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Abstract— This paper deals with fields of definition of the l-torsion points on the Jacobians of
genus 2 hyperelliptic curves over finite fields in order to speed Gaudry and Schost’s point counting
algorithm for genus 2 hyperelliptic curves up. A result in this paper shows that the extension degrees
of the fields of difinition of the l-torsion points can be in O(l3) instead of O(l4). The effects of the result
on the point counting algorithm are also discussed in this paper. The discussion concludes that the
result in this paper reduces the complexity of the algorithm over Fq to O((log q)8.797+o(1)) operations
in Fq.
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1 Introduction

For construction of secure hyperelliptic curve cryp-
tosystems [Kob89], square-root algorithms [Elk95,
Sut09], CM-field algorithms [Kob97, Wen03, CMT00,
CMKT00, MHCT01, Tak02, HKT04], Koblitz’s algo-
rithms [Kob89, KNU03], p-adic algorithms [Wan99,
Ked01, LW02, Ver02, LL06], and l-adic algorithms are
known in common with elliptic curve cryptosystems.
Since the l-adic algorithms can be applied to a large
class of hyperelliptic curves, an l-adic algorithm that
can construct abundantly secure cryptosystems is ex-
pected to put hyperelliptic curve cryptosystems to prac-
tical use.

The l-adic algorithms are algorithms to count the
rational points on the Jacobian of a genus g hyperellip-
tic curve over a finite field Fq by seeing the action of
the Frobenius map on the l-torsion points for O(g log q)
primes l ∈ O(g log q). Schoof [Sch85] originally pro-
posed an l-adic algorithm for elliptic curves, Pila [Pil90]
then generalized one for Abelian varieties, including the
Jacobians of hyperelliptic curves. Afterwards, many al-
gorithms were proposed for Abelian varieties and the
Jacobians of hyperelliptic curves [Kam91, AH96, HI98,
GH00, GS04]. Gaudry and Harley [GH00] proposed an
l-adic algorithm for the Jacobians of genus 2 hyperel-
liptic curves. A distinguished point of their algorithm
is to obtain univariate l-division polynomials for gen-
eral divisor classes from Cantor’s division polynomials
[Can94] for the Theta divisors. This leads the algorithm
into practical use. Gaudry and Harley [GH00] actually
succeeded 128-bit point counting using their algorithm.
Moreover [MCT03] also succeeded 160-bit point count-
ing using their algorithm. Gaudry and Schost [GS04]
improved Gaudry and Harley’s division polynomials in
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their point counting algorithm (the Gaudry-Schost al-
gorithm). The Gaudry-Schost algorithm can obtain l-
division polynomials of degree l4−1

2 . We can see that
this degree is minimum by analogy with the elliptic
curve division polynomial whose degree is l2−1

2 . They
succeeded 160-bit point counting over a prime field us-
ing their algorithm.

However the computations introduced above involved
special properties of the definition fields. The result
in [MCT03] was obtained for curves over an exten-
sion field of degree 4 for which an attack [AMNS06]
that is asymptotically faster than the rho method is
known. [GS04] used the definition fields whose mul-
tiplicative orders were divided by all ls used in the
computation so as to reduce the complexity of fac-
toring the division polynomials that dominates the
complexity of the Gaudry-Schost algorithm in gen-
eral as described later. On the other hand, definition
fields with fast arithmetic are often used in order to
construct efficient (hyper)elliptic curve cryptosystems
[BP98, KMKH99, AHK01, GMA+05]. Unfortunately,
it is difficult to apply the field selection technique used
in [GS04] for the fast arithmetic fields, because the field
condition that the Gaudry-Schost algorithm is fast and
the condition that the arithmetic is fast are different.
Recently, Gaudry and Schost succeeded 254-bit point
counting of a family of hyperelliptic curves over a fast
arithmetic prime field [GS08]. In their computation, a
new fast method that involves almost no factoring was
used. However there exist the Jacobians whose orders
are difficult to determine by the method. Therefore effi-
cient point counting algorithm is still an issue of general
genus 2 hyperelliptic curve cryptosystems.

In order to improve factoring Gaudry and Schost’s
l-division polynomials of the Jacobians of genus 2 hy-
perelliptic curves over finite fields, we discuss proper-
ties of the factorization of the division polynomials in
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this paper. Though [GS05] already gave the properties
of the factorization of modular polynomials of genus 2
hyperelliptic curves, it did not deal with the l-division
polynomials. Using the similar manner of [GS05], this
paper shows the extension degrees of the fields of defini-
tion of the l-torsion points for each type that is classified
by using the factorization modulo l of the characteris-
tic polynomial of the Frobenius map. The extension
degrees correspond with the maximum degrees of the
irreducible factors of the division polynomials. The re-
sult shows that the degrees of the irreducible factors of
the l-division polynomials of the Jacobians of genus 2
hyperelliptic curves are bounded by O(l3). This prop-
erty can yield an efficient point counting algorithm for
genus 2 hyperelliptic curves, so that the effects of this
property on the point counting algorithm are also dis-
cussed in this paper.

In this paper, we assume that an operation of univari-
ate polynomials of degree n over Fq takes O(n1+o(1))
operations in Fq.

2 Torsion points and Frobenius map

Let J be the Jacobian of a genus 2 hyperelliptic curve
over a finite field Fq of odd characteristic and χ ∈ Z[X]
the characteristic polynomial of the qth Frobenius map.
χ can be written with s1, s2 ∈ Z as

χ = X4 − s1X
3 + s2X

2 − s1qX + q2.

It is known that the roots of χ satisfy Theorem 1
below [Sti09, Theorem 5.1.15. (e)].

Theorem 1. Let αi for i = 1, . . . , 4 be the roots of χ.
These αis can be arranged as

α1α3 = α2α4 = q

holds.

Let l be a prime number relatively prime to q. An
element of the l-torsion subgroup

J [l] = {D ∈ J | [l]D = 0}

is called a l-torsion point on J . The relation

J [l] ∼= F4
l

holds for the l-torsion subgroup [HS00, Theorem
A.7.2.7].

The qth Frobenius map of J acts on J [l] as an Fl-
linear map. We denote the matrix corresponding to the
qth Frobenius map by T ∈ GL4(Fl).

Let Fln be the minimum extension of Fl that contains
all eigenvalues of T . T can be decomposed as

T = PAP−1,

where A ∈ GL4(Fln) is in Jordan canonical form1 and
P ∈ GL4(Fln).

Let χ̃ be the reduction of χ modulo l, i.e.

χ̃ = X4 − s̃1X
3 + s̃2X

2 − s̃1q̃X + q̃2,
1 For the details of the Jordan canonical form, see [Lan87, Chap-

ter 6], [Rom08, Chapter 8] for example.

where q̃, s̃1, s̃2 ∈ Fl are the residues of q, s1, s2 modulo
l respectively. χ̃ is the characteristic polynomial of T
and its roots are the eigenvalues of T .

If l ≪ q, which is usually satisfied in cryptographical
use, then s̃1, s̃2 can be considered as random elements
in Fl.

A classification of the factorization types of χ̃ over Fl

is given by [GS05]. Column “Char. Poly.” in Table 1
shows the classification according to [GS05, Table A.1].
In the column, abbreviation “[n1]c1 [n2]c2 · · · [nk]ck” de-
notes the product fc1

1 fc2
2 · · · fck

k for k monic irreducible
polynomials fi ∈ Fl[X] of deg fi = ni different from
each other with the multiplicities ci ∈ N. Note that χ̃
cannot have a degree 3 irreducible factor over Fl thanks
to [GS05, Lemma 3].

3 Upper bounds of extension degrees

This section discusses the upper bound of the exten-
sion degree of the field of definition of J [l] for each type
in Table 1. We assume the orders

e = #⟨q̃⟩, en = #⟨−q̃⟩, er = #⟨
√

q̃⟩

are given.
Note that the discussion below includes for the cases

that do not occur in actual in order to simplify the
discussion whose aim is just developing upper bounds.

3.1 Type I

In this type, χ̃ has 4 roots α̃, α̃l, α̃l2 , α̃l3 ∈ Fl4 \ Fl2

different from each other. Therefore A can be given
over Fl4 as

A =

0

B

B

B

@

α̃ 0 0 0

0 α̃l 0 0

0 0 α̃l2 0

0 0 0 α̃l3

1

C

C

C

A

.

From Theorem 1 and α̃ ∈ Fl2 if α̃l+1 = q̃, we can see

α̃l2+1 = q̃ ∈ Fl,

so that

Al2+1 =

0

B

B

B

@

q̃ 0 0 0

0 q̃ 0 0

0 0 q̃ 0

0 0 0 q̃

1

C

C

C

A

.

For D ∈ J [l],

Dqe(l2+1)
−D = 0

holds, because

T e(l2+1) = PAe(l2+1)P−1

= PI4P
−1

= I4.

Therefore we have

J [l] ⊂ J (Fqe(l2+1)) ⊂ J (Fql3−l2+l−1).
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Table 1: Upper bounds of extension degrees

Type Char. Poly.
Approx. Prob. (l ̸= 2)

Case Max. Ext. Deg.
Max. Ext. Deg.√

q̃ ∈ Fl

√
q̃ ̸∈ Fl (e = en = er = l − 1)

I [4] 1
4 e(l2 + 1) l3 − l2 + l − 1

II [2]2 1
2l (i) e(l + 1) or en(l + 1) l2 − 1

(ii), (iii) el(l + 1) or enl(l + 1) l3 − l

III [2][2] 3
8 (l − 1)(l + 1) l2 − 1

IV [2][1]2 1
2l 0 (i) e(l + 1) l2 − 1

(ii) el(l + 1) l3 − l

V [2][1][1] 1
4 lcm(e(l + 1), l − 1) l2 − 1

VI [1]4 2
l2 0 (i) er l − 1

(ii) erl l2 − l

(iii) erl; l ̸= 2, 3 l2 − l

erl
2; l = 2, 3 l3 − l2

VII [1]2[1]2 1
2l (i) l − 1 l − 1

(ii), (iii) l(l − 1) l2 − l

VIII [1]2[1][1] 1
l 0 (i) l − 1 l − 1

(ii) l(l − 1) l2 − l

IX [1][1][1][1] 1
8 l − 1 l − 1

3.2 Type II
In this type, χ̃ has 2 different double roots α̃, α̃l

∈ Fl2 \ Fl. Then A can be given over Fl2 as either

(i) A =

0

B

B

@

α̃ 0 0 0
0 α̃ 0 0

0 0 α̃l 0

0 0 0 α̃l

1

C

C

A

, (ii) A =

0

B

B

@

α̃ 0 0 0
0 α̃ 0 0

0 0 α̃l 1

0 0 0 α̃l

1

C

C

A

,

or (iii) A =

0

B

B

@

α̃ 1 0 0
0 α̃ 0 0

0 0 α̃l 1

0 0 0 α̃l

1

C

C

A

.

Moreover

α̃l+1 = ±q̃ ∈ Fl (1)

holds2.
In the following, we discuss the bound for each of

cases (i), (ii), and (iii).

(i) In case (i), Ae(l+1) = I4 if α̃l+1 = q̃, or Aen(l+1) =
I4 if α̃l+1 = −q̃ from Eq. (1). Therefore we have

J [l] ⊂ J (Fqe(l+1)) ⊂ J (Fql2−1)

or
J [l] ⊂ J (Fqen(l+1)) ⊂ J (Fql2−1).

(ii) In case (ii),

Ak =

0

B

B

B

@

α̃k 0 0 0

0 α̃k 0 0

0 0 α̃lk kα̃l(k−1)

0 0 0 α̃lk

1

C

C

C

A

holds for any k ∈ N, so that Ael(l+1) = I4 or Aenl(l+1) =
I4 from Eq. (1). Therefore we have

J [l] ⊂ J (Fqel(l+1)) ⊂ J (Fql3−l)

or
J [l] ⊂ J (Fqenl(l+1)) ⊂ J (Fql3−l).

2 If α̃l+1 = −q̃ then
√

q̃ ̸∈ Fl for Type II.

(iii) In case (iii),

Ak =

0

B

B

B

@

α̃k kα̃k−1 0 0

0 α̃k 0 0

0 0 α̃lk kα̃l(k−1)

0 0 0 α̃lk

1

C

C

C

A

holds for any k ∈ N, so that Ael(l+1) = I4 or Aenl(l+1) =
I4 from Eq. (1). Therefore we have

J [l] ⊂ J (Fqel(l+1)) ⊂ J (Fql3−l)

or
J [l] ⊂ J (Fqenl(l+1)) ⊂ J (Fql3−l).

3.3 Type III
In this type, χ̃ has 4 roots α̃1, α̃l

1, α̃2, α̃l
2 ∈ Fl2 \ Fl

different from each other. Therefore A can be given
over Fl2 as

A =

0

B

B

B

@

α̃1 0 0 0

0 α̃l
1 0 0

0 0 α̃2 0

0 0 0 α̃l
2

1

C

C

C

A

.

Moreover
NFl2/Fl

α̃i = α̃l+1
i ∈ Fl

holds for i ∈ {1, 2}. Therfore we have A(l−1)(l+1) = I4

and
J [l] ⊂ J (Fql2−1).

3.4 Type IV
In this type, χ̃ has 2 roots α̃1, α̃l

1 ∈ Fl2 \ Fl and a
double root α̃2 ∈ Fl. Therefore A can be given over Fl2

as either

(i) A =

0

B

B

B

@

α̃1 0 0 0

0 α̃l
1 0 0

0 0 α̃2 0
0 0 0 α̃2

1

C

C

C

A

or (ii) A =

0

B

B

B

@

α̃1 0 0 0

0 α̃l
1 0 0

0 0 α̃2 1
0 0 0 α̃2

1

C

C

C

A

.

Moreover we see that α̃l+1
1 = q̃ ∈ Fl and α̃2 =

√
q̃.

3



(i) In case (i), Ae(l+1) = I4 holds, so that we have

J [l] ⊂ J (Fqe(l+1)) ⊂ J (Fql2−1).

(ii) In case (ii), we have

J [l] ⊂ J (Fqel(l+1)) ⊂ J (Fql3−l)

by the manner similar to (i) with Type II-(ii).

3.5 Type V
In this type, χ̃ has 4 roots α̃1, α̃l

1 ∈ Fl2 \ Fl, α̃2,
α̃3 ∈ Fl different from each other. Therefore A can be
given over Fl2 as

A =

0

B

B

B

@

α̃1 0 0 0

0 α̃l
1 0 0

0 0 α̃2 0
0 0 0 α̃3

1

C

C

C

A

.

From

NFl2/Fl
α̃1 = α̃l+1

1 = q̃ ∈ Fl,

we have Alcm(e(l+1),l−1) = I4, so that

J [l] ⊂ J (Fqlcm(e(l+1),l−1)) ⊂ J (Fql2−1).

3.6 Type VI
In this type, χ̃ has a quadruple root α̃ =

√
q̃ ∈ Fl.

Then A can be given over Fl as either

(i) A =

0

B

@

α̃ 0 0 0
0 α̃ 0 0
0 0 α̃ 0
0 0 0 α̃

1

C

A

, (ii) A =

0

B

@

α̃ 1 0 0
0 α̃ 0 0
0 0 α̃ 1
0 0 0 α̃

1

C

A

,

or (iii) A =

0

B

@

α̃ 1 0 0
0 α̃ 1 0
0 0 α̃ 1
0 0 0 α̃

1

C

A

from [GS05, Lemma4].

(i) In case (i), we have

J [l] ⊂ J (Fqer ) ⊂ J (Fql−1)

from A#⟨α̃⟩ = Aer = I4.

(ii) In case (ii), we have

J [l] ⊂ J (Fqerl) ⊂ J (Fql2−l)

by the manner similar to (i) with Type II-(iii).

(iii) In case (iii),

Ak =

0

B

B

B

B

B

B

B

@

α̃k kα̃k−1 k(k − 1)

2
α̃k−2 k(k − 1)(k − 2)

6
α̃k−3

0 α̃k kα̃k−1 k(k − 1)

2
α̃k−2

0 0 α̃k kα̃k−1

0 0 0 α̃k

1

C

C

C

C

C

C

C

A

holds for any k ∈ N. Therefore we have, for l ̸∈ {2, 3},

J [l] ⊂ J (Fqerl) ⊂ J (Fql2−l)

from Aerl = I4, and for l ∈ {2, 3},

J [l] ⊂ J (Fqerl2 ) ⊂ J (Fql3−l2 )

from Aerl2 = I4.

3.7 Type VII
In this type, χ̃ has 2 double roots α̃1, α̃2 ∈ Fl. There-

fore A can be given over Fl as either

(i) A =

0

B

B

@

α̃1 0 0 0
0 α̃1 0 0
0 0 α̃2 0
0 0 0 α̃2

1

C

C

A

, (ii) A =

0

B

B

@

α̃1 0 0 0
0 α̃1 0 0
0 0 α̃2 1
0 0 0 α̃2

1

C

C

A

,

or (iii) A =

0

B

B

@

α̃1 1 0 0
0 α̃1 0 0
0 0 α̃2 1
0 0 0 α̃2

1

C

C

A

.

(i) In case (i), from Al−1 = I4, we have

J [l] ⊂ J (Fql−1).

(ii), (iii) In these cases, from Al(l−1) = I4, we have

J [l] ⊂ J (Fql2−l).

3.8 Type VIII
In this type, χ̃ has 2 single roots α̃1, α̃2 ∈ Fl, and

a double root α̃3 =
√

q̃ ∈ Fl different from each other.
Therefore A can be given over Fl as either

(i) A =

0

B

B

@

α̃1 0 0 0
0 α̃2 0 0
0 0 α̃3 0
0 0 0 α̃3

1

C

C

A

or (ii) A =

0

B

B

@

α̃1 0 0 0
0 α̃2 0 0
0 0 α̃3 1
0 0 0 α̃3

1

C

C

A

.

(i) In case (i), from Al−1 = I4, we have

J [l] ⊂ J (Fql−1).

(ii) In case (ii), from Al(l−1) = I4, we have

J [l] ⊂ J (Fql2−l).

3.9 Type IX
In this type, χ̃ has 4 roots α̃1, α̃2, α̃3, α̃4 ∈ Fl differ-

ent from each other, so that A can be give over Fl as

A =

0

B

B

@

α̃1 0 0 0
0 α̃2 0 0
0 0 α̃3 0
0 0 0 α̃4

1

C

C

A

.

Therefore, from Al−1 = I4, we have

J [l] ⊂ J (Fql−1).

3.10 Summary
Table 1 summarizes the result in this section. In the

table, column “Max. Ext. Deg.” shows the maximum
extension degree of fields of definition of the l-torsion
points on J in each type. The maximum extension
degree for the case that e, en, and er take their maxima
(i.e. e = en = er = l − 1) is also shown. Note that the
minimum extension degrees of the fields of definition
always divide the corresponding degree in “Max. Ext.
Deg..” In column “Approx. Prob.,” an approximate
probability for l ̸= 2 of χ̃ to be in each type is also
shown under the assumption that (s̃1, s̃2) is distributed
uniformly in F2

q for reference. Column “
√

q̃ ∈ Fl” shows
the probability in the case of q being a quadratic residue
modulo l and column “

√
q̃ ̸∈ Fl” the probability in the

case of q being a quadratic non-residue modulo l.
Theorem 2 below can be immediately obtained from

Table 1.
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Table 2: Complexity of DDF of l-division polynomial
Algorithm s ∈ O(l4) s ∈ O(l3)
Cantor-Zassenhaus O(l9+o(1)) O(l8+o(1))
Gathen-Shoup O(l8+o(1)) O(l8+o(1))
Shoup O(l10) O(l9.5)
Kaltofen-Shoup with the classical matrix multiplication (ω = 3) O(l8.5+o(1)) O(l8+o(1))
Kaltofen-Shoup with Strassen’s multiplication (ω = log2 7) O(l8.272+o(1)) O(l7.797+o(1))
Kaltofen-Shoup under the result of [CW90] (ω = 2.375477) O(l7.667+o(1)) O(l7.260+o(1))

Theorem 2. There exists a positive integer d ≤ l3 − l
such that J [l] ⊂ J (Fqd) holds.

Therefore the degrees of the irreducible factors
of Gaudry and Schost’s l-division polynomials are
bounded by O(l3). Unlike the division polynomials for
elliptic curves, the l-division polynomials for genus 2
hyperelliptic curves are thus always reducible over Fq.

Remark 1. Gaudry and Schost’s l-division polynomi-
als regard 2 points that map to each other by the hy-
perelliptic involution as the same point. Therefore the
maximum degrees of the irreducible factors are not l3−l

but l3−l
2 .

4 Application to point counting

A l-division polynomial f ∈ Fq[X] of degree l4−1
2

in the Gaudry-Schost algorithm can be factored by a
general factoring algorithm for univariate polynomials
over Fq. The factoring algorithms can be classified
into 2 classes, i.e. algorithms in the Cantor-Zassenhaus
[CZ81] fashion, and in the Barlekamp [Ber70] fashion.
Because the l-adic algorithms do not always use all
irreducible factors of f , an algorithm in the Cantor-
Zassenhaus fashion is usually invoked by the l-adic al-
gorithms.

If there were an irreducible factor ∈ Θ(l4) of f , the
complexities of factoring f for l ∈ Θ(log q) by algo-
rithms3 in the Cantor-Zassenhaus fashion would be
O(l9+o(1)) operations in Fq by the Cantor-Zassenhaus
algorithm [CZ81], O(l8+o(1)) by the Gathen-Shoup al-
gorithm [GS92], O(l10) by Shoup’s practical algorithm4

[Sho95, Section 2], and O(l(13ω−5)/(ω+1)+o(1)), where
2 < ω ≤ 3 and mω denotes the cost of an m × m ma-
trix multiplication, by the Kaltofen-Shoup algorithm
[KS97]. On the other hand, the other part of the
Gaudry-Schost algorithm takes only O(l6+o(1)) opera-
tions in Fq [GG03, Corollary 11.18], so that an efficient
method to factorize f yields faster point counting for
general genus 2 hyperelliptic curves.

The factoring algorithms in Cantor-Zassenhaus fash-
ion consist of a squarefree decomposition (SFD), a
distinct-degree factorization (DDF), and an equal-
degree factorization (EDF). Since DDF dominates
the complexity of a factoring algorithm in Cantor-
Zassenhaus fashion and f is usually the input of DDF,
i.e. f is usually squarefree, we treat DDF of f hereafter.
3 Recently, Kedlaya and Umans [KU08, KU09] proposed an

asymptotically faster algorithm. The algorithm is however
known not to take effect in our interesting case [BZ09].

4 Shoup’s practical algorithm is implemented in his C++ library
NTL [Sho90].

In DDF, the computation of Xqi

modulo f for i =
1, . . . , deg f is usually invoked and dominates the com-
plexity of DDF in general. If we know the (possible)
maximum degree s ≤ deg f of the irreducible factors of
f then it suffice to compute them for i = 1, . . . , s.

The Cantor-Zassenhaus algorithm computes Xqi

s by
a sequential manner, i.e. Xqi

is computed from Xqi−1

by the repeated squaring. Therefore Theorem 2 reduces
the complexity of factoring f by the Cantor-Zassenhaus
algorithm. Note that the maximum degree originally
takes effect on the Cantor-Zassenhaus algorithm, so
that any modification to adapt the algorithm to Theo-
rem 2 is not required.

The Gathen-Shoup algorithm computes Xqi

s by a
binary strategy called the “iterated Frobenius” [GS92,
Algorithm 3.1]. It computes {Xqi | 1 ≤ i ≤ 2j} for
j ∈ N from {Xqi | 1 ≤ i ≤ 2j−1}, so that Theorem 2
takes effect on the algorithm as a constant.

Both Shoup’s practical algorithm and the Kaltofen-
Shoup algorithm use a slightly different manner for the
computation treated here. They only involve Xqi

for
1 ≤ i ≤ rb and Xqrbj

for 1 ≤ j ≤ rg, where rb ≈ sβ

and rg ≈ s1−β with 0 ≤ β ≤ 1. The parameter β is
usually chosen so as to minimize the complexity when
s = deg f , so that the proper βs under Theorem 2, i.e.
s ∈ O(l3), reduces the complexities of factoring f by
the algorithms.

Column “s ∈ O(l3)” in Table 2 shows the complexity
of DDF of the l-division polynomial f by each algorithm
with the modification according to Theorem 2. Since
the algorithm invokes matrix multiplications, each com-
plexity with the classical multiplication, Strassen’s mul-
tiplication [Str69], and the result of [CW90] as the ma-
trix multiplications is shown for the Kaltofen-Shoup al-
gorithm. The complexity for a general univariate poly-
nomial of degree O(l4) over Fq is also shown in column
“s ∈ O(l4)” for reference.

Since DDF dominates the complexities of the fac-
toring algorithms, the complexities shown in Table 2
are also of factoring the l-division polynomial f . That
is the univariate l-division polynomial f over Fq can
be factorized within O(l7.797+o(1)) operations in Fq by
the Kaltofen-Shoup algorithm with Strassen’s multipli-
cation. Moreover, as the Gaudry-Schost algorithm in-
vokes O(log q) factoring for the l-division polynomial
in Fq[X] for l ∈ O(log q), we see that the complexity
of the algorithm is O((log q)8.797+o(1)) operations in Fq

by using the Kaltofen-Shoup algorithm with Strassen’s
multiplication.
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