2}-\|c\|_{L^{\infty}}
\end{align*}
$$

- For $R>0$ let us considerthe region

$$
D_{\gamma / 2 c, R}=\left(0, \frac{\gamma}{2 c}\right) \times\{x \in U:|x|<R\} .
$$

- For $(t, x) \in D_{\gamma / 2 c, R}, \gamma / 2<\gamma-c t<\gamma$ and $|x|<R$. By (3.12) and (3.13) we see that \tilde{b}_{i} and \tilde{c} are bounded in $D_{\gamma / 2 c, R}$.
- We next choose $\gamma>0$ small so that $1-4 \gamma N M-2 \gamma>0$. Then, by (3.14), we obtain

$$
\begin{aligned}
\tilde{c}(t, x) & \geq \beta-\frac{2 c \gamma N M}{\gamma / 2}-\frac{1}{2} N^{2}\left(\max _{i=1, \ldots, N}\left\|b_{i}\right\|_{L^{\infty}}\right)^{2}-\|c\|_{L^{\infty}} \\
& =\beta-4 c N M-\frac{1}{2} N^{2}\left(\max _{i=1, \ldots, N}\left\|b_{i}\right\|_{L^{\infty}}\right)^{2}-\|c\|_{L^{\infty}} .
\end{aligned}
$$

Therefore we can choose $\beta>0$ large enough so that $\tilde{c}(t, x) \geq 0$ in $D_{\gamma / 2 c, R}$. Note that we can choose γ and β independently R.

- Fix any $(s, y) \in(0, \gamma / 2 c) \times U$ and $\varepsilon>0$. By (3.11) there exists $R_{n} \rightarrow \infty$ such that

$$
e^{-c R_{n}^{2}}\left(\max _{|x|=R_{n}, 0 \leq t \leq T, x \in U} u(t, x)\right)<\varepsilon .
$$

Since $\rho(t, x)^{-1} \leq e^{-c R_{n}^{2}}$ when $|x|=R_{n}$, we have $w<\varepsilon$ on $\partial_{p} D_{\gamma / 2 c, R_{n}}$ for any $n \in \mathbb{N}$.

- By the maximum principle (Theorem 3.8 or Collorary 3.9), $w<\varepsilon$ in $D_{\gamma / 2 c, R_{n}}$ for any n.
- Letting $n \rightarrow \infty$ and $\varepsilon \rightarrow 0$ we obtain $w(s, y) \leq 0$ and then $u(s, y) \leq 0$. In particular we obtain $u(\gamma / 2 c, y) \leq 0$ on U.
- We can repeat the above argument with $t=\gamma / 2 c$ as the initial time to obtain $u \leq$ 0 in $(\gamma / 2 c, 2(\gamma / 2 c)) \times U$. In a finite number of steps we arrive at the conclusion.

