Advanced Topic in Modern Mathematical Sciences Lecturer: Hiroshi Matsuzawa Self Check Sheet No.01

- 1. Write the definition that $u \in C^2(U)$ is a harmonic function.
- **2**. Write the definitions that $u \in C(U)$ satisfies the first and the second mean value property.
- 3. Write the statement of the strong maximum principle for harmonic functions.
- 4. Write the definitions that $u \in C^2(U)$ is a superharmonic function and subharmonic function.
- **5**. Referring to the lecture note, give the proof of Propositions 1.5 and 1.6 for the superharmonic functions.
- 6. Write the general form of the elliptic operator given in the lecture and write the definition that the operator is strictly elliptic and uniformly elliptic.
- 7. Write the statement of the weak maximum principle for the case where the elliptic operator does not have the 0th order term.
- 8. Write the statement of Hopf's Lemma.
- **9**. Write the statement of the strong maximum principle for the case where the elliptic operator does not have the 0th order term.
- 10. Let I = (a, b) be a bounded interval. Consider $\mathcal{L}u = -u'' + g(x)u'$ with a bounded continuous function g on [a, b]. Let $u \in C^2(a, b) \cap C[a, b]$ satisfies $\mathcal{L}u < 0$. Prove that u cannot take its maximum over [a, b] at any point in (a, b).
- 11. (One-dimensional maximum prinnciple) Suppose that $u \in C^2(a,b) \cap C[a,b]$ satisfies $\mathcal{L}u = -u'' + g(x)u' \leq 0$ and $u(c) = \max_{x \in [a,b]} u(x) =: M$ for some $c \in (a,b)$. Show u must be constant by answering the following questions
 - (1) Consider $z(x) = e^{\alpha(x-c)} 1$. Compute $\mathcal{L}z = -z'' + g(z)z'$ and prove that $\mathcal{L}z < 0$ in (a,b) for some large α .
 - (2) Suppose that u is not a constant function. There exists $d \in (a, b)$ such that u(d) < M. We may assume d > c. Then prove that there exists $\varepsilon > 0$ such that $w(x) = u(x) + \varepsilon z(x)$ satisfies w(a) < M, w(d) < M.
 - (3) By using the result of **9** get a contradiction.
 - (4) How about when d < c?
- 12. (One-dimensional Hopf's lemma) Suppose that $u \in C^2(a,b) \cap C[a,b]$ satisfies $\mathcal{L}u = -u'' + g(x)u' \leq 0$. Prove if $u(a) = \max_{x \in [a,b]} u(x) =: M$ and u has a one-side derivative $u'(a) = \lim_{h \to +0} \frac{u(a+h) u(a)}{h}$, then u'(a) < 0 or $u \equiv M$ (Hint: Suppose that $u \not\equiv M$, there exists $d \in (a,b)$ such that u(d) < M. Consider $z(x) = e^{\alpha(x-a)} 1$ and considering $w = u + \varepsilon z$ on (a,d)).