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1. Write the definition that u ∈ C2(U) is a harmonic function.

2. Write the definitions that u ∈ C(U) satisfies the first and the second mean value property.

3. Write the statement of the strong maximum principle for harmonic functions.

4. Write the definitions that u ∈ C2(U) is a superharmonic function and subharmonic function.

5. Referring to the lecture note, give the proof of Propositions 1.5 and 1.6 for the superharmonic

functions.

6. Write the general form of the elliptic operator given in the lecture and write the definition

that the operator is strictly elliptic and uniformly elliptic.

7. Write the statement of the weak maximum principle for the case where the elliptic operator

does not have the 0th order term.

8. Write the statement of Hopf’s Lemma.

9. Write the statement of the strong maximum principle for the case where the elliptic operator

does not have the 0th order term.

10. Let I = (a, b) be a bounded interval. Consider Lu = −u′′+g(x)u′ with a bounded continuous

function g on [a, b]. Let u ∈ C2(a, b) ∩C[a, b] satisfies Lu < 0. Prove that u cannot take its

maximum over [a, b] at any point in (a, b).

11. (One-dimensional maximum prinnciple) Suppose that u ∈ C2(a, b) ∩ C[a, b] satisfies

Lu = −u′′ + g(x)u′ ≤ 0 and u(c) = maxx∈[a,b] u(x) =: M for some c ∈ (a, b). Show u must

be constant by answering the following questions

(1) Consider z(x) = eα(x−c) − 1. Compute Lz = −z′′ + g(z)z′ and prove that Lz < 0 in

(a, b) for some large α.

(2) Suppose that u is not a constant function. There exists d ∈ (a, b) such that u(d) < M .

We may assume d > c. Then prove that there exists ε > 0 such that w(x) = u(x)+εz(x)

satisfies w(a) < M , w(d) < M .

(3) By using the result of 9 get a contradiction.

(4) How about when d < c?

12. (One-dimensional Hopf’s lemma) Suppose that u ∈ C2(a, b) ∩ C[a, b] satisfies Lu =

−u′′ + g(x)u′ ≤ 0. Prove if u(a) = max
x∈[a,b]

u(x) =: M and u has a one-side derivative

u′(a) = lim
h→+0

u(a+ h)− u(a)

h
, then u′(a) < 0 or u ≡ M(Hint: Suppose that u ̸≡ M , there

exists d ∈ (a, b) such that u(d) < M . Consider z(x) = eα(x−a)−1 and considering w = u+εz

on (a, d)).
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