信学技報 TECHNICAL REPORT OF IEICE.

## 超楕円曲線上のHarley加算アルゴリズムにおける resustant 計算について

入海 淳<sup>†</sup> 松尾 和人<sup>††,†††</sup>趙 晋輝<sup>†</sup> 辻井 重男<sup>††,†††</sup>
 <sup>†</sup> 中央大学理工学部情報工学科 〒 112-8551 東京都文京区春日 1-13-27
 <sup>††</sup> 情報セキュリティ大学院大学 〒 221-0835 横浜市神奈川区鶴屋町 2-14-1
 <sup>†††</sup> 中央大学研究開発機構 〒 112-8551 東京都文京区春日 1-13-27

あらまし 本論文では,超楕円曲線上の高速加算アルゴリズムとして知られる Harley アルゴリズムに必要となる resultant 計算の演算量の少ない計算手順の構成方法を提案する.また,これまでに知られる Harley アルゴリズムに 提案構成法を適用しその効果を確認する.本構成法により,種数3の超楕円曲線上のこれまでに知られる最少演算 量アルゴリズムが得られた.更に,本構成法により得られた種数3の超楕円曲線上の Harley アルゴリズムを実装し, Alpha EV68 1.25GHz 上で種数3の超楕円曲線上の 160-bit 整数倍算を 163µs で実現した. キーワード 超楕円曲線暗号,超楕円曲線,加算アルゴリズム, Harley アルゴリズム

# On the Resultant Computation in the Harley Algorithms on Hyperelliptic Curves

Jun NYUKAI<sup>†</sup>, Kazuto MATSUO<sup>††,†††</sup>, Jinhui CHAO<sup>†</sup>, and Shigeo TUJII<sup>††,†††</sup>

† Dept. of Information & System Engineering, Chuo University Kasuga 1–13–27, Bunkyo-ku, Tokyo, 112–8551 Japan

†† Instutute of Information Security Tsurumicho 2–14–1, Kanagawa-ku,Yokohama, 221–0835 Japan ††† RDI, Chuo University Kasuga 1–13–27, Bunkyo-ku, Tokyo, 112–8551 Japan

Abstract This paper proposes a construction method of the resultant computation for the Harley algorithms, which are known as fast addition algorithms on hyperelliptic cureves, and shows the efficiency of the method to apply it to the computation in the known algorithms. It shows the fastest addition algorithms on genus 3 hyperelliptic curves as the result. Moreover this paper shows a implementation result of the obtained addition algorithms. The result shows that a 160-bit scalar multiplication can be done within  $163\mu s$  on Alpha EV68 1.25GHz.

Key words Hyperelliptic curve cryptosystems, Hyperelliptic curves, Addition algorithms, Harley algorithms

1. はじめに

超楕円曲線暗号系には,超楕円曲線上の因子類の高速加算ア ルゴリズムが必要となる.この因子類の加算アルゴリズムとし て,近年 Harley [3], [4] により奇標数の有限体上の種数2の超 楕円曲線上の高速加算アルゴリズムが提案された.

Harley アルゴリズムを用いた超楕円曲線暗号は楕円曲線暗 号と理論上同程度の速度を実現可能なことが知られており[11], 以降 Harley アルゴリズムについて多くの研究がなされてき た[2],[5]~[10],[12]~[17].その結果,奇標数の有限体上の種 数2の超楕円曲線のみならず,任意標数の有限体上の種数4 以下の超楕円曲線上で Harley アルゴリズムが利用可能となっ た.また,[3],[4] に示された Mumford 表現,中国人剰余定理, Newton 反復, Karatsuba 乗算の利用以外にも,射影 Mumford 表現, Montgomery 同時逆元計算, Toom 乗算, 仮想多項式乗 算等の手法を利用したアルゴリズム効率化のための一般的な手 法が知られるようになり,提案当初のアルゴリズムと比較し, より高速なアルゴリズムが得られている.

Harley アルゴリズムでは,最初に入力因子の詳細な分類を行 い,各ケース毎に個別のアルゴリズムが用意される.この分類 には resultant 計算が必要となるが,これまではアドホックな 方法でこの演算量の削減が行われてきた.唯一[13] は,これを Bezout 行列の行列式計算によって行うことで,種数3の超楕 円曲線上のアルゴリズムの演算量が削減されることを示した. しかし,この方法に於いても演算量が削減される理由は示され ていなかった.

Harley アルゴリズムでは,分類計算の直後に多項式逆元の 計算が行われる.この多項式逆元計算には既に計算済みである resultant 計算中に現れる計算式を再利用可能であることが知られており,これまでに提案されたアルゴリズムに於いてもこの再利用によって演算量の削減が行われていた.最近になって,Guyot,Kaveh,Patankar [2] はこの resultant 計算と多項式逆元計算の各々について詳細に議論し,これらの類似性をより積極的に利用することで種数3の超楕円曲線上のアルゴリズムの演算量を削減した.

本論文では、[2] に示された改良を基に上記 resultant 計算と 多項式逆元計算の類似性について議論し、Harley アルゴリズム に於ける resultant 計算と多項式逆元計算の構成方法を提案す る.また、提案構成方法により得られた resultant 計算と多項 式逆元計算計算をこれまでに知られる Harley アルゴリズムに 適用した結果を示す、更に、これにより得られた種数3の超楕 円曲線上の Harley アルゴリズムの改良アルゴリズムの実装結 果を示す.

#### 2. 超楕円曲線とその因子類群

pを素数, nを自然数とし,  $q = p^n$ とする.このとき,有限体  $\mathbb{F}_q$ 上の種数 gの超楕円曲線 Cを下式で定義する:

$$C: Y^{2} + H(X)Y = F(X),$$
  

$$F(X) = X^{2g+1} + f_{2g-1}X^{2g-1} + \dots + f_{0} \in \mathbb{F}_{q}[X],$$
  

$$H(X) = X^{g} + h_{g-1}X^{g-1} + \dots + h_{0} \in \mathbb{F}_{q}[X]$$

ただし,

$$\{(x,y) \in \overline{\mathbb{F}_q}^2 \mid y^2 + H(x)y - F(x) = 2y + H(x) =$$
$$H'(x)y - F'(x) = 0\} = \emptyset$$

とする.特に $p \neq 2, 2g+1$ のとき, Cを下式で定義可能である:

C: 
$$Y^2 = F(X),$$
  
 $F(X) = X^{2g+1} + f_{2g-1}X^{2g-1} + \dots + f_0 \in \mathbb{F}_q[X]$ 

このとき disc  $(F) \neq 0$  である.

 $C \mathfrak{o} \mathbb{F}_q$ 上の因子類群  $\mathcal{J}_C(\mathbb{F}_q)$ は有限 abel 群となり,  $\mathcal{J}_C(\mathbb{F}_q)$ 上で離散対数問題に基づく暗号系を構成可能である.

 $\mathcal{J}_C(\mathbb{F}_q)$ の任意の元  $\mathcal{D}$ を多項式の組  $(U,V) \in (\mathbb{F}_q[X])^2$ で表 現可能である.ここで,U, Vは $P_i = (x_i, y_i) \in C, i \in \mathbb{N}$ に対 し  $\mathcal{D}$ を

$$\mathcal{D} = \sum_{P_i \in C} m_i P_i, m_i \in \mathbb{Z}$$

と書いたときに,

$$U = \prod (X - x_i)^{m_i},$$
  
$$y_i = V(x_i),$$
  
$$\deg V < \deg U,$$
  
$$F - HV - V^2 \equiv 0 \mod U$$

を満足する多項式である.この *D* の表現を Mumford 表現と 呼ぶ. 本論文では Mumford 表現を用いて  $\mathcal{J}_C(\mathbb{F}_q)$  の元を  $\mathcal{D} = (U, V)$  等と書く.また,  $\mathcal{D} = (U, V)$  に対して U の次数を因子 の weight と呼ぶ.更に, weight が g 以下の因子を被約因子と呼ぶ.

 $\mathcal{J}_C(\mathbb{F}_q)$ の任意の因子類は被約因子により一意表現可能である.

### 3. Harley アルゴリズム

本章では,本論文で扱う超楕円曲線上の Harley 加算アルゴ リズムを概説する.

Harley アルゴリズムは入出力に Mumford 表現で表された被 約因子を利用する.以降では,加算に於いては  $\mathcal{D}_1 = (U_1, V_1)$ ,  $\mathcal{D}_2 = (U_2, V_2)$ を入力因子, $\mathcal{D}_O = (U_O, V_O) = \mathcal{D}_1 + \mathcal{D}_2$ を出 力因子とする.また,2倍算に於いては  $\mathcal{D}_1 = (U_1, V_1)$ を入力 因子, $\mathcal{D}_O = (U_O, V_O) = 2\mathcal{D}_1$ を出力因子とする.

アルゴリズムでは,始めに入力因子の詳細な分類を行う.この分類において,加算では入力因子  $\mathcal{D}_1$ ,  $\mathcal{D}_2$  に対し deg  $U_1$  = deg  $U_2$  = g かつ gcd( $U_1, U_2$ ) = 1 の場合が最も高い確率で起こり,2 倍算では入力因子  $\mathcal{D}_1$  = ( $U_1, V_1$ ) に対し deg  $U_1$  = g, deg  $V_1$  = g - 1 かつ gcd( $U_1, V_1$ ) = 1 の場合が最 も高い確率で起こる.入力因子が上記に分類されない確率は  $\mathcal{O}(1/q)$  であることが知られている.そこで,本論文では上記 に分類される場合のみを扱うこととする.

実際の分類計算で,始めに入力因子の weight が検査され,その後最大公約因子の計算が行われる.この  $\mathbb{F}_q$ 上の2多項式に対する最大公約因子の計算は, $F_1, F_2 \in \mathbb{F}_q[X]$ に対して

 $gcd(F_1, F_2) = 1 \iff res(F_1, F_2) \neq 0$ 

が成立することを利用し,実際には resultant 計算によって行われる.

分類計算が終了した後には,まず weight が 2g で  $-D_O$  と同値な因子が計算され,次にこの  $-D_O$  から出力因子  $D_O$  が計算される.

この  $-D_O$  と同値な因子と出力因子  $D_O$  の計算には,これ までの研究により,中国人剰余定理,Newton 反復,Karatsuba/Toom 乗算,Montgomery 同時逆元計算,仮想多項式乗 算等,演算量削減のための多くの一般的手法が知られるように なった.しかし,分類計算に必要な resultant 計算においては, 上述のような一般的な演算量削減手法は知られていなかった. 唯一種数 3 の場合において,[13] は Bezout 行列の行列式計算 により resultant 計算を行い演算量の削減を行ったが,この手 法に於いても演算量が削減される理由は明確ではなかった.

最近,種数3の場合において,この resultant 計算と -D<sub>O</sub> と同値な因子の計算の最初に現れる多項式逆元計算の類似性 を利用することにより,これらの合計演算量を削減可能なこと が[2] に示された.しかし,その議論は依然としてアドホック なものであり,一般的な手法ではなかった.

#### 4. Resultant 計算と多項式逆元計算の類似性

本章では,奇標数の有限体上の種数3の超楕円曲線に対する

2 倍算アルゴリズムを例に採り、[2] に示された resultant 計算 と多項式逆元計算の類似性をより明確に示す.

2 倍算アルゴリズムでは、分類計算に於いて  $U_1 \ge V_1$  の resultant  $r = \operatorname{res}(U_1, V_1)$ を計算し、Montgomery 同時逆元計算を利用した場合には、次に  $I \equiv rV_1^{-1} \mod U_1$ の計算が行われる.ここでは、この  $r \ge I$ の計算に於ける類似性について議論する.

以降では,入力因子  $\mathcal{D}_1 = (U_1, V_1)$ に対し,各多項式の j次係数をそれぞれ  $u_{1j}, v_{1j}$  と書く、即ち, $U_1 = X^3 + u_{12}X^2 + u_{11}X + u_{10}, V_1 = v_{12}X^2 + v_{11}X + v_{10}$ とする、また,Iの j次係数を  $I_j$  と書く、即ち,  $I = i_2X^2 + i_1X + i_0$ とする、

Resultant  $r = res(U_1, V_1)$ は, その定義から, Sylvester 行列

$$M := Syl(V_1, U_1) = \begin{pmatrix} v_{12} & 0 & 0 & 1 & 0 \\ v_{11} & v_{12} & 0 & u_{12} & 1 \\ v_{10} & v_{11} & v_{12} & u_{11} & u_{12} \\ 0 & v_{10} & v_{11} & u_{10} & u_{11} \\ 0 & 0 & v_{10} & 0 & u_{10} \end{pmatrix}$$

を用いて

 $r=\det M$ 

と計算される.

一方,多項式逆元  $I \equiv rV_1^{-1} \mod U_1$ は,[2] も含め,これ までは Euclid の互除法を用いて計算されていた.即ち, $r \neq 0$ のとき,

$$U_1 A + V_1 B = 1, \deg A < \deg V_1, \deg B < \deg U_1$$
(1)

を満足する多項式 *A*, *B* が存在するので, この *B* を Euclid の 互除法を用いて計算すれば,

I = rB

として, *I* が得られる.この計算と *r* の計算の類似性を観るために,以下に示す Cramer の公式を用いる.

定理 1 (Cramer). *K* を体とする. *M* を *K* 上の *n* × *n* 正則行 列, *x* を *K* 上の *n* 次元ベクトルとする. このとき,

My = x

を満足する K 上の n 次元ベクトル  $y = (y_1, \cdots, y_n)^T$  の第 j成分は

 $y_j = \frac{\det M_j}{\det M}$ 

で与えられる.ここで, $M_j$ はMの第j列をxで置換して得られる行列である.

この Cramer の公式を多項式逆元 *I* の計算に適用するため に,式(1)を行列を用いて表現する.この表現は,式(1)の多 項式乗算を展開し,各係数毎の関係を観ることで直ちに得られ る.即ち, である.

ここで, *a<sub>j</sub>*, *b<sub>j</sub>* は式 (1) に現れる *A*, *B* の *j* 次係数を各々表 す.すると,

 $i_{3-j} = r \det M_j / r = \det M_j, \ j = 0, \dots, 2$ 

として, I の計算に Cramer の公式を直ちに適用可能であることが分かる.ここで,  $M_j$  は M の第 j 列を  $(0,0,0,0,1)^T$  で置換して得られる行列である.

以上で見たように, resultant *r* は *M* の行列式であり, 多項 式逆元 *I* の各係数は *M* の 1 列を入れ換えた行列 *M<sub>j</sub>* の行列式 であるので,両者には明確な類似性がある.[2] は,この類似性 を陰に利用し演算量の削減を行ったと考えられる.

5. 提案手法

本章では,前章で示した resultant 計算と多項式逆元計算の 類似性を利用した,Harley アルゴリズムの改良を示す. 改良手法の要点は以下の2点である.

1. Resultant 計算,多項式逆元計算の構成方法

2. Resultant 計算,多項式逆元計算の順序

即ち,本章で示す改良は Harley アルゴリズム中に現れる resultant 計算,多項式逆元計算の一般的な構成方法である.尚, 1. は[2] が実例により示した構成を一般的な構成方法としたも のであり,さらに2. の改良による変更を加えたものである.

以下では,まず2.即ち resultant 計算と多項式逆元計算の計 算順序について述べ,その後に1.即ち resultant 計算の構成方 法,多項式逆元計算の構成方法を述べる.また,これまでに提 案された Harley アルゴリズムにこの構成方法を適用し得られ たアルゴリズムの演算量を示す.

5.1 計算の順序

これまでに述べたように, Harley アルゴリズムでは, まず分 類計算を行い, 次に $-D_O$ と同値な因子の計算が行われる.そ こで,[2]の改良を含め従来手法では, Harley アルゴリズムの自 然な流れに従い, まずrの計算を行い, 次にIの計算を行って いた.また, rの計算過程に現れる値をIの計算に利用し演算 量を削減していた.しかし,  $r \ge I$ を個別に計算した場合には Iの方が演算量が多くなる.従って, Iの演算量削減を優先す るために, 仮想的にIの計算を先に行いその計算過程に現れる 値をrの計算に利用することで, アルゴリズム全体の演算量を 削減可能であると考えられる.

そこで,以下では,多項式逆元計算,resultant計算の順で, 計算手順の構成方法とその奇標数の有限体上の種数3の超楕円 曲線に対する2倍算への適用例を示す.

5.2 多項式逆元計算

[2] の方法を基として, Cramer の公式を利用した多項式逆元 *I*の *g* – *j*次係数の計算手順の提案構成方法を以下に示す.

 $M(b_2, b_1, b_0, a_1, a_0)^T = (0, 0, 0, 0, 1)^T$ 

| 1: | 加算の場合には $M := Syl(U_2 - U_1, U_2)$ , 2 倍算の場合には    |
|----|---------------------------------------------------|
|    | $M := Syl(V_1, U_1)$ とする.                         |
| 2: | $M$ の第 $j$ 列を $(0,0,\ldots,1)^T$ で置換して $M_j$ を得る. |
| 3: | $M_j$ を第 $j$ 列に関し余因子展開し , 得られた行列をまた $M_j$ とする     |
| 4: | $M_j$ に第1要素が1の列がある場合,その列を用いた列操作によ                 |

- 6: M<sub>j</sub> の第1行の全ての要素が1以外になるまで Step 3-4 を繰り 返す.

本構成法を種数 2 の場合に適用するときは, Step 1-3 のみを 行う.

多項式逆元の高次の係数から計算式を構成することで演算量 の少ない式が得られることが知られており,本構成法において も高次の係数から計算式を構成することとする.

以下では,例として奇標数の有限体上の種数3の超楕 円曲線に対する2倍算アルゴリズムに現れる多項式逆元  $I = i_2 X^2 + i_1 X + i_0$ の計算手順を構成する.

まず,構成方法に従い, Iの2次係数 i2の計算式を導出する.

$$i_{2} = rM_{1} = \begin{vmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & v_{12} & 0 & u_{12} & 1 \\ 0 & v_{11} & v_{12} & u_{11} & u_{12} \\ 0 & v_{10} & v_{11} & u_{10} & u_{11} \\ 1 & 0 & v_{10} & 0 & u_{10} \end{vmatrix}$$
$$= \begin{vmatrix} 0 & 0 & 1 & 0 \\ v_{12} & 0 & u_{12} & 1 \\ v_{11} & v_{12} & u_{11} & u_{12} \\ v_{10} & v_{11} & u_{10} & u_{11} \end{vmatrix} = \begin{vmatrix} v_{12} & 0 & 1 \\ v_{11} & v_{12} & u_{12} \\ v_{10} & v_{11} & u_{10} \end{vmatrix}$$
$$= \begin{vmatrix} 0 & 0 & 1 \\ t_{0} & v_{12} & u_{12} \\ t_{1} & v_{11} & u_{11} \end{vmatrix} = \begin{vmatrix} t_{0} & v_{12} \\ t_{1} & v_{11} \end{vmatrix} = v_{11}t_{0} - v_{12}t_{1}.$$

ここで,
$$t_0 = v_{11} - u_{12}v_{12}, t_1 = v_{10} - u_{11}v_{12}$$
である.  
次に, $t_0, t_1$ を利用しIの1次係数  $i_1$ の計算式を導出する.

$$i_{1} = rM_{2} = \begin{vmatrix} v_{12} & 0 & 0 & 1 & 0 \\ v_{11} & 0 & 0 & u_{12} & 1 \\ v_{10} & 0 & v_{12} & u_{11} & u_{12} \\ 0 & 0 & v_{11} & u_{10} & u_{11} \\ 0 & 1 & v_{10} & 0 & u_{10} \end{vmatrix}$$
$$= - \begin{vmatrix} v_{12} & 0 & 1 & 0 \\ v_{11} & 0 & u_{12} & 1 \\ v_{10} & v_{12} & u_{11} & u_{12} \\ 0 & v_{11} & u_{10} & u_{11} \end{vmatrix}$$
$$= - \begin{vmatrix} 0 & 0 & 1 & 0 \\ t_{0} & 0 & 1 & 0 \\ t_{0} & 0 & u_{12} & 1 \\ t_{1} & v_{12} & u_{11} & u_{12} \\ -u_{10}v_{12} & v_{11} & u_{10} & u_{11} \end{vmatrix}$$
$$= - \begin{vmatrix} t_{0} & 0 & 1 \\ t_{1} & v_{12} & u_{12} \\ -u_{10}v_{12} & v_{11} & u_{10} & u_{11} \end{vmatrix}$$
$$= - \begin{vmatrix} t_{2} & v_{12} \\ -t_{3} & v_{11} \end{vmatrix} = -(v_{11}t_{2} + v_{12}t_{3}).$$

ここで, $t_2 = t_1 - u_{12}t_0, t_3 = u_{10}v_{12} + u_{11}t_0$ である. 最後に, $t_0, t_1, t_2, t_3$ を利用しIの定数項 $i_0$ の計算式を導出する.

$$i_{0} = rM_{3} = \begin{vmatrix} v_{12} & 0 & 0 & 1 & 0 \\ v_{11} & v_{12} & 0 & u_{12} & 1 \\ v_{10} & v_{11} & 0 & u_{11} & u_{12} \\ 0 & v_{10} & 0 & u_{10} & u_{11} \\ 0 & 0 & 1 & 0 & u_{10} \end{vmatrix}$$
$$= \begin{vmatrix} v_{12} & 0 & 1 & 0 \\ v_{11} & v_{12} & u_{12} & 1 \\ v_{10} & v_{11} & u_{11} & u_{12} \\ 0 & v_{10} & u_{10} & u_{11} \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 & 0 \\ t_{0} & v_{12} & u_{12} & 1 \\ t_{1} & v_{11} & u_{12} \\ -u_{11}v_{12} & v_{10} & u_{11} \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ t_{2} & t_{0} & u_{10} \\ t_{2} & t_{0} & u_{12} \\ -t_{3} & t_{1} \end{vmatrix}$$
$$= \begin{vmatrix} t_{2} & t_{0} \\ -t_{3} & t_{1} \end{vmatrix} = t_{1}t_{2} + t_{0}t_{3}.$$

以上により, 奇標数の有限体  $\mathbb{F}_q$ 上の種数3の超楕円曲線に対 する2倍算アルゴリズムに現れる多項式逆元 $I = i_2 X^2 + i_1 X + i_0$ を  $\mathbb{F}_q$ 上の11回の乗算と8回の加算で実現する計算手順が得ら れた(実際に用いられる  $\mathbb{F}_q$ の性質を考慮し,加法逆元の計算 も加算回数に加えている.)

5.3 Resultant 計算

以下に [2] の方法を基にした resultant r の計算手順の提案構 成方法を示す.

- 1: 加算の場合には  $M := Syl(U_2 U_1, U_2)$ , 2 倍算の場合には $M := Syl(V_1, U_1)$ とする.
- 2: *M* に第1要素が1の列がある場合,その列を用いた列操作により 第1要素が1以外の列の第1要素を0にする.
- 3: *M* を第1行で余因子展開し,得られた行列をまた*M*とする.
- 4: *M* の第1行のすべての要素が1以外になるまで Step 2-3 を繰り 返す.
- 5: M を最下行に関し余因子展開する.

本構成法を種数 2 の場合に適用するときは, Step 1-2 の後, Step 5 を行う.

以下では,例として奇標数の有限体上の種数3の超楕円曲線 に対する2倍算アルゴリズムに現れる resultant r の計算式を 構成する.

構成に於いては多項式逆元計算で得られた  $t_0 = v_{11} - u_{12}v_{12}$ ,  $t_1 = v_{10} - u_{11}v_{12}$ ,  $t_2 = t_1 - u_{12}t_0$ ,  $t_3 = u_{11}v_{12} + u_{11}t_0$ を利用 する.



上式より,奇標数の有限体  $\mathbb{F}_q$ 上の種数3の超楕円曲線に対 する2倍算アルゴリズムに現れる resultant r は  $\mathbb{F}_q$ 上の4回の 乗算と2回の加算で計算可能である.また,2倍算アルゴリズ ムに現れる resultant r が,多項式逆元計算中に現れる計算式 を用いて効率的に計算されることが判る. 以上の構成によって, 奇標数の有限体  $\mathbb{F}_q$ 上の種数3の超楕 円曲線に対する2倍算アルゴリズムに現れる resultant と多項 式逆元を  $\mathbb{F}_q$ 上の15回の乗算と10回の加算で計算可能である. また,同様の構成により加算アルゴリズムに現れる resultant と多項式逆元を  $\mathbb{F}_q$ 上の15回の乗算と13回の加算で計算可能 である.一方,[2]はこれらを2倍算に対して16回の乗算と11 回の加算,加算に対して16回の乗算と14回の加算で実現して いる.

#### 5.4 既存アルゴリズムへの適用結果

これまでに提案されている Harley アルゴリズムに提案構成 法を適用した.提案構成法を適用した結果,演算量が削減され たアルゴリズムに関し,加算アルゴリズムの演算量比較を表 3 に,2倍算アルゴリズムの演算量比較を表 4 に示す.表 3,4 で は $\mathbb{F}_{q}$ 上の元 a,b に対する  $a+b, 1/a, ab, a^{2}$ の計算に必要な演 算量を,各々A, I, M, Sで表す.また,演算量の評価方法は 各々の論文に記載された方法に従った.

表 3 The result on applying the proposed method to the previous addition algorithms

| Genus | $\operatorname{char}(\mathbb{F}_q)$ | Previous work      | This work                                   |
|-------|-------------------------------------|--------------------|---------------------------------------------|
| 3     | even                                | I + 64M + 4S[2]    | $\mathbf{I} + \mathbf{63M} + \mathbf{4S}$   |
|       | odd                                 | I + 70M[2]         | I + 69M                                     |
|       |                                     | I + 70M + 113A[1]  | $\mathbf{I} + \mathbf{67M} + \mathbf{110A}$ |
|       |                                     | I + 72M + 111A[1]  | I + 69M + 108A                              |
|       |                                     | I + 79M + 83A[1]   | I + 76M + 80A                               |
| 4     | general                             | 2I + 160M + 4S[14] | 2I + 154M + 4S                              |

表 4 The result on applying the proposed method to the previous doubling algorithms

| Genus | $\operatorname{char}(\mathbb{F}_q)$ | Previous work       | This work                                 |
|-------|-------------------------------------|---------------------|-------------------------------------------|
| 3     | even                                | I + 64M + 5S[2]     | $\mathbf{I} + \mathbf{63M} + \mathbf{5S}$ |
|       | odd                                 | I + 70M [2]         | I + 69M                                   |
|       | odd                                 | I + 71M + 107A [1]  | I + 68M + 104A                            |
|       | odd                                 | I + 73M + 101A[1]   | I + 70M + 98A                             |
|       | odd                                 | I + 78M + 83A[1]    | I + 75M + 80A                             |
| 4     | general                             | 2I + 193M + 16S[14] | 2I + 188M + 16S                           |

表 3 に示された,標数 2 の有限体上の種数 3 の超楕円曲線に 対する加算演算量 I + 63M + 4S,奇標数の有限体上の種数 3 の超楕円曲線に対する加算演算量 I + 67M + 110A と,表 4 に 示された,標数 2 の有限体上の種数 3 の超楕円曲線に対する 2 倍算演算量 I + 63M + 5S,奇標数の有限体上の種数 3 の超楕 円曲線に対する 2 倍算演算量 I + 68M + 104A は,M + S を 演算量評価パラメータとしたときの,各々の場合のこれまでに 知られる最少演算量である.

奇標数の有限体上の種数 3 の超楕円曲線に対する,演算量が *I* + 67*M* + 110*A* の加算アルゴリズムを表 1 に,演算量が *I* + 68*M* + 104*A* の 2 倍算アルゴリズムを表 2 に示す.

種数 4 の超楕円曲線に対しては、[14] よりも効率的なアル ゴリズムが [6] に示されており,これに提案構成法を適用す ることでより効率的なアルゴリズムが構成可能であると考え

#### ${\bf \bar {\bf R}} \ 1$ $\ {\rm Addition} \ {\rm algorithm} \ {\rm on} \ {\rm genus} \ 3 \ {\rm HEC}$ for the most frequent case

|       | X 1 Huddidin digorithini on gondo o Hillo for the most frequent case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| In.   | Genus 3 HEC $C: Y^2 = F(X) = X^7 + f_5 X^5 + f_4 X^4 + f_3 x^3 + f_2 X^2 + f_1 X + f_0$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
|       | Reduced divisors $\mathcal{D}_1 = (U_1, V_1), \mathcal{D}_2 = (U_2, V_2),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
|       | where $U_1 = X^3 + u_{12}X^2 + u_{11}X + u_{10}$ , $V_1 = v_{12}X^2 + v_{11}X + v_{10}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
|       | $U_2 = X^3 + u_{22}x^2 + u_{21}X + u_{20}$ , and $V_2 = v_{22}X^2 + v_{21}X + v_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| Out.  | Reduced divisor $\mathcal{D}_{O} = (U_{O}, V_{O}) = \mathcal{D}_{1} + \mathcal{D}_{2}$ , where $U_{O} = X^{3} + u_{O2}X^{2} + u_{O1}X + u_{O0}$ , and $V_{O} = v_{O2}X^{2} + v_{O1}X + v_{O0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
| Step  | Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cost           |
| 1     | [Compute the resultant $r$ of $U_1$ and $U_2$ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15M + 13A      |
|       | $t_0 = u_{10} - u_{20}; t_1 = u_{11} - u_{21}; t_2 = u_{12} - u_{22}; t_3 = t_1 - u_{22}t_2; t_4 = t_0 - u_{21}t_2; t_5 = t_4 - u_{22}t_3; t_6 = t_1 - u_{21}t_2; t_5 = t_4 - u_{22}t_3; t_6 = t_1 - u_{21}t_2; t_5 = t_4 - u_{22}t_3; t_6 = t_1 - u_{21}t_2; t_6 = t_1 - u_{21}t_2; t_7 = t_1 - u_{21}t_2; t_8 = t_1 - u_{21}t_$ |                |
|       | $\frac{t_6}{t_6} = u_20t_2 + u_2t_3; t_7 = t_4t_5 + t_3t_6; t_8 = -(t_2t_6 + t_1t_5); t_9 = t_1t_3 - t_2t_4; r = u_20(t_3t_9 + t_2t_8) - t_0t_7;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| 2     | If $r = 0$ then call the Cantor algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -              |
| 3     | [Compute the pseudo-inverse $I = i_2 x^2 + i_1 x + i_0 \equiv r/U_1 \mod U_2$ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -              |
|       | $i_2 = i_3; i_1 = t_8; i_0 = t_7;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| 4     | [Compute $S' = s_2' x^2 + s_1' x + s_0' = rS \equiv (V_2 - V_1)I \mod U_2$ (Karatsuba, Toom)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10M + 31A      |
|       | $t_1 = v_{10} - v_{20}; t_2 = v_{11} - v_{21}; t_3 = v_{12} - v_{22}; t_4 = t_2 v_1; t_5 = t_1 v_0; t_6 = t_3 v_2; t_8 = u_{22} t_6;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
|       | $t_8 = t_4 + t_6 + t_7 - (t_2 + t_3)(t_1 + t_2); t_9 = u_{20} + u_{22}; t_{10} = (t_9 + u_{21})(t_8 - t_6);$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
|       | $t_9 = (t_9 - u_{21})(t_8 + t_6); \ s_0 = -(u_{20}t_8 + t_5); \ s_2 = t_6 - (s_0 + t_4 + (t_1 + t_3)(i_0 + i_2) + (t_{10} + t_9)/2);$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
|       | $s_1 = t_4 + t_5 + (t_9 - t_{10})/2 - (t_7 + (t_1 + t_2)(i_0 + i_1));$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| 5     | $[If s'_2 = 0 \text{ then call the Cantor algorithm}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -              |
| 6     | [Compute S, w and $w_i = 1/w$ s.t. $wS = S'/r$ and S is monic]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I + 7M         |
|       | $t_1 = (rs'_2)^{-1}; t_2 = rt_1; w = t_1s'_2^{2}; w_i = rt_2; s_0 = t_2s'_0; s_1 = t_2s'_1;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| 7     | [Compute $Z = X^5 + z_4 X^4 + z_3 X^3 + z_2 X^2 + z_1 X + z_0 = SU_1$ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4M + 15A       |
|       | $t_6 = s_0 + s_1; t_1 = u_{10} + u_{12}; t_2 = t_6(t_1 + u_{11}); t_3 = (t_1 - u_{11})(s_0 - s_1); t_4 = u_{12}s_1;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
|       | $z_0 = u_{10}s_0; z_1 = (t_2 - t_3)/2 - t_4; z_2 = (t_2 + t_3)/2 - z_0 + u_{10}; z_3 = u_{11} + s_0 + t_4; z_4 = u_{12} + s_1;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 8     | [Compute $U_t = X^4 + u_{t3}X^3 + u_{t2}X^2 + u_{t1}X + u_{t0} = (S(Z + 2w_iV_1) - w_i^2((F - V_1^2)/U_1))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13M + 26A      |
|       | $t_1 = s_0 z_3; u_{t3} = z_4 + s_1 - u_{22}; t_5 = s_1 z_4 - u_{22} u_{t3}; u_{t2} = z_3 + s_0 + t_5 - u_{21};$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|       | $t_3 = u_{21}u_{t2}; t_4 = t_1 - t_3; t_2 = (u_{22} + u_{21})(u_{t3} + u_{t2});$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|       | $u_{t2} = z_3 + s_0 + t_5 - u_{21}; u_{t1} = z_2 + t_6(z_4 + z_3) + w_i(2v_{12} - w_i) - (t_5 + t_2 + t_4 + u_{20});$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
|       | $u_{t0} = z_1 + t_4 + s_1 z_2 + w_i (2(v_{11} + s_1 v_{12}) + w_i u_{12}) - (u_{22} u_{t1} + u_{20} u_{t3});$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| 9     | [Compute $V_t = v_{t2}X^2 + v_{t1}X + v_{t0} \equiv wZ + V_1 \mod U_t$ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8M + 11A       |
|       | $t_1 = u_{t3} - z_4; \ v_{t0} = w(t_1u_{t0} + z_0) + v_{10}; \ v_{t1} = w(t_1u_{t1} + z_1 - u_{t0}) + v_{11};$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
|       | $v_{t2} = w(t_1u_{t2} + z_2 - u_{t1}) + v_{12}; v_{t3} = w(t_1u_{t3} + z_3 - u_{t2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| 10    | [Compute $U_O = X^\circ + u_{O2}X^\circ + u_{O1}X + u_{O0} = (F - V_t^\circ)/U_t$ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7M + 11A       |
|       | $t_1 = 2v_{t3}; \ u_{O2} = -(u_{t3} + v_{t3}^2); \ u_{O1} = f_5 - (u_{t2} + u_{O2}u_{t3} + t_1v_{t2});$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
|       | $u_{O0} = f_4 - (u_{t1} + v_{t2}^2 + u_{O2}u_{t2} + u_{O1}u_{t3} + t_1v_{t1});$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 11    | [Compute $V_O = v_{O2}x^2 + v_{O1}x + v_{O0} \equiv -V_t \mod U_O$ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3M + 3A        |
|       | $v_{O2} = v_{t2} - u_{O2}v_{t3}; v_{O1} = v_{t1} - u_{O1}v_{t3}; v_{O0} = v_{t0} - u_{O0}v_{t3};$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| Total |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I + 67M + 110A |

#### 表 2 Doubling algorithm on genus 3 HEC for the most frequent case

| In.   | Genus 3 HEC $C: Y^2 = F(X) = x^7 + f_5 X^5 + f_4 X^4 + f_3 X^3 + f_2 X^2 + f_1 X + f_0$ ,                                                                   |                             |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|       | Reduced divisor $\mathcal{D}_1 = (U_1, V_1)$ , where $U_1 = X^3 + u_{12}X^2 + u_{11}X + u_{10}$ , and $V_1 = v_{12}X^2 + v_{11}X + v_{10}$                  |                             |
| Out.  | Reduced divisor $\mathcal{D}_O = (U_O, V_O) = 2\mathcal{D}_1$ , where $U_2 = X^3 + u_{O2}X^2 + u_{O1}x + u_{O0}$ , and $V_O = v_{O2}X^2 + v_{O1}X + v_{O0}$ |                             |
| Step  | Procedure                                                                                                                                                   | Cost                        |
| 1     | [Compute the resultant $r$ of $U_1$ and $V_1$ ]                                                                                                             | 15M+10A                     |
|       | $t_1 = v_{11} - u_{12}v_{12}; t_2 = v_{10} - u_{11}v_{12}; t_3 = t_2 - u_{12}t_1; t_4 = u_{10}v_{12} + u_{11}t_1; t_5 = t_2t_3 + t_1t_4;$                   |                             |
|       | $t_6 = -(v_{11}t_3 + v_{12}t_4); t_7 = v_{11}t_1 - v_{12}t_2; r = v_{10}t_5 - u_{10}(t_1t_7 + v_{12}t_6);$                                                  |                             |
| 2     | [If r = 0 then call the Cantor Algorithm]                                                                                                                   | -                           |
| 3     | [Compute the pseudo-inverse $I = i_2 x^2 + i_1 x + i_0 \equiv r/V_1 \mod U_1$ ]                                                                             | -                           |
|       | $i_2 = t_7; i_1 = t_6; i_0 = t_5;$                                                                                                                          |                             |
| 4     | [Compute $Z = z_2 X^2 + z_1 X + z_0 \equiv (F - V_1^2)/U_1 \mod U_1$ ]                                                                                      | 7M + 18A                    |
|       | $t_1 = 2u_{10}; t_2 = 2u_{11}; t_3 = u_{12}^2; t_4 = f_4 - (t_1 + v_{12}^2); t_5 = f_5 + t_3 - t_2; t_{10} = 2v_{12}; z_2 = t_5 + 2t_3;$                    |                             |
|       | $z_1 = u_{12}(t_2 - t_5) + t_4; z_0 = f_3 + t_3(t_5 - u_{11}) + u_{12}(t_1 - t_4) + u_{11}(u_{11} - f_5) - t_{10}v_{11};$                                   |                             |
| 5     | [Compute $S' = s'_2 x^2 + s'_1 x + s'_0 = 2rS \equiv ZI \mod U_1$ (Karatsuba, Toom)]                                                                        | 10M + 28A                   |
|       | $t_1 = i_1 z_1; \ t_2 = i_0 z_0; \ t_3 = i_2 z_2; \ t_4 = u_1 z_3; \ t_5 = (i_2 + i_1)(z_2 + z_1) - (t_1 + t_3 + t_4); \ t_6 = u_1 0 t_5;$                  |                             |
|       | $t_7 = u_{10} + u_{12}; t_8 = t_7 + u_{11}; t_9 = t_7 - u_{11}; t_7 = t_8(t_3 + t_5); t_{11} = t_9(t_5 - t_3);$                                             |                             |
|       | $s'_{2} = t_{1} + t_{6} + (i_{2} + i_{0})(z_{2} + z_{0}) - (t_{2} + t_{3} + (t_{7} + t_{11})/2);$                                                           |                             |
|       | $s'_1 = t_4 + (i_0 + i_1)(z_1 + z_0) + (t_{11} - t_7)/2 - (t_1 + t_2); s'_0 = t_2 - t_6;$                                                                   |                             |
| 6     | $[\text{If } s'_2 = 0 \text{ then call the Cantor algorithm}]$                                                                                              | -                           |
| 7     | [Compute S, w and $w_i = 1/w$ s.t. $wS = S'/(2r)$ and S is monic]                                                                                           | I + 7M + A                  |
|       | $t_1 = 2r; t_2 = (t_1s_2')^{-1}; t_3 = t_1t_2; w = t_2s_2'^2; w_i = t_1t_3; s_0 = t_3s_0'; s_1 = t_3s_1';$                                                  |                             |
| 8     | [Compute $G = X^5 + g_4 X^4 + g_3 X^3 + g_2 X^2 + g_1 X + g_0 = SU_1$ (Toom)]                                                                               | 4M + 12A                    |
|       | $t_1 = t_8(s_1 + s_0); t_2 = t_9(s_0 - s_1); t_3 = u_{12}s_1;$                                                                                              |                             |
|       | $g_0 = u_{10}s_0; \ g_1 = (t_1 - t_2)/2 - t_3; \ g_2 = u_{10} + (t_1 + t_2)/2 - g_0; \ g_3 = t_3 + u_{11} + s_0; \ g_4 = u_{12} + s_1;$                     |                             |
| 9     | [Compute $U_t = X^4 + u_{t3}X^3 + u_{t2}X^2 + u_{t1}X + u_{t0} = ((G + w_iV_1)^2 - w_i^2F)/U_1^2$ ]                                                         | 7M + 10A                    |
|       | $u_{t3} = 2s_1; \ u_{t2} = s_1^2 + 2s_0; \ u_{t1} = u_{t3}s_0 + w_i(t_{10} - w_i); \ u_{t0} = s_0^2 + 2w_i((s_1 - u_{12})v_{12} + v_{11} + w_iu_{12});$     |                             |
| 10    | [Compute $V_t = v_{t3}X^3 + v_{t2}X^2 + v_{t1}X + v_{t0} \equiv wG + V_1 \mod U_t$ ]                                                                        | 8M + 11A                    |
|       | $t_1 = u_{t3} - g_4; v_{t0} = w(t_1 u_{t0} + g_0) + v_{10}; v_{t1} = w(t_1 u_{t1} + g_1 - u_{t0}) + v_{11};$                                                |                             |
|       | $v_{t2} = w(t_1u_{t2} + g_2 - u_{t1}) + v_{12}; v_{t3} = w(t_1u_{t3} + g_3 - u_{t2});$                                                                      |                             |
| 11    | [Compute $U_O = X^3 + u_{O2}X^2 + u_{O1}X + u_{O0} = (F - V_t^2)/U_t$ ]                                                                                     | 7M + 11A                    |
|       | $t_1 = 2v_{t3}; u_{O2} = -(u_{t3} + v_{t3}^2); u_{O1} = f_5 - (u_{t2} + u_{O2}u_{t3} + t_1v_{t2});$                                                         |                             |
|       | $u_{O0} = f_4 - (u_{t1} + v_{t2}^2 + u_{O2}u_{t2} + u_{O1}u_{t3} + t_1v_{t1});$                                                                             |                             |
| 12    | [Compute $V_O = v_{O2}x^2 + v_{O1}x + v_{O0} \equiv V_t \mod U_O$ (Karatsuba)]                                                                              | 3M + 3A                     |
|       | $v_{O2} = v_{t2} - u_{O2}v_{t3}; v_{O1} = v_{t1} - u_{O1}v_{t3}; v_{O0} = v_{t0} - u_{O0}v_{t3};$                                                           |                             |
| Total |                                                                                                                                                             | $I + \overline{68M + 104A}$ |

られる.また,提案構成法を用いて構成した resultant 計算の[8],[10],[12],[15] に記載された種数2の超楕円曲線に対するアルゴリズムへの適用も試みたが,大きな効果は観られなかった.以上より,提案方法は resultant 計算により多くの演算量を必要とする高種数の超楕円曲線に対して効果のある方法であると考えられる.

#### 6. 実装結果

前章で得られた[1]に示された実装と同一の環境で[1]の改良

アルゴリズムを実装した.即ち, $p = 2^{61} - 1$ とし, $\mathbb{F}_p$ 上の種数3の超楕円曲線上の Harley アルゴリズムを Alpha EV68上に実装した.有限体上の演算には、[1] で用いられた関数群の乗算と逆元計算に改良を施したものを利用した.

実装結果を表 5 に示す.また,比較のため [1] に示された実 装結果を併せて示す.

表 5 中, "Toom" は [1] に示された I + 70M + 113A の加算ア ルゴリズム, I + 71M + 107A の 2 倍算アルゴリズム, 本実装に 用いた I + 67M + 110A の加算アルゴリズム, I + 68M + 104A

表 5 Performance results on Alpha EV68 1.25GHz

|                     | Addition | Doubling | Scalar mul. |
|---------------------|----------|----------|-------------|
| [This work]         |          |          |             |
| Toom                | 862ns    | 865ns    | $171 \mu s$ |
| Karatsuba           | 880ns    | 863ns    | $171 \mu s$ |
| Classical           | 822ns    | 832ns    | $163 \mu s$ |
| [Previous work [1]] |          |          |             |
| Toom                | 919ns    | 916ns    | $180 \mu s$ |
| Karatsuba           | 920ns    | 897ns    | $177 \mu s$ |
| Classical           | 888ns    | 875ns    | $172 \mu s$ |

の 2 倍算アルゴリズムを, "Karatsuba"は[1] に示された *I*+72*M*+111*A*の加算アルゴリズム,*I*+73*M*+101*A*の2倍 算アルゴリズム,本実装に用いた*I*+69*M*+108*A*の加算アルゴ リズム,*I*+70*M*+98*A*の2倍算アルゴリズムをそれぞれ表し, また"Classical"は[1]に示された*I*+79*M*+83*A*の加算アルゴ リズム,*I*+78*M*+83*A*の2倍算アルゴリズム,本実装に用いた *I*+76*M*+80*A*の加算アルゴリズム,*I*+75*M*+80*A*の2倍算 アルゴリズムをそれぞれ表す.また,"Addition," "Doubling," "Scalar mul."は,それぞれ加算,2倍算,160-bit 整数倍算の 計時結果を表す.

本実装が[1] に示された実装と比較し 5%程度の高速化を実 現していることが表 5 から判る.

#### 謝 辞

本研究の一部は文部科学省の 21 世紀 COE プログラム「電子社会の信頼性向上と情報セキュリティ」プロジェクトによる 援助を受けた.

#### 文 献

- M. Gonda, K. Matsuo, K. Aoki, J. Chao, and S. Tsujii. Improvements of addition algorithm on genus 3 hyperelliptic curves and their implementation. *IEICE Trans.*, Vol. E88-A, No. 1, January 2005. 89-96.
- [2] C. Guyot, K. Kaveh, and V. M. Patankar. Explicit algorithm for the arithmetic on the hyperelliptic Jacobians of genus 3. *Journal of the Ramanujan Math. Soc.*, Vol. 19, No. 2, pp. 75–115, June 2004.
- [3] R. Harley. adding.text, doubling.c. http://cristal.inria. fr/~harley/hyper/, 2000.
- [4] R. Harley. Counting points with the arithmetic-geometric mean. Rump talk at EUROCRYPT 2001, 2001. (joint work with J.-F. Mestre and P. Gaudry).
- [5] M. Katagi, T. Akishita, I. Kitamura, and T. Takagi. Efficient hyperelliptic curve cryptosystems using Theta divisors. *IEICE Japan Trans. Fundamentals*, Vol. E89-A, No. 1, pp. 151–160, 2006.
- [6] Y. Kitamura, M. Kawazoe, and T. Takahashi. Improvement of explicit addition and doubling formulae for genus-4 HECC. In *Proc. of SCIS2006*, 2006. 4C1-1.
- [7] J. Kuroki, M. Gonda, K. Matsuo, J. Chao, and S. Tsujii. Fast genus three hyperelliptic curve cryptosystems. In *Proc.* of SCIS2002, pp. 503–507, January 2002.
- T. Lange. Efficient arithmetic on genus 2 hyperelliptic curves over finite fields via explicit formulae. Cryptology ePrint Archive, Report 2002/121, 2002. http://eprint. iacr.org/.
- [9] T. Lange. Inversion-free arithmetic on genus 2 hyperelliptic curves. Cryptology ePrint Archive, Report 2002/147, 2002.

http://eprint.iacr.org/.

- [10] T. Lange. Weighted coordinates on genus 2 hyperelliptic curves. Cryptology ePrint Archive, Report 2002/153, 2002. http://eprint.iacr.org/.
- [11] K. Matsuo, J. Chao, and S. Tsujii. Fast genus two hyperelliptic curve cryptosystems. Technical Report ISEC2001-31, IEICE Japan, July 2001.
- [12] Y. Miyamoto, H. Doi, K. Matsuo, J. Chao, and S. Tsujii. A fast addition algorithm of genus two hyperelliptic curves. In *Proc. of SCIS2002*, pp. 497–502, January 2002. in Japanese.
- [13] J. Pelzl, T. Wollinger, J. Guajardo, and C. Paar. Hyperelliptic curve cryptosystems: Closing the performance gap to elliptic curves. In *Cryptographic Hardware and Embedded Systems - CHES 2003*, No. 2779 in Lecture Notes in Computer Science, pp. 351–365. Springer-Verlag, 2003.
- [14] J. Pelzl, T. Wollinger, and C. Paar. Low cost security: Explicit formulae for genus 4 hyperelliptic curves. In Proc. of 10th Annual International Workshop on Selected Areas in Cryptography (SAC2003), Carleton University, Ottawa, No. 3006 in Lecture Notes in Computer Science. Springer-Verlag, 2003.
- [15] H. Sugizaki, K. Matsuo, J. Chao, and S. Tsujii. An extension of Harley addition algorithm for hyperelliptic curves over finite fields of characteristic two. Technical Report ISEC2002-9, IEICE Japan, May 2002.
- [16] M. Takahashi. Improving Harley algorithms for Jacobians of genus 2 hyperelliptic curves. In *Proc. of SCIS2002*, pp. 155–160, 2002. in Japanese.
- [17] T. Wollinger, J. Pelzl, and C. Paar. Cantor versus harley: Optimization and analysis of explicit formulae for hyperelliptic curve cryptosystems. *IEEE Trans. Computers*, Vol. 54, No. 7, pp. 861–872, 2005.