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0 Notations

e In this section, we prepare some notations.

o RV :={zx="(xy,...,2n) : 7; € R} and

e Let U C RY be an open set, u: U — R and z € U.

ou . u(z + he;) —u(x)
o, ) = h

provided this limit exists, where e; = ¢ th standard coordinate vector. We also

" stead of 2% Similarl 0*u PPu .

write u,, instead of —. Similarly, ——— = ty.;,, =—————=— = Uy, 2.4, €tC. are
K 8xj Y 8@6% i 81’2827]8£L'k Thy T
defined.

e A vector of the form a = (aq,...,ay), where each component o; € NU {0} is

called a multi-index of order |a| = oy + - - + ay.

e Given multi-index o = (ay,...,ay), we define

|af
D%u(x) : 0"u

= —al
al‘l AR ax%”

() =2 -

e For k € NU {0}, D*u(x) = {D*u(z) : |a|] = k} and

1/2

|DFul = | > |Duf?

la|=k

e For special case, if £ =1

Du(z) = (ug, (x), ..., upy(2))

and if £k =2
Uzpyaq (CL’) o Upgzy ($)
D2u(x) = : :
uachm(x) Tt Uzyay (:E)
N no
o Au= kz:; g_xz,: : Laplacian



e Now we define some function spaces:
C(U)=A{u:U — R | uis continuous},
C*U)={u:U =R | DuecCU) for |af <Ek}.

When U is bounded

C(U) :={u:U — R | u is continuous},
CHMT) := {u € C*(U) | D*u has a continuous extension over U for each |o| < k}
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1 Harmonic Functions

1.1 Definition and Mean value Properties

e Let us start this lecture with the definition of harmonic functions.

Definition

Let U C RY be a domain. A function u € C*(U) is called harmonic function on
U or is said to be harmonic on U if u satisfies

Au=0 in U.

e Let us give some characterization of the harmonic functions.

s Definition ~
Let U C RY be a domain and u € C'(U).

(1) It is said that u satisfies the second mean value property if for any B,.(z) C
U

1
- - 1.1
u($) wyrN-1 /83,«@) U(y)dtfy ( )

holds, where B,.(z) = {y € RY : |z — y| < r} and wy denotes the surface area
of the unit sphere in RY.

(2) Tt is said that u satisfies the first mean value property if for any B,(z) C U

N
= d 1.2
u(x) o™ L u(y)dy (1.2)

L holds. )

Remark:

(1) The above two conditions are equivalent. If u € C(U) satisfies the first mean value

property, then for any B,(x) CU and 0 < p <r

1
u(z)pN = — u(y)da,.
WN JoB,(x)

Integrating both sides of the above identity fromp = 0 to p = r we obtain



If u e C(U) satisfies the second mean value property then for any B,(x) C U we

have

N

u(z)r = — u(y)dy = / / y)do,dp.

WN BT(:E) aBp

Differentiating both sides of the above identity we obtain
N
Nu(z)r¥ ' = — u(y)doy,.
OBy ()

(2) The identity (1.1) can be written as

1
u(z) = —/ u(z + rw)doy,
WN JoaBi(0)
and the identity (1.2) can be written as
N

u(r) = — u(z +rz)dz.
WN JB1(0)

Theorem 1.1

If w € C*(U) is a harmonic function, then w satisfies the first and second mean
value properties.

Proof:
e We prove that u satisfies the first mean value property.
e Take any B,(z) C U and define for p € (0,7)
1
o(p) = — u(x + pw)doy,.
WN JoB;(0)
e Note that u € C*(U) and |Du| is bounded on dB,(x) so we can obtain

1 d
d(p) = — —u(z + pw)doy,
0= [t
1
= — Du(x + pw) - wdoy,
9B1(0)

1 / Yy—x
- Du(y) - do
wypN OB, (z) p Y

1 / Ju 1 /
= —do, = ———— Au(y)dy = 0.
wnpN T Jop, @ OV wn N )




e Therefore ¢(p) is a constant function on (0,r) and we obtain

1
= 1i =1 = do,,.
u(x) ;ﬂg@(p) ;g}cﬁ(p) pppwE /8 o u(y)do,

e The proof has been completed. [

Remark: Here we have used Gauss-Green formula: Suppose that {2 C R¥ is a bounded
domain with smooth 9Q. For u € C*(Q)

/umidmz/ uv;doy,
Q 0

where v(= v(z)) = (v1,...,vn) is the outward unit normal vector on 9 (at z € 9Q).
If u € C*(Q), then we can replace u by u,, to obtain

/umimidx:/ Uy, Vi doy,
Q G19)

and
/ Audxr = Du - vdo, = @dom.
Q o0 oq OV
Theorem 1.2
[If u € C%(U) satisfies the mean-value property, then v is harmonic. j
Proof:

e Suppose Au # 0. There exists a point x € U such that Au(z) > 0 or Au(x) < 0.
We may assume the former, otherwise consider —u.

e Since u € C*(U), there exists a ball B,.(z) C U such that Au > 0 on B,(x).

e If we define ¢(p) in the same way to the proof of Theorem 1.1, then from the
mean-value property ¢'(p) must be 0 for any 0 < p < 7.

e However from the computation in Theorem 1.1

1
wypN 1

¢(p) = /B  Bulydy >0

which is a contradiction. J

Remark: It can be shown that if u € C(U) satisfies the mean-value property, then
u € C*(U) and u is harmonic (see [Evans], [Han-Lin]).



1.2 Maximum Principles

Theorem 1.3(Strong Maximum Principle)

Let U C RY be a domain. Suppose that u € C(U) satisfies the mean-value property.
If there exists xo € U such that u(zg) = max,ey u(x)(=: M), then u is constant
function in U.

Proof:
e Suppose that there exists xyg € U such that u(xg) = max,cp u(z)(=: M).
e Consider the following set
Vi={zxeU]|ux)= M}
This set is relatively closed.

e Now we show that this set is open. By the mean-value property we have

N

M e =
U(CCO) CL)NTN B (x0)

u(z)de < M
for any 0 < r < dist(xg,0U). Therefore u(x) = M on B,(xy). This means that
V' is an open set.
e Since U is connected V =U. [
Remark:

(1) A set V C U is called a relatively open set of U if for any xg € V there exists
r > 0 such that U,(zo) NU C V. A set F' C U is called relatively closed if U \ F' is
relatively open.

(2) We can also show that if there exists xy € U such that u(z¢) = min,cy u(z)(=: m)
then u =m in U.

~ Colollary 1.4(Weak Maximum Principle) ~

Let U C RY be a bounded domain. If u € C(U) N C?*(U) is a harmonic function,
then

max u(z) = max u(x)

zeU xzedU
and
ine%l u(zx) = min u(z).
NS )




Proof: We prove only the identity for the maximum.
e Since U D U, max, g u(r) > max,cop u(x) is obvious.

e Suppose that max, 7 u(z) > max,cpy u(x) holds. Then there exists o € U such
that u(xy) = max,ecy u(z). However, from Theorem 1.3, u must be constant,
which is a contradiction. [

- Definition ~
Let U C RY be a domain and u € C*(U).

(1) w is said to be superharmonic if u satisfies —Au > 0 in U.

(2) w is said to be subharmonic if u satisfies —Au < 0 in U.

N J

e In the view of the proof of Theorems 1.1 and 1.3 and Corollary 1.4 we can obtain
the following results.

-~ Proposition 1.5 ~
Let U C RY be a domain and u € C*(U).

(1) If w is superharmonic, then for any B,(z) C U

1 N
> d > dy.
ue) 2 wyrN-1 /é)Br(ac) uly)doy, u(w) 2 wnrN /T(z>u(y) ’

(2) If w is subharmonic, then for any B,(z) C U

1 N
ulr) < ———— u(y)do,, u(z) < / u(y)dy.
N o W /BBW-(a:) Wz, u(z) wnT™ S, (@) o J
- Proposition 1.6(Strong Maximum Principle) ~

Let U C RY be a domain and u € C?*(U).

(1) Suppose that u is superharmonic. If there exists xy € U such that u(xy) =
min,ep u(z)(=: m), then u=m in U.

(2) Suppose that w is subharmonic. If there exists o € U such that u(zg) =
max,ey u(x)(=: M), then u= M in U.




- Corollary 1.7(Weak Maximum Principle) ~
Let U C RY be a bounded domain and let u € C'(U) N C*(U).

(1) If w is superharmonic, then

min u(zr) = min u(z).

(2) If u is subharmonic, then

rileag( u(z) = max u(z).

N J

An application to the boundary value problem of the Poisson equations

e Let us consider the boundary value problem of the Poisson equation:

{—Au =f inU,

1.3
u=gq on OU, (1.3)

where U C R¥ is a bounded domain and, f € C(U) and g € C(9U) are given.

Proposition 1.8(Uniqueness)
[Let u, v € C(U) N C%U) be solutions to (1.3). Then u = v in U. ]

Proof: Consider w = v —v. Then w is harmonic in U and w = 0 on 9U. Therefore by
Corollary 1.4, for any y € U

min w(z) ﬁgw@)_w@)_§$Wkw max w(z)

Therefore u =v in U. [
Proposition 1.9(Comparison principle)

Let uy, uy € C(U) N C?(U) be solutions to (1.3) with f = f; and g = g; (i = 1,2)
respectively. If fi > fo in U and ¢g; > g5 on OU, then u; > us in U.

Proof: Consider w = u; — us. Then w is superharmonic and w > 0 on OU. By
Corollary 1.7, for any y € U

0< m o < wlw).
< min w(z) ggww_w@

Therefore u; > uq in U. [
Proposition 1.10(Strong Comparison principle)

Let uy, ug € C(U) N C?(U) satisfy the same conditions of Proposition 1.9. Then
Uy = Uy in U or u; > uy in U holds.




Proof:

e Consider w = u; — us. Then w is superharmonic in U and w > 0 on 0U. By
Proposition 1.9, w > 0 in U.

e Suppose that ui(xg) = uz(xy) at some point xg € U. Then w(zq) = 0.

e Since w > 0 in U, w takes its minimum at xq € U.

e By Proposition 1.6, w = 0 in U. Therefore if u; # us then uy; > us in U. U
Remark:

e When U is not bounded, Propositions 1.8, 1.9 and 1.10 do not hold, in general.

e For example let U = {x € RV : |z| > 1} and let u(z) = log|z| when N = 2 and
u(x) = |z[*” —1 when N > 3. Then it is easily seen that u is a solution to (1.3)
with f =0, g = 0. However v(x) = 0 is also solution to the same problem.



2 Maximum Principles for Elliptic Equations

2.1 Weak Maximum Principle
e Let U C RY be a domain. For u € C?(U), let us define the following differential

operator:
N N
Lu:=— Z i (T) Uz, (T) + Z bi(@)uz, () + c(z)u, (2.1)
i,j=1 i=1

where a;;, b;, ¢ € C(U). Without loss of generality, we may assume that a;;(x) =
aji(x) for x € U. So we assume that a;;(z) = a;;(z) for z € U.

- Definition ~

e The operator £ defined in (2.1) is elliptic at x € U if the matrix (a;;(x));; is
positive, that is, if A(z), A(x) denote the minimum and maximum eigenvalues
of (a;;(x));; respectively, then

0 <A@)IE* < Y ay(a)é; < A)[Ef (2.2)

ij=1

for any € = (&1, -+ ,&n) € RV \ {0}. If A(z) > 0 for x € U, then L is said to
be elliptic in U.

e If there exists a positive constant A\g > 0 such that A\(x) > A holds for x € U,
then L is said to be strictly elliptic.

e If A(x)/A(x) is bounded in U then L is called uniformly elliptic.

J
Remark: If a;; are bounded functions and £ is strictly elliptic, then £ is uniformly
elliptic. In this lecture, we assume that a;;, b; and c are bounded function and thus we
assume that £ is uniformly elliptic instead of strictly elliptic.

Example: If a;;(z) = §;;, bi(x) = 0, ¢(x) = 0, then £ = —A and for x € U and
E="&,...,6n) €ERY

N N N N
()& =D > 0k => & =I¢P
i,j=1 i=1

i=1 j=1

holds. Therefore —A is uniformly elliptic with A(z) = A(z) = 1.
Lemma 2.1

Suppose that operator £ defined in (2.1) is elliptic in U and ¢(x) > 0 in U and

u € C(U)NC*U) satisfies Lu < 0. If u has a nonnegative maximum over U, then
u cannot attain this maximum at any point in U.

10



Proof:
e Suppose that u(xy) = max,.gu(x) > 0 for some zy € U.

e Then u,,(79) = 0fori=1,---, N and the matrix B = (u;,,,(7)); is nonpositive
definite.

e Since the matrix A = (a;;(z0));; is symmetric and positive definite, there exists
an orthogonal matrix 7" = (¢;;);; so that

'PAT = diag(dy, . .., dy), ‘TT = T'T = E,
with d; >0 (i =1,..., N), that is,

Z Zt kaw ZEQ ]l = dk5k17 thkt ik — 51] (23)

i=1 j=1

e Write y = g + 'T'(x — x9). Then x — 2o = T'(y — x0). We denote u(x) = u(y) =
w(xo + T'(x — x0)).

e Then we have

Uay(@) = 00, (@) = 3 (1) () = O iy (9t

N N N N N N
Do (@)t (w0) = YD D Y aij (o) iy (o) tirt i
i=1 j=1 i=1 j=1 k=1 I=1
N N N N
= Z Z Uy, (o) Z Z aj (o) tirtju
k=1 I=1 i=1 j=1
N N
= Z Zfb Ykl (wo)did = Zuykyk (wo)d
k=1 I=1

e Since @ takes its nonnegative maximum at z, we have a,,,, (z0) < 0 for £ =
1,..., N and then

N N
ZZCLU T0)Ug,a, (T0) < 0, c(xo)u(wo) > 0.

i=1 j=1

11



e Therefore we obtain
N N

Lu(zg) = — Z Qi (T0) Uz, (T0) + Z bi(x0)uz, (o) + c(xo)u(xo) > 0,

ij=1 i=1
which is a contradiction to Lu < 0. O

e From the proof of Lemma 2.1, it is easily obtain that the following corollary.

Corollary 2.2

Suppose that operator £ defined in (2.1) is elliptic in U and c(z) =0in U and
u e C(U)NC*U) satisfies Lu < 0. If v has a maximum over U, then u cannot
attain this maximum at any point in U.

e Now we state the weak maximum principle.

~ Theorem 2.3(Weak Maximum Principle) ~

Let U C RY be a bounded domain. Suppose that operator L defined in (2.1) is
uniformly elliptic in U and ¢(z) =0 in U and u € C*(U) N C(U).

(1) If Lu <0 in U, then

I;lEaUX u(z) = max u(z).

(2) If Lu > 0 in U, then

min u(z) = min u(x).

2cU 2cdU
NS J
Proof:(1)
e We first note that by considering £ = €; (i-th fundamental vector) in (2.2)
N
ai(r) = Y an(r)&& > Mx) > Ao > 0
k=1

o Let u(z) = u(x) 4+ ce* for x € U, where € > 0 is any small constant and a > 0
is a constant to be determined.

e Then by a direct computation implies that

Lu(x) = Lu+ L(ee*™)
= Lu + e(—a’ay; (2)e*™ + aby(x)e™™)

< eae™ (—aXg + b1l o))

Hence for a > [|by | z=@)Ay " we see L(u.) < 0.

12



- Corollary 2.4

N

e From Corollary 2.2 we obtain

max u(x) < maxu. = max u.(x) < maxu(z) + £ max e**.
zeU zeU €U zedU xedU

Here we remark that 0 < max,cyy €**! < oo since QU is bounded.

e By letting ¢ — 0 we con

max u(z) < max u(x).
zeU xzedU

On the other hand max,coy w(z) < max, g u(z) is obvious. Therefore we obtain
max, i u(r) = maxgegy u(z).

(2) Consider v = —u and note that

—) = —mi d ) — i
I;leag(( w) {Cne%lu(x) an gé%}é( w) ;re%lll]u(a:)

hold. OJ

e Now we will give the weak maximum principle for the case where ¢ > 0. Now
we define vt (z) := max{u(z),0} and u~ () = — min{u(z),0}. We have u(x) =
ut(z) —u (z) and |u(x)| = vt (z) + v (z).

~
Let U Cc RY be a bounded domain. Suppose that operator £ defined in (2.1) is

uniformly elliptic in U and ¢(z) > 0 in U and u € C(U) N C%(UV).
(1) If Lu <0 in U, then

max u(z) < maxut(z).
zcU xedU

(2) If Lu>0in U, then

i > — ().
ine%lu(a:) > — maxu (z)

(3) In particular, if Lu =0 in U, then

max [u(z)| = max |u()].

13



Proof: (1)
e Let Lu<0in U. Consider set V :={x € U : u(x) > 0} and Ku := Lu — ¢(x)u.
e Then for z € V
Ku=Lu—cu<—cu<0.
Since the operator K has no zeroth-order term, by Theorem 2.1 we have

rilea% u(zr) = max u(x).

Noting 0V C 0U U {x € U : u(x) = 0} we obtain

max u(z) = max u(z) < maxu’(z).
z€eV zedV z€dU

e In the case where V' # @ we have max,;u(r) = max,.yu(r) and then we
obtain max, . u(r) < maxzegy u'(x). Otherwise u(z) < 0 in U we obtain
max, ;g u(z) < 0 = max,epy ut(z).

(2) Consider v = —u and note that (—u)* = u".

(3)
e It is enough to show that max, 7 |u(x)| < maxgcov [u(z)|.
e Since —|u(z)| < u(x) < |u(x)| for v € U,

— < — - ) < .
max |u(z)| < —maxu” (r), maxu” (z) < max |u()]

e By (1), (2) and the above observation we have for y € U.

— < — - < mi <
max [u(z)| < —maxu(z) < r;le%w(x) < u(y)
< maxu(z) < maxu’(z) < max|u(z)|
zeU zedU xedU

holds. The above inequality implies that max, ;7 |u(z)| < maxgeqy |u(z)|. O

e Finally, let us apply the maximum principle to the boundary value problem of
the elliptic equation:

(2.4)

Lu=f inU,
u=g¢g onJU,

where U C R” is a bounded domain, f € C(U) and g € C(9U) are given

functions.

14



e From the maximum principle we can obtain the following result:

Proposition 2.5

Let U C RY be a bounded domain. Suppose that U is a bounded domain and
operator £ defined in (2.1) is strictly elliptic and ¢(z) > 0in U. Let f € C(U) and
g € C(OU) and let u,v € C(U) N C?*(U) be solutions to (2.4). Then u=v in U.

Proof:
e Consider w =4 —v. Then Lw =01in U and w = 0 on 0U.

e By Corollary 2.4-(3)

= = 0.
glglw(wﬂ max [w(z)|

e Therefore w =0 in U, that is, u =v in U. O

Proposition 2.6(Comparison principle)

Let U C RY be a bounded domain. Suppose that U C R" is a bounded domain
and operator £ defined in (2.1) is uniformly elliptic and ¢(z) > 0 in U. Let uy,
uy € C(U) N C?*(U) be solutions to (2.4) with f = f;i and g = ¢; (i = 1,2)
respectively. If f; > fo in U and g; > ¢go on OU, then u; > ug in U.

Proof:
e Consider w =u —wv. Then Lw > 0in U and w > 0 on 9U.

e By Corollary 2.4-(2) we obtain min ;w(r) = —max,eqy w (x) = 0. since
w~ =0 on JU.

e Therefore w > 0 in U, that is, u > v in U. [

2.2 The Strong Maximum Principle

e In this subsection, we give the strong maximum principle for the general elliptic
operator L.

e To obtain the strong maximum principle the Hopf boundary point lemma, which
will be given soon, is essential. To state the Hopf boundary point lemma, we give
the notion the interior sphere condition.

e The domain U C RY satisfies interior sphere condition at z, € 9U if there
exists T € U and r > 0 such that B,.(T) C U and xy € 0B,.(T).

15



- Lemma 2.7(Hopf’s Lemma) ~

Let U C RY be a domain and operator £ defined in (2.1) be uniformly elliptic.
Assume u € C(U) N C%U).

(1) In the case where ¢ = 0 in U, if Lu < 0 in U and there exists o € OU such
that U satisfies the interior sphere condition at xy and

u(zo) > u(z) for all x € U, (2.5)

then we have

u(xg) — u(xo — tv
lim inf (z0) (2o ) > 0,
t—+0 t
where v = v(x() denotes the outward unit normal vector of OU at xy.

(2) In the case where ¢(x) > 0 in U, the same conclusion holds if u(zq) > 0 and if
u(zo) = 0 the same conclusion holds irrespective of the sign of c.

J
S F—
Remark: If lim ul(o) = ulwo = tv) exists, this limit is denoted by @(1‘0) and if
o t—+0 t Ov
u € CY(U), this coincide with Du(zg) - v
Proof:

e We assume that ¢ > 0 in U hold.
e By translation we assume that T = 0 and B,(0) C U with zq € 9B,.(0).

e Define

v(z) = e PP — e for z e B,(0),
where o > 0 will be chosen later.
e By direct computation implies that

N
Lv= Z a;;(z Ux,xj + Z bi(x)v,, + c(x

i,j=1
N
= e N " ay () (—doPzir; + 200;)
ij—l

2

. —a|g;|2 Z b 20&%’1 + C )(6—a|m|2 _eor )
< e‘“II‘Q(—4)\Oa2|w|2 + 2atrA + 2a|b||z| + ),
N 1/2
where A = (a;;(2))ij, b= (by,...,by) with |b] = (zizl W)

16



We next consider R := B,(0) \ B,/2(0). Since (r/2) < |z| < r for x € R we have

Lv < e PP (= X\a?r? 4 2atrA + 2alblr + ¢).
Hence Lv < 0 on R provided « > 0 is fixed large enough.
By (2.5), inf,cop, ,0){u(z0) — u(z)} > 0. Hence there exists ¢ > 0 such that
u(xo) > u(x) +ev(r) for x € 0B, /5(0).
We also note that by (2.5) and v = 0 on 0B,(0) we have
u(zo) > u(x) +ev(z) for x € dB,(0).

Since L(u + ev — u(xg)) < —cu(z) < 0in R and u + cv — u(xy) < 0 on IR we
have

u(z) +ev(z) <wu(zg) for x € R
by the weak maximum principle.

Since the outward normal vector v of U at zg coincides with the one of B,.(0) at
xg, v = xo/7. Hence for t > 0

u(zo) — u(zy — tv) S _ev(xo) —v(zo — tv)
t - t

and

i inf u(zo) — u(zo — tv) > e lim v(xg) — v(zo — tV)
t—+0 t t—+0 t

= —eDuv(xy) - )
r

On the other hand by the direct calculation implies that Duv(zg) = —2\zpe N
and then Dv(zg) - % = —2\re—?,

Therefore

u(zg) — u(xg — tr) — u(xo)

lim inf > 2eare ™ > ()

t—40 t

and the proof has been completed. []

17



- Theorem 2.8(Strong Maximum Principle) ~

Suppose that U is a domain and operator £ defined in (2.1) is uniformly elliptic in
U and ¢(x) =0 in U and assume u € C(U) N C%*(U).

(1) If Lu < 0 in U and u attains its maximum over U at an interior point (that is

a point in U), then u is constant in U.

(2) If Lu > 0 in U and u attains its minimum over U at an interior point (that is

a point in U), then u is constant in U.

J

Proof:

Write M := max, gu(z), C :={r €U :u(x) =M} and V :={z € U : u(z) <
M}. We show C' = U. Assume C # U.

Suppose that there are two point xy and z; such that zp € V and x; € C.

Since U is a domain there exists a curve in U denoted by I' : v = ~v(¢) (0 <t < 1)
such that v(0) = z¢ and (1) = ;.

There exists a point ¢t € (0,1] such that u(y(t2)) = M and u(y(t)) < M for
t e [0,t2> Set To = ’Y(tg)

Since x9 € U there exists € > 0 such that B.(z3) C U and thus we can choose a
point y € V such that dist(y, C') < dist(y, OU)(see Remark).

Consider a largest ball B,(y) such that B,.(y) C V (take r = dist(y,C)). Then
there exists a point yy € C' with yy € 0B, (y).

Since V satisfies the interior sphere condition at yo and u(z) < u(yp) = M in V,

by Hopt’s lemma we obtain
ou
— 0
ay(yo) >

However since u attains its maximum over U at yo € U, Du(yo) = 0 must hold.
This is a contradiction. [

Remark: How to choose y € V so that dist(y, C') < dist(y, 0U).

Take t5 € (0,1,) close to t so that y = y(t3) € B.ja(w2)
Then we have dist(y,C) < |y — x5| < /4.

On the other hand if # € OU then x ¢ B.(x3). Therefore
3
[ =yl 2 |z — 22| = |y — @] = 7€
and dist(t,U) > (3/4)e > (1/4)e > dist(y, C).
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- Theorem 2.9(The Strong Maximum Principle with ¢ > 0) ~

Suppose that U is a domain and operator £ defined in (2.1) is uniformly elliptic in
U and ¢(x) > 0 in U and assume u € C(U) N C%*(U).

(1) If Lu < 0 in U and u attains a nonnegative maximum over U at an interior
point (that is a point in U), then u is constant in U.

(2) If Lu > 0 in U and u attains a nonpositive minimum over U at an interior
point (that is a point in U), then u is constant in U.

J

Proof: By using (2) of Lemma 2.7, we can same line as the proof of Theorem 2.8. [J

2.3 The Phragmen-Lindelof Principle

e The weak maximum principle hold when U is a bounded domain. When U is
not bounded Theorem 2.3 and Corollary 2.4 does not hold.

Example:

e Let U = (0,7) x R C R%. Note that U is not bounded.

o Let u(z,y) = sinx cosh 2y. Then u satisfies

{—Au+3u: 0 in U, (2.6)

u=20 on OU.

However max |u(z,y)| = max |u(x,y)| does not hold since u(z,y) > 0 for
(zy)eU (z,y)€0U

(z,y) € U.

e For unbounded U, we have to impose the condition on the growth of the function
at infinity.

- Theorem 2.9(The Phragmeén-Lindel6f Principle) ~

Suppose that U is an unbounded domain and operator £ defined in (2.1) is uniformly
elliptic in U and ¢(xz) = 0 in U and assume that there exists a positive function

¢ € C(U)N C?(U) such that

Lo >0, lim ¢(x) =00

- |z|—>o00,zeU
If u € C(U) N C?(U) satisfies

Lu <0, liminf sup M <0
A=oo g1y A ger P(T)

and © < 0 on OU, then u < 0in U.
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Proof:
e Fix y € U. We will prove for any £ > 0 u(y) < e¢(y). Choose any ¢ > 0.

e By the assumption there exists A. > 0 such that for A > A,

uz) _
sup 2.7
P(z)=A,xzeU ¢<SC) ( )
holds. We choose A > A, so that ¢(y) < A holds.
u(z) . . .
o Set w(z) = @) By the direct calculation we obtain
x

0> Lu= L(pw) (2.8)

N N
= ¢Lw — c(x)pw — Z Z 204§ ¢p,We, + (LP)w (2.9)

i=1 j=1

If we define the elliptic operator

N N

Lv:=— ZZgzﬁ(:c i () We,z, — Zb é(x)v

i=1 j=1

where

Z 2a;i(x) g, (x), é(x) = Lp(x) >0

then it holds that Lw < 0.

e Consider open set Uy = {z € U : ¢(z) < A}. Assumption ¢(z) — oo (as
|z| — 0o) implies that Uy, is bounded. Since ¢(x) > 0 in U there exists ag > 0
such that ¢(z) > ag for x € Uy. Therefore L is strictly elliptic in Uy.

e By the weak maximum principle (Corollary 2.4-(1)) we obtain

u(z
w(z) < max w" = max max{o Q} <e for ze€ Ua.
€U 4 €U 4

¢(x)

and thus u(y) < e¢(y). Letting ¢ — 0 we obtain u(y) < 0. Since y € U is
arbitrary, we obtain u(z) <0 for x € U. O

Example:

20



e Let us consider again the example given in the begging of this subsection. In this
example function ¢(xz, %) = cosh v/3y satisfies (2.7). Therefore if u satisfies v < 0
for (z,y) € OU and

liminf  sup uz,y) = liminf  sup _ulzy)

—_— <0,
Asoo s acosh/By B se(om)y—p cosh v/3y

then v < 0 in U. However u(x,y) = sin z cosh 2y does not satisfy this condition.

e We note that if condition (2.7) holds, then any bounded function satisfies (2.8).
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