解析学特論講義ノート (Schwartz 超関数編)

松澤 寛

1 超関数の定義

1.1 試験関数

• $\varphi \in C(\mathbb{R}^N)$ に対して

$$\overline{\{x \in \mathbb{R}^N : \varphi(x) \neq 0\}}$$

 $\delta \varphi$ の台といい, $\operatorname{supp} \varphi$ と表す. $\operatorname{supp} \varphi$ は \mathbb{R}^N の閉集合である.

• 次に**多重指数 (multi-index)** を定義しよう. $\alpha=(\alpha_1,\ldots,\alpha_N)\in(\mathbb{N}\cup\{0\})^N$ に対して

$$\begin{aligned} |\alpha| &= \alpha_1 + \dots + \alpha_N, \\ \alpha! &= \alpha_1! \cdot \dots \cdot \alpha_N! \\ D^{\alpha} &= \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \cdots \partial x_N^{\alpha_N}} \quad \text{If } D^{\alpha} \varphi = \frac{\partial^{|\alpha|} \varphi}{\partial x_1^{\alpha_1} \cdots \partial x_N^{\alpha_N}} \\ x^{\alpha} &= x_1^{\alpha_1} \cdots x_N^{\alpha_N} \quad (x = (x_1, \dots, x_N) \in \mathbb{R}^N) \end{aligned}$$

 $\alpha + \beta$ は普通の意味で定義する.

注 $x = (x_1, \dots, x_N) \in \mathbb{R}^N$ のノルム $|x| = \sqrt{x_1^2 + \dots + x_N^2}$ と多重指数の $|\alpha|$ は同じ記号であるので注意.

• $\varphi \in C^{\infty}(\mathbb{R}^N)$ で台 $\operatorname{supp} \varphi$ が \mathbb{R}^N のコンパクト集合(有界閉集合)であるものの全体を $C_0^{\infty}(\mathbb{R}^N)$ と表す:

$$C_0^{\infty}(\mathbb{R}^N) := \{ \varphi \in C^{\infty}(\mathbb{R}^N) : \operatorname{supp} \varphi \ \text{td} \ \mathbb{R}^N \ \mathcal{O}$$
 コンパクト集合 }

 $C_0^\infty(\mathbb{R}^N)$ は $\mathscr{D}(\mathbb{R}^N)$ ともかかれる.

- $\varphi \in \mathcal{D}(\mathbb{R}^N)$ ならば、任意の多重指数 α に対して $D^{\alpha}\varphi \in \mathcal{D}(\mathbb{R}^N)$ が成り立つ.
- $\varphi \in C_0^\infty(\mathbb{R}^N)$ の例をあげよう. まず

$$f(t) = \begin{cases} e^{-1/t} & (t > 0), \\ 0 & (t \le 0) \end{cases}$$

とおくと $f \in C^{\infty}(\mathbb{R})$ である(証明略).

• この f を用いて $\varphi(x) = f(1-|x|^2)$ とおくと $\varphi \in C^{\infty}(\mathbb{R}^N)$ であり,

$$\varphi(x) = \begin{cases} e^{-\frac{1}{1-|x|^2}} & |x| < 1, \\ 0 & |x| \ge 1 \end{cases}$$

である. $\operatorname{supp} \varphi = \{x \in \mathbb{R}^N : |x| \le 1\}$ より $\varphi \in C_0^\infty(\mathbb{R}^N)$ である.

[注]
$$\int_{\mathbb{R}^N} \varphi(x) dx = \int_{|x| \le 1} \varphi(x) dx = 1$$
 となるように

$$C = \int_{\mathbb{R}^N} f(1 - |x|^2) dx = \int_{|x| < 1} f(1 - |x|^2) dx$$

とおき $\varphi(x) = C^{-1}f(1-|x|^2)$ として用いることが多い.

1.2 超関数の定義と例

$\mathscr{D}(\mathbb{R}^N)$ における収束

- 定義

 $\{\varphi_n\}\subset \mathcal{D}(\mathbb{R}^N)$ が $\varphi\in \mathcal{D}(\mathbb{R}^N)$ に**収束する**とは次の2条件が成り立つことである;

- (i) あるコンパクト集合 $K \subset \mathbb{R}^N$ があって $\operatorname{supp} \varphi_n \subset K(\forall n \in \mathbb{N})$, $\operatorname{supp} \varphi \subset K$ が 成り立つ.
- (ii) 任意の多重指数 α に対して

$$\lim_{n \to \infty} \sup_{x \in K} |D^{\alpha} \varphi_n(x) - D^{\alpha} \varphi(x)| = 0$$

が成り立つ. つまり、任意の多重指数 α に対して $D^{\alpha}\varphi_n$ は $D^{\alpha}\varphi$ に K 上一様収束する.

このとき

$$\varphi_n \to \varphi \ (n \to \infty) \ \text{in} \ \mathscr{D}(\mathbb{R}^N), \ \lim_{n \to \infty} \varphi_n = \varphi \ \text{in} \ \mathscr{D}(\mathbb{R}^N)$$

などと表す.

注

- (i) より $\mathbb{R}^N\setminus K$ で $\varphi_n=\varphi=0$ より (ii) より任意の多重指数 α に対して $D^{\alpha}\varphi_n$ は $D^{\alpha}\varphi \curvearrowright \mathbb{R}^N$ 上一様収束するといえる.
- $\{\varphi_n\}\subset \mathscr{D}(\mathbb{R}^N),\, \varphi\in \mathscr{D}(\mathbb{R}^N)$ が $\varphi_n\to \varphi\ (n\to\infty)$ in $\mathscr{D}(\mathbb{R}^N)$ ならば

$$D^{\alpha}\varphi_n \to D^{\alpha}\varphi \ (n \to \infty) \ \text{in} \ \mathscr{D}(\mathbb{R}^N)$$

である。実際、 $\{\varphi_n\}$ の収束の定義から、 $\operatorname{supp}\varphi_n,\operatorname{supp}\varphi\subset K$ なるコンパクト集合 K がとれる。任意の多重指数 β に対して $\alpha+\beta$ も多重指数であるから

$$\lim_{n \to \infty} \sup_{x \in K} |D^{\beta}(D^{\alpha}\varphi_n(x)) - D^{\beta}(D^{\alpha}\varphi(x))|$$

$$= \lim_{n \to \infty} \sup_{x \in K} |D^{\alpha+\beta}\varphi_n(x) - D^{\alpha+\beta}\varphi(x)| = 0$$

である。したがって成り立つ。

• $\mathcal{D}(\mathbb{R}^N)$ に属する関数を試験関数あるいはテスト関数といい, $\mathcal{D}(\mathbb{R}^N)$ を試験関数の空間あるいはテスト関数の空間という。

超関数の定義

定義 -

 $T: \mathcal{D}(\mathbb{R}^N) \to \mathbb{C}$ とする(T は**汎関数**とよばれる)。T が 2 条件を満たすとき T が \mathbb{R}^N 上の**超関数**という:

(i) T は線形である, つまり

$$T(\varphi_1 + \varphi_2) = T(\varphi_1) + T(\varphi_2) \quad (\varphi_1, \varphi_2 \in \mathscr{D}(\mathbb{R}^N)),$$

$$T(\alpha \varphi) = \alpha T(\varphi) \quad (\alpha \in \mathbb{C}, \ \varphi \in \mathscr{D}(\mathbb{R}^N))$$

(ii) T が次の意味で連続である:

$$\varphi_n \to \varphi \ (n \to \infty) \ \text{in} \ \mathscr{D}(\mathbb{R}^N) \ \Rightarrow \ T(\varphi_n) \to T(\varphi) \ (n \to \infty)$$

- \mathbb{R}^N 上の超関数全体を $\mathscr{D}'(\mathbb{R}^N)$ と表す.
- $T(\varphi)$ は $\langle T, \varphi \rangle$ ともかかれる.

超関数の例

例1 $\delta: \mathscr{D}(\mathbb{R}^N) o \mathbb{C}$ を

$$\delta(\varphi)=\varphi(0)$$

で定義すると $\delta \in \mathcal{D}'(\mathbb{R}^N)$ である.

- 線形性は明らか
- 連続性を示そう. $\{\varphi_n\} \subset \mathcal{D}(\mathbb{R}^N)$, $\varphi \in \mathcal{D}(\mathbb{R}^N)$ が $\varphi_n \to \varphi$ $(n \to \infty)$ in $\mathcal{D}(\mathbb{R}^N)$ と する. このとき, あるコンパクト集合 $K \subset \mathbb{R}^N$ が存在して

$$\operatorname{supp} \varphi_n, \operatorname{supp} \varphi \subset K(\forall n \in \mathbb{N}),$$
 $\{\varphi_n\}$ は φ に $K(\mathbb{R}^N)$ 上一様収束する

特に $\{\varphi_n\}$ は φ に \mathbb{R}^N 上各点収束する。 したがって

$$\delta(\varphi_n) = \varphi_n(0) \to \varphi(0) = \delta(\varphi) \ (n \to \infty)$$

- δをDirac の δ 関数という。
- $a \in \mathbb{R}^N$ に対して $\delta_a(\varphi) = \varphi(a) \ (\varphi \in \mathcal{D}(\mathbb{R}^N))$ と定義しても $\delta_a \in \mathcal{D}'(\mathbb{R}^N)$ である.

例2

• $L^1_{loc}(\mathbb{R}^N)$ を次で定義する:

$$L^1_{\mathrm{loc}}(\mathbb{R}^N) = \left\{ f: \mathbb{R}^N \to \mathbb{C}: \begin{array}{l} f: \text{Lebesgue} \ \overline{\eta} \underline{\eta} \\ \forall K \subset \mathbb{R}^N: \text{compact} \ \pounds \\ \end{array} \right. , \int_K |f(x)| dx < \infty \ \left. \right\}$$

• $f \in L^1_{loc}(\mathbb{R}^N)$ を l つ固定し

$$T_f(\varphi) = \int_{\mathbb{R}^N} f(x)\varphi(x)dx \ (\varphi \in \mathscr{D}(\mathbb{R}^N))$$

とおくと $T_f \in \mathcal{D}'(\mathbb{R}^N)$ である.

命題 1.1

 $f,\,g\in L^1_{\mathrm{loc}}(\mathbb{R}^N)$ とする、 $T_f=T_g$ in $\mathscr{D}'(\mathbb{R}^N)$ であれば f=g a.e. \mathbb{R}^N が成り立つ.

これは次の補題(証明略)からわかる。

補題 1.2

 $f \in L^1_{\mathrm{loc}}(\mathbb{R}^N)$ $\mathfrak{D}^{\mathfrak{T}}$

$$\int_{\mathbb{R}^N} f\varphi dx = 0 \ (\forall \varphi \in C_0^{\infty}(\mathbb{R}^N))$$

とする. このとき f=0 a.e. \mathbb{R}^N である.

 $oxed{\hat{z}} f \in L^1_{\mathrm{loc}}(\mathbb{R}^N)$ と T_f を同一視することにより f を超関数と見ることができる.

例3

• $\frac{1}{x} \notin L^1_{\mathrm{loc}}(\mathbb{R})$ であるが

$$T(\varphi) = \lim_{\varepsilon \downarrow 0} \int_{|x| > \varepsilon} \frac{\varphi(x)}{x} dx \quad (\forall \varphi \in \mathscr{D}(\mathbb{R}))$$

とすると $T \in \mathcal{D}'(\mathbb{R})$ である.

• 実際 $\varphi \in \mathcal{D}(\mathbb{R})$ とすると

$$\begin{split} &\int_{|x| \ge \varepsilon} \frac{\varphi(x)}{x} dx = \int_{-\infty}^{-\varepsilon} \frac{\varphi(x)}{x} dx + \int_{\varepsilon}^{\infty} \frac{\varphi(x)}{x} dx \\ &= \left\{ [\log|x|\varphi(x)]_{-\infty}^{-\varepsilon} - \int_{-\infty}^{-\varepsilon} (\log|x|)\varphi'(x) dx \right\} + \left\{ [\log|x|\varphi(x)]_{\varepsilon}^{\infty} - \int_{\varepsilon}^{\infty} (\log|x|)\varphi'(x) dx \right\} \\ &= (\log \varepsilon) (\varphi(-\varepsilon) - \varphi(\varepsilon)) - \int_{|x| > \varepsilon} (\log|x|)\varphi'(x) dx \end{split}$$

• $C \subset \sup \varphi \subset [-K, K]$ $C \subset [-K, K]$

$$|\varphi(-\varepsilon) - \varphi(\varepsilon)| \le |\varphi(-\varepsilon) - \varphi(0)| + |\varphi(0) - \varphi(\varepsilon)| \le 2 \sup_{x \in [-K,K]} |\varphi'(x)| \varepsilon$$

である. したがって $\lim_{\varepsilon \downarrow 0} \varepsilon \log \varepsilon = 0$ より $\lim_{\varepsilon \downarrow 0} (\log \varepsilon) (\varphi(-\varepsilon) - \varphi(\varepsilon)) = 0$ を得る.

- 次に $\lim_{\varepsilon \downarrow 0} \int_{|x| \geq \varepsilon} (\log |x|) \varphi'(x) dx$ が収束することを示す. $\lim_{\varepsilon \downarrow 0} \int_{\varepsilon}^{\infty} (\log x) \varphi'(x) dx$ についてのみ示せば十分である.
- (0,K]上で

$$|(\log x)\varphi'(x)| \le |\log x| \sup_{x \in [-K,K]} |\varphi'(x)|$$

であり $\int_0^K |\log x| dx < \infty$ より $\lim_{\varepsilon \downarrow 0} \int_{\varepsilon}^\infty (\log x) \varphi'(x) dx = \lim_{\varepsilon \downarrow 0} \int_{\varepsilon}^K (\log x) \varphi'(x) dx$ は収束する.

• さらに

$$\left| \lim_{\varepsilon \downarrow 0} \int_{|x| > \varepsilon} (\log |x|) \varphi'(x) dx \right| \le \int_{-K}^{K} |\log |x| |dx \sup_{x \in [-K,K]} |\varphi'(x)|$$

である.

以上まとめると

$$|T(\varphi)| \le \int_{-K}^{K} |\log |x|| dx \left(\sup_{x \in [-K,K]} |\varphi'(x)| \right)$$

であり、このことから $T\in \mathcal{D}'(\mathbb{R})$ であることがすぐにわかる.この T を p.v. $\frac{1}{x}$ と表す.

命題 1.3

 $T\in \mathscr{D}'(\mathbb{R}^N),\, lpha$ を任意の多重指数とする。 $T_lpha:\mathscr{D}(\mathbb{R}^N) o\mathbb{C}$ を

$$T_{\alpha}(\varphi) := T(D^{\alpha}\varphi) \ (\varphi \in \mathscr{D}(\mathbb{R}^N))$$

と定義すると $T_{\alpha} \in \mathcal{D}'(\mathbb{R}^N)$ である.

証明

• 線形性は D^{α} の線形性および $D^{\alpha}\varphi \in \mathcal{D}(\mathbb{R}^{N})$ $(\varphi \in \mathcal{D}(\mathbb{R}^{N}))$ より明らか.

• $\{\varphi_n\} \subset \mathscr{D}(\mathbb{R}^N), \, \varphi \in \mathscr{D}(\mathbb{R}^N) \, \mathfrak{D}^{\mathfrak{T}}$

$$\varphi_n \to \varphi \ (n \to \infty) \ \text{in} \ \mathscr{D}(\mathbb{R}^N)$$

とする. このとき $D^{\alpha}\varphi_n \in \mathcal{D}(\mathbb{R}^N)$, $D^{\alpha}\varphi \in \mathcal{D}(\mathbb{R}^N)$ であり次が成り立つ:

$$D^{\alpha}\varphi_n \to D^{\alpha}\varphi \ (n \to \infty) \ \text{in} \ \mathscr{D}(\mathbb{R}^N)$$

・したがって

$$T_{\alpha}(\varphi_n) = T(D^{\alpha}\varphi_n) \to T(D^{\alpha}\varphi) = T_{\alpha}(\varphi)$$

• 以上より $T_{\alpha} \in \mathcal{D}'(\mathbb{R}^N)$ である.

1.3 Ω 上の超関数

• $\Omega \subset \mathbb{R}^N$ を開集合とするとき

$$C_0^{\infty}(\Omega) := \{ \varphi \in C^{\infty}(\Omega) : \operatorname{supp} \varphi \ \text{td} \ \Omega \ \text{のコンパクト集合} \}$$

と定義する. ここで $K \subset \mathbb{R}^N$ が開集合 Ω のコンパクト集合であるとは $K \subset \Omega$ であり, K が有界閉集合となることである. $C^\infty_0(\Omega)$ は $\mathcal{D}(\Omega)$ ともかかれる.

- $\{\varphi_n\}\subset \mathcal{D}(\Omega)$ が $\varphi\in\mathcal{D}(\Omega)$ に**収束する**とは次の2条件が成り立つことである;
 - (i) ある Ω のコンパクト集合 $K \subset \mathbb{R}^N$ があって $\operatorname{supp} \varphi_n \subset K(\forall n \in \mathbb{N}), \operatorname{supp} \varphi \subset K$ が成り立つ
 - (ii) 任意の多重指数 α に対して

$$\lim_{n \to \infty} \sup_{x \in K} |D^{\alpha} \varphi_n(x) - D^{\alpha} \varphi(x)| = 0$$

が成り立つ.

このとき $\varphi_n \to \varphi \ (n \to \infty)$ in $\mathcal{D}(\Omega)$ と表す.

- $T: \mathcal{D}(\Omega) \to \mathbb{C}$ が Ω 上の超関数であるとは T が次の 2 条件を満たすことである:
 - (i) T は線形である.
 - (ii) $\{\varphi_n\} \subset \mathscr{D}(\Omega), \, \varphi \in \mathscr{D}(\Omega) \, \, \mathfrak{D}^{\mathfrak{T}}$

$$\varphi_n \to \varphi \ (n \to \infty)$$
 in $\mathscr{D}(\Omega) \Rightarrow T(\varphi_n) \to T(\varphi) \ (n \to \infty)$

が成り立つ.

Ω 上の超関数全体を 𝒇(Ω) と表す.

1.4 超関数の階数

命題 1.4

 $T: \mathcal{D}(\Omega) \to \mathbb{C}$ が $T \in \mathcal{D}'(\Omega)$ であるための必要十分条件は次の (i), (ii) が成り立つことである.

- (i) T は線形である.
- (ii) 任意の Ω のコンパクト集合 K に対して、ある $m=m(K)\in\mathbb{N}\cup\{0\}$ とある C=C(K)>0 が存在して

$$|T(\varphi)| \le C \sum_{|\alpha| \le m} \sup_{K} |D^{\alpha}\varphi|^{-\forall} \varphi \in C_0^{\infty}(\Omega) \text{ with } \operatorname{supp} \varphi \subset K$$

注 Κ を Ω のコンパクト集合とするとき

$$C_0^{\infty}(K) = \{ \varphi \in C_0^{\infty}(\Omega) : \operatorname{supp} \varphi \subset K \}$$

と表す.

証明 $T \in \mathcal{D}'(\Omega) \Rightarrow (i), (ii)$ を示す.

- (i) は $T \in \mathcal{D}'(\Omega)$ の定義に含まれている.
- (ii) が成り立たないとする.このとき,ある Ω のコンパクト集合 K が存在して,任意の $n \in \mathbb{N}$ に対して,ある $\varphi_n \in C_0^\infty(K)$ が存在して

$$|T(\varphi_n)| > n \sum_{|\alpha| \le n} \sup_K |D^{\alpha} \varphi_n|$$

が成り立つ.

- $\psi_n = \frac{\varphi_n}{T(\varphi_n)}$ とおくと $\psi_n \in C_0^\infty(K)$ であり $T(\psi_n) = 1$ が成り立つ.
- ・また

$$\sum_{|\alpha| \le n} \sup_{K} |D^{\alpha} \psi_n| \le \frac{1}{n} \to 0 \quad (n \to \infty)$$

これは $\psi_n \to 0$ in $\mathcal{D}(\Omega)$ を意味するが, $T(\psi_n) = 1$ に矛盾する. \square 次に (i), (ii) $\Rightarrow T \in \mathcal{D}'(\Omega)$ を示す.

T が線形であることは (i) そのものである。

• T の連続性を示そう. $\{\varphi_n\}\subset \mathcal{D}(\Omega), \varphi\in \mathcal{D}(\Omega)$ が

$$\varphi_n \to \varphi \ (n \to \infty) \ \text{in} \ \mathscr{D}(\Omega)$$

とする. このとき, Ω のコンパクト集合 K が存在して

$$\operatorname{supp}\varphi_n, \operatorname{supp}\varphi \subset K$$

が成り立つ.

• (ii) より上の K に対し $m \in \mathbb{N} \cup \{0\}$ と C > 0 が存在して

$$|T(\varphi)| \leq C \sum_{|\alpha| \leq m} \sup_{K} |D^{\alpha} \varphi| \quad (\forall \varphi \in C_0^{\infty}(K))$$

が成り立つ.

• 上の φ を $\varphi_n - \varphi$ としてT と D^{α} の線形性より

$$|T(\varphi_n) - T(\varphi)| \le C \sum_{|\alpha| \le m} \sup_K |D^{\alpha} \varphi_n - D^{\alpha} \varphi| \to 0 \quad (n \to \infty)$$

したがって $T(\varphi_n) \to T(\varphi)$ $(n \to \infty)$ である.

• 以上より $T \in \mathcal{D}'(\Omega)$ である. \square

定義

 $T\in \mathcal{D}'(\Omega)$ とする.このときある $m\in\mathbb{N}\cup\{0\}$ が存在して,任意の Ω のコンパクト集合に対してある C=C(K)>0 が存在して

$$|T(\varphi)| \le C \sum_{|\alpha| \le m} \sup_{x \in K} |D^{\alpha} \varphi(x)| \quad (\forall \varphi \in C_0^{\infty}(K))$$

が成り立つとき,T は**階数有限**あるいは**有限位**の超関数という。さらに,このとき **階数**あるい**位数**は m 以下であるという。上の不等式が成立する最小の非負整数を T の**階数**あるいは**位数**という。

 $oxedge{oldsymbol{90}}oxedge{oldsymbol{90}}oxedge{oldsymbol{90}}oxedge{oldsymbol{90}}oxedge{oldsymbol{90}}oxedge{oldsymbol{90}}oxedge{oldsymbol{90}}oxedge{oldsymbol{90}}oxedge{oldsymbol{90}}oxedge{oldsymbol{90}}oxedge{oldsymbol{90}}oxedge{oldsymbol{90}}oxedge{oldsymbol{90}}oxedge{oldsymbol{90}}oxedge{oldsymbol{90}}oxedge{oldsymbol{90}}oxedge{oldsymbol{90}}oxedge{oldsymbol{90}}oxedge{oldsymbol{90}}oxendow{oldsymbol{90}}oxedge{oldsymbol{90}}oxedge{oldsymbol{90}}oxedge{oldsymbol{90}}oxedge{oldsymbol{90}}oxedge{oldsymbol{90}}oxedge{oldsymbol{90}}oxendow{oldsymbol{90}}oxedge{oldsymbol{90}}oxendow{oldsymbol{90}}oxendow{oldsymbol{90}}oxedow{oldsymbol{90}}oxen$

$$|T(\varphi)| = |\varphi(0)| \le \sup_{K} |\varphi| \ (\forall \varphi \in C_0^{\infty}(K))$$

が成り立つ.

例5 $f \in L^1_{loc}(\mathbb{R}^N)$ に対して T_f は位数が0である. 証明は演習問題とする.

例6

$$T(\varphi) = \varphi'(0) \ (\varphi \in \mathscr{D}(\mathbb{R}))$$

で定義すると $T \in \mathcal{D}'(\mathbb{R})$ である(命題 1.3).

$$|T(\varphi)| = |\varphi'(0)| \le \sum_{i=0,1} \sup_{x \in K} |\varphi^{(i)}(x)| \quad (\forall \varphi \in C_0^{\infty}(K))$$

である. したがって T の位数は 1 以下である. しかし、位数は 0 ではない. もし 0 であるとすると、ある K=[-1,1] に対して C>0 が存在して

$$|T(\varphi)| = |\varphi'(0)| \le C \sup_{K} |\varphi| \quad (\forall \varphi \in C_0^{\infty}(K))$$

が成り立つ. $\varphi'(0) = 1$ なる $\varphi \in C_0^\infty(K)$ を1つとり

$$\varphi_n(x) = \frac{1}{n}\varphi(nx)$$

とする. このとき $\varphi_n \in C_0^\infty(K)$ で $\varphi_n'(0) = 1$ である. 一方

$$\sup_{K} |\varphi_n| = \frac{1}{n} \sup_{K} |\varphi|$$

であるため

$$|T(\varphi_n)| = |\varphi'_n(0)| = 1 \le C \sup_K |\varphi_n| = \frac{C}{n} \sup_K |\varphi|$$

を得る. しかし $n \to \infty$ とすることにより矛盾となる.