
PORTAM: Policy, Requirements and Threats Analyzer
for Mobile Code Application

Haruhiko Kaiya Kouta Sasaki Kenji Kaijiri
Dept. of Computer Science, Shinshu University

4-17-1, Wakasato, Nagano 380-8553, Japan
http://www.cs.shinshu-u.ac.jp/˜kaiya/

Abstract

Users and providers of an information system should
clearly understand the threats caused by the system as well
as clarify the requirements for the system before they use the
system. Especially, they should be very careful when they
use a system with components and/or services provided by
third parties. However, there are few methods or tools to
learn and confirm such issues. In this paper, we present
a supporting tool called “PORTAM” for such users and
providers to understand the threats and the requirements.
Suppose some requirements cannot be satisfied when some
threats are avoided, and vice versa. In such cases, they
should decide whether the requirements should be satisfied
or the threats should be avoided. The tool also helps them
to decide such kinds of trade-offs. Current version of this
tool handles Java mobile code applications, thus users of
our tool can easily feel real threats. Although the current
version deals only with Java components, the ideas behind
the tool can be applied to software in general. We finally re-
port experimental results to confirm the usefulness and the
educational effects of this tool.

1. Introduction
Mobile code technology is useful because it is easy to

integrate a software service on the fly. It is also easy to
maintain and update mobile code components in such a ser-
vice because codes are basically downloaded and linked in
its runtime. In addition, alternative codes can be easily se-
lected for meeting requirements changes because we can
reuse fine-grained software components in ad hoc manner.
For example, suppose there are many alternative codes for
data communication, and their efficiency and license cost
are different with each other. An integrator will select a
code that is not so fast but cheap normally, but he/she in ur-
gent situation can replace the code into another that is very
fast but expensive on the fly.

However, there are several problems in using mobile
codes, and one of the significant problems is about mali-
cious codes. If behaviors of malicious codes are not re-
stricted, valuable resources can be leaked and/or destroyed.
For example, your credit card information could be stolen.
We call such harmful effects by malicious codes as threats
in this paper. Therefore, we have to identify which re-
quirements should be satisfied and which threats should be

avoided when we integrate a mobile code application. In
addition, we think it is impossible both to satisfy all require-
ments and to avoid all threats completely. In fact, we have
compromised with software systems with unsatisfied re-
quirements and tolerant threats. Therefore, we have to also
decide trade-offs between satisfied requirements and toler-
ant threats. Unfortunately, we do not explicitly understand
the importance of specifying requirements and threats of an
information system even through we meet actual threats ev-
ery day via Internet.

We have already proposed a method to identify trade-
offs between them caused by Java mobile code applica-
tions [12, 11]. However, we cannot effectively examine our
method without supporting tools, because the method re-
quires tiresome but systematic tasks. In this paper, we will
introduce a supporting tool and the results to apply the tool
into security education. Main contribution of this paper is
to show how far security requirements analysis can be sup-
ported and how far security requirements education can be
accelerated by this kind of tool.

Security issues in requirements engineering are widely
focused recently [6] because of the wide use of Internet, and
there are many researches of this issue. One of the charac-
teristics of our tool is its simplicity, and the tool easily en-
ables learners and/or students to learn the importance of se-
curity requirements in the classroom. For example, learners
can meet real threats caused by an application vividly and
they can analyze the reasons by using our tool shortly. This
kind of activities will largely improve their understanding
of security requirements. This hypothesis is partially con-
firmed in our case study. There are many complex and com-
plete models/tools for security requirements but it is not so
easy for learners to have vivid experiences. This is one of
the reasons why our tool is limited to handle Java mobile
code applications.

The rest of this paper is as follows. In the next section,
we explain the mechanism of Java mobile code applications.
Although Java system is too simple, typical security prob-
lems can be handled within Java system. Section 3 sum-
marize the requirements of our analysis tool based on its
previous discussion. In section 4, we introduce our tool in
detail. In section 5, we report a case study to confirm the
usefulness and educational effects of our tool. In section
6, related works are discussed, and finally we conclude our



Player.class

Judge.class

ObjectJanken.class Property

File

Client Machine

Application

yamada

murata

Download

Read 

Write

Security Policy

Download

Download

Code Provider A

Code Provider B

Code Provider C

Other Machine

Network 
Connection

Establish

Figure 1. Environment for a Java application

current results and show future works.

2. Mobile Code Application
In this section, we explain security architecture of Java

system. Although Java security architecture is very simple,
it supports fundamental security issues such as integrity,
confidentiality and availability. Therefore, Java system is
suitable enough to learn the importance of security require-
ments.

Java security architecture is based on the sandbox secu-
rity model [17]. There are many security related features in
Java security architecture, but we only focus on the permis-
sion and the security policy. Each permission correspond
to the right to access system resource(s) such as files, net-
work connections, running processes and so on. To grant
the pieces of the right to a Java application, the security pol-
icy is given to the application. Figure 1 shows an example
of the environment for a Java application. An application in
this figure consists of three pieces of codes and it accesses
a file and a property, and establishes a network connection
to other machine.

When inadequate policy is given to an application, ma-
licious codes can be activated, thus security threats can be
made. The examples of threats for each type of security
issues are as follows.
• Integrity: Files or system properties are illegally modi-

fied because the security policy inadequately grants the
right for files or system properties.

• Confidentiality: Data are illegally leaked because the
policy inadequately grants the right for files and net-
work connections.

• Availability: Calculation is illegally aborted because
the policy permits the right for killing the calculation
process.

To avoid the threats caused by malicious codes, codes are
distinguished with respect to both the site where a code is
placed and the signature, and restricted in different ways. If
a code is downloaded from a trusted site or a trusted agent
signed the code, we may believe the code does not cause
any threats.

However, we cannot or do not always use only trusted
codes in fact, e.g., some kinds of free software. In addition,

even the trusted codes cause security threats because of their
bugs or our inadequate usage. Therefore, application inte-
grators and users have to investigate which requirements are
satisfied and what kinds of threats can be caused by a mo-
bile code application by themselves.

We assume a supporting tool is needed and/or useful to
investigate such things. The usage of our tool is explained in
detail in section 4.3, and its evaluation is reported in section
5. We also assume archiving such investigation improves
their understanding about mobile codes and security. A part
of a case study in section 5 was designed for confirming this
assumption.

3. Requirements for A Supporting Tool
Based on our previous works [12, 11] and the discussion

in the previous sections, we specify the requirements for the
tool as follows.

1. The tool shall support requirements analysis for a Java
mobile code application.

2. The tool shall manage the requirements for an applica-
tion and the threats by the application. A threat is an
inconvenient result caused by the mobile code applica-
tion.

3. The tool shall manage permissions that are required to
satisfy each requirement.

4. The tool shall manage permissions that enable a threat
to be activated.

5. The tool shall manage available mobile codes.
6. The tool shall be able to extract security related per-

missions from each mobile code.
7. The tool shall be able to generate security policy that

grants permissions in available mobile codes.
8. The tool shall be able to modify security policy to sat-

isfy requirements and to avoid threats.
9. The tool shall be able to check which requirements are

satisfied or not, and which threats are avoided or not
under a security policy.

10. The tool shall enable its user to abandon some require-
ments and/or to accept some threats.

4. Overview of PORTAM
This tool supports application integrators and/or users to

identify which requirements are satisfied by a mobile code
application. In addition, the tool also supports to identify
threats caused by the application. Because reuse of mobile
codes is intended, threats can be avoided by tightening up
the security policy and/or by replacing a mobile code in-
cluding malicious parts with another compatible code. In
some cases, some requirements cannot be satisfied because
of the tightened policy, thus we have to sometimes give up
some requirements or to accept the threats. This tool also
supports to find such trade-offs.

4.1 Major Functions
Our tool mainly provides the following six functions. By

using such functions during a requirements analysis pro-
cess, integrators and/or users can identify the achievement



Figure 2. A Snapshot of PORTAM

of requirements and threats, and decide trade-offs between
requirements and threats.

4.1.1 Network Deployment Function

Our tool consists of several internal windows as shown
in Figure 2, and a top left window called “Virtual Net-
work Frame” is an analogical model of a deployment of
computers each of which provides mobile codes. In addi-
tion, permissions that are required by such codes are semi-
automatically extracted from source codes or byte codes,
and listed in a middle window called “Permission Table”.
By using this function, users can understand what kinds of
security related functions could be activated by each mobile
code.

Because permissions are extracted by using a static
source code analysis, extracted permissions are not always
used in each runtime. In addition, targets in each permis-
sion such as file names or host names sometimes cannot be
extracted automatically because targets are sometimes rep-
resented as variables in source codes. The tool user has to
edit targets manually in such cases.

4.1.2 Policy Edit Function

Based on the deployment of mobile codes shown in the
“Virtual Network Frame”, our tool can automatically gen-
erate a security policy that grants all permissions required

by all codes. The generated policy is put in the right top
window called “Policy Editor” in Figure 2, and users can
freely edit the policy. The policy shown in Figure 2 is al-
ready edited so as to revoke some permissions. Users may
also edit a policy from scratch, but users can easily arrive at
intended policy by removing the granted permissions from
the generated policy.

4.1.3 Policy Check Function

According to the policy in “Policy Editor”, each permission
in “Permission Table” is automatically checked whether it
can work or not under the policy. The column labeled by
“Check” in “Permission Table” shows the results. For ex-
ample in Figure 2, first, fifth and the last permissions are
marked as “NG” thus they cannot work under the policy in
Figure 2.

In addition, we can easily identify which requirements
and/or threats use permission. By clicking a row in “Per-
mission Table”, requirements and threats in “Requirements”
and “Threats” windows are colored. For example in Figure
2, the tool tells us that the last permission in “Permission Ta-
ble” is used in the third requirement in “Requirements” win-
dow, second and third threats in “Threats” window when we
click a row in “Permission Table” corresponding to the per-
mission. The “#perms” column of rows in “Requirements”
and “Threats” windows corresponding to the requirement
and the threats is colored in blue.



4.1.4 Requirements and Threats Edit Function

Users can list their requirements on the left bottom window
labeled “Requirements” in Figure 2. The requirements are
simply itemed as shown in the figure. Users can also list
their identified threats on the right bottom window labeled
“Threats” in the same way. Each requirement or threat has
the following properties.
• A list of permissions that are required by the require-

ment or the threat. A requirement is satisfied or a threat
can be activated when such corresponding permissions
all work. A tool user should specify the list of per-
missions manually because it is hard to evaluate the
meaning of such list automatically.

As mentioned in 4.1.1, permissions are not always
used in each runtime because of the static analysis.
Therefore, the list of permissions does not always
guarantee that a requirement is satisfied or a threat is
activated. However, the list of permissions helps a re-
quirements analyst to explore the possibility of threats
because such permissions are sometimes used in run-
time.

• A truth value whether a requirement or a threat can be
activated. If all permissions above are “OK”, the value
is true, otherwise false.

• A truth value whether the user abandons the require-
ment or accepts the threat.

These properties are shown on the GUI of PORTAM. For
example in Figure 2, a window “Threats” is focused and
four threats are listed. The last threat “any information can
be leaked to the card company” is focused and the threat
is related two permissions. The permissions are the sec-
ond and fifth ones, and they are colored in a middle win-
dow “Permission Table”. Because the fifth permission in
“Permission Table” is “NG”, the threat cannot be activated.
Thus the check box “avail?” of the threat is not checked.
We do not have to accept this threat because the threat can-
not be activated in this situation.

4.1.5 Requirements Check Function

Whether a requirement is satisfied or not is decided accord-
ing to the status of permissions related to the requirement.
There are three status of a requirement and the status is
shown by color on GUI.
• Satisfied status (white): The corresponding require-

ment will be satisfied because all related permissions
can be permitted.

• Accepted status (yellow): Although the requirement
cannot be satisfied by revoked permissions, the user
decides to abandon the requirement.

• Unstable status (pink): The requirement cannot be sat-
isfied now but the user does not accept the fact. The
user has to decide to accept the fact or to modify secu-
rity policy to change the status of the requirement.

To finish the requirements analysis, requirements in unsta-
ble status should be eliminated completely. In Figure 2,
there are six requirements. Second and forth requirements
are colored in yellow thus they are accepted. Third require-

ment are colored in pink thus it is unstable.

4.1.6 Threat Check Function

Whether a threat can be avoided or not is also decided ac-
cording to the status of permissions related to the threat.
There are also three status of a threat and the status is shown
by color on GUI.
• Avoided status (white): The corresponding threat will

be avoided because at least one of related permissions
cannot be permitted.

• Accepted status (yellow): Although the threat can be
activated by all granted permissions, the user decides
to accept the threat.

• Unstable status (pink): The threat can be activated now
but the user does not accept the fact. The user has to
decide to accept the fact or to modify security policy
to change the status of the threat.

In the same way as the requirements check, threats in
unstable status should be eliminated completely to finish the
requirements analysis. In Figure 2, there are four threats,
and they are all in avoided status.

4.2 Technologies used in our Tool
To extract permissions required by a code, we have to

analyze the code, especially method calls from the code
to other codes. Security related permissions are required
only when specific methods in Java standard API are called.
Thus, it is sufficient for our tool to identify method calls
from the code to such API methods. Our tool achieves a
static source code analysis by using XML based represen-
tation for Java source codes (JavaML). Our tool invokes an
extended version of a Java compiler called jikes 1 to convert
a Java source code to a JavaML representation. The con-
verter is not written in Java, thus our tool invokes it as an
external program.

Our tool can handle Java class files (byte codes) by using
decompiler called jode 2. Our tool is developed as a Java
application and decompiler jode is also written in Java, thus
it is easy to be invoked from our tool.

4.3 Typical Processes
One of the typical processes by using this tool is to ex-

plore threats and policy under given mobile codes and re-
quirements. A case study in the next section is categorized
in this type. According to the codes and their deployment,
our tool can list the permissions in the codes on “Permis-
sion Table”. By using requirements and threats edit func-
tion mentioned in 4.1.4 of our tool, each requirement is re-
lated to several permissions. A user should explore threats
to browse the list of permissions, and each threat is also re-
lated to several permissions. By using policy edit function
mentioned in 4.1.2 of our tool, a security policy that grants
all permissions can be generated on “Policy Editor”. By re-
moving some lines from a policy in “Policy Editor”, granted
permissions are decreased in general, and vice versa. When

1http://www.badros.com/greg/JavaML/
2http://jode.sourceforge.net/



granted permissions are changed, satisfied requirements and
threats are also changed. The requirements, threats and the
policy are decided by repeating such changes. Finally, a
user has to decide which requirements may be abandoned
and which threats should be accepted with respect to needs
of the application users.

Another typical process is to explore suitable mobile
codes and policy under several requirements and threats.
To satisfy a requirement, several permissions are required.
A user drops existing mobile codes on “Virtual Network
Frame” to explore required permissions. To avoid a threat,
some permission should not be activated. A user writes se-
curity policy not to activate such permissions.

5. Case Study
The objective of this case study is to confirm the useful-

ness of our tool. If the following metrics are improved by
using our tool, we may assume our tool is useful in require-
ments elicitation.
• The amount of threats to be found.
• The amount of fatal threats to be found. Fatal threats

are defined for each exercise and subjects off course do
not know them before performing the exercise.

• The amount of wrong threats to be found. We decide a
threat is wrong when the threat cannot be activated un-
der given permissions. Because we cannot objectively
decide that a threat is really inconvenient for the sub-
ject, we do not take such inconvenience into account.

• The efficiency of an elicitation task.
As explained in 4.1, our tool cannot find threats automati-
cally but only support an analyst to find threats. Therefore,
this kind of an experimental study is required. Based on the
assumptions above, we design an experiment as follows.

Another objective of this case study is to confirm the
educational effects by analyzing requirements and threats.
As mentioned in the introduction, we do not clearly under-
stand the importance of specifying both requirements and
threats of an information system even though we meet ac-
tual threats everyday via Internet. After performing the ex-
periment, we sent out questionnaires to confirm the edu-
cational effects. The contents, results and discussion are
shown in 5.4.

5.1 Design of an Experiment
We perform a comparative experiment by using several

numbers of subjects. Each subject performs the following
six exercises in turn.
S1 Learn mechanism of security policy to execute a mobile

code application. Because most subjects are unfamiliar
with mobile code applications, they have to become
familiar with such applications through this exercise.

S2 Write their own security policy to satisfy given require-
ments. In this exercise, the existence of threats is se-
cret before the answer is shown. From this experi-
ment, subjects can understand the existence of poten-
tial threats in mobile codes.

S3 Write their own security policy to satisfy given require-
ments and to avoid given threats.

S4 Perform the same exercise by using our tool. This exer-
cise is simply used for subjects to learn how to use the
tool.

S5 Write a security policy to satisfy given requirements and
find threats. Note that the codes, their deployment and
the policy that grants all permissions in the codes are
also given. Half of subjects are permitted to use our
tool but another half are not. Whether a subject is per-
mitted to use a tool or not is decided at random.

S6 Perform the same kind of an exercise as S5 by using
other requirements and codes. Subjects using our tool
in S5 are not permitted to use our tool but the others
are.

The data only in exercises S5 and S6 are used in our anal-
ysis because other exercises are basically used for subjects
to be familiar with mobile code applications and our tool.
For each result of exercises S5 and S6 of each subject, we
count the following values.
• The number of threats that are found by the subject.
• The number of fatal threats.
• The number of wrong threats.
• The spending minutes to solve the exercise.

By comparing the results of subjects using our tool to the
results of subjects without tool, we confirm the following
assumptions.

1. Subjects with our tool can find more threats than sub-
jects without the tool.

2. Subjects with our tool can find more fatal threats than
the others.

3. Subjects with our tool can find fatal threats frequently
than the others. In other words, the ratio of fatal threats
found by the subjects is higher than the ratio by the
others.

4. Subjects without our tool write more wrong threats
than the others.

5. Subject without our tool write wrong threats frequently
than others. In other words, the ratio of wrong threats
by the subjects without our tool is higher than the ratio
by the others.

6. Subjects with our tool can perform the exercises more
efficiently than the others.

5.2 Results
We achieved this experiment in a course of our univer-

sity. The course took five weeks, thus exercises S3 and
S4 were performed in the same week. In each week, we
spent three hours on classwork including exercises. To im-
prove the understanding of mobile codes applications, at-
tendance check and answer submission were achieved by
mobile code applications. About 30 third grade bachelor
students were participated in this course. They have already
studied software engineering fundamentals and Java pro-
gramming. We selected 20 students as our subjects based
on the following conditions.
• The student performed all six exercises.
• The student agreed on the fact that his/her data were

used in our research.
In exercise S5, each subject analyzed a shopping system

via Internet. Five requirements were shown and this exer-



Table 1. Results of S5 (Average per subjects)
tool manual

Number of threats (X) 2.9 3.3
Number of fatal threats (Y) 1.4 1.0
Number of wrong threats (Z) 0.6 0.7
Ratio of fatal threats (Y/X) 0.48 0.30
Ratio of wrong threats (Z/X) 0.206 0.212
Spending minutes 167 168

Table 2. Results of S6 (Average per subjects)
tool manual

Number of threats (X) 2.5 3.5
Number of fatal threats (Y) 0.7 0.8
Number of wrong threats (Z) 0.4 1.3
Ratio of fatal threats (Y/X) 0.28 0.22
Ratio of wrong threats (Z/X) 0.16 0.37
Spending minutes 161 153

cise had the following three fatal threats.
1. An account can be falsified.
2. User information can be leaked to shops.
3. User information can be leaked to credit card company.

In exercise S6, each subject analyzed an e-learning system
via Internet. Six requirements were shown and this exercise
had the following two fatal threats.

1. The correct answer can be leaked to the other learners.
2. A learner can unfairly read the others answer (cheat-

ing).
Tables 1 and 2 show the results. In each experiment, half

of subjects used our tools but others did not. If a subject
used our tool in S5, the subject did not use the tool in S6
and vice versa. The column labeled by “tool” in the tables
is the data of subjects using our tool. On the other hand, the
column labeled by “manual” is the data of subjects without
our tool. Each result is the average of each type of sub-
jects. For example in experiment S5, a subject found 1.4
fatal threats in average with our tool. Because the number
of fatal threats in S5 is three, a subject found only half fatal
threats in average.

5.3 Discussion
As shown in Tables 1 and 2, not all assumptions in 5.1

are confirmed. Especially, subjects without tool (“manual”
column) found more threats than the others. However, sub-
jects without tool tended to write more wrong threats than
the others as shown in third and fifth rows in Tables 1 and 2.
Thus our tool seems to contribute to the accuracy for find-
ing threats. Although the ratio of wrong threats is relative
low (0.2 and 0.16), we investigate the reason of the wrong
threats. When a subject with our tool finds and specifies a
threat, the subject has to relate the threat with several per-
missions. We assume there is a gap between the threat and
the permissions because permissions show the concepts at
the implementation level but the threat does not. Our tool
has to support stopping such gap.

The tool also seems to contribute to finding fatal threats a

little bit based on the fourth row “the ratio of fatal threats” in
the tables. By investigating the contents of the threats writ-
ten by subjects, a function making relationships between
a threat and permissions seems to contribute to find fatal
threats because the combination of permissions causes fatal
threats. We will discuss how to improve our tool based on
discussion here in the final section.

5.4 Questionnaires
Our questionnaires consist of the following three kinds

of issues. Each issue has several questionnaires as follows.
• Issues in a mobile code application itself.

M1. Can you understand the running mechanism of
mobile code applications? [yes/no]

M2. Can you understand the role of security policy?
[yes/no]

M3. Do you wish to use mobile code applications in
the future? [yes/no]

M4. Do you wish to develop mobile code applica-
tions in the future? [yes/no]

• Issues in requirements analysis for mobile code appli-
cations.
R1. Do you begin to take care when you use libraries

or programs provided by the others? [yes/ever
since/no]

R2. Can you understand the existence of threats in
mobile code applications? [yes/no]

R3. Can you understand that there are sometimes
trade-offs between satisfying requirements and
avoiding threats? [yes/no]

R4. Do you think compromises are sometimes
necessary in requirements and threats analysis?
[yes/no]

R5. Do you begin to think users of an information
system should be identify both requirements for
the system and threats by the system? [yes/ever
since/no]

R6. Do you begin to think developers of an infor-
mation system should be identify both require-
ments for the system and threats by the system?
[yes/ever since/no]

• Issues about our supporting tool.
T1. Can you understand how to use our tool? [yes/no]
T2. Did our tool help you to find threats and/or for-

gotten requirements? [yes/partially/no]
Note that “ever since” means that the subject thought or un-
derstood the issue before this experiment.

Table 3 shows the results of questionnaires. Our subjects
understood the mobile code application itself, but some
of them worried about unidentified threats. Another com-
plained that he did not always connect to Internet and he did
not always use mobile code applications. There is a kind of
mobile codes application that can work under disconnected
situation, but we did not mention such kind of application in
this course. We have to introduce such application by elim-
inating such complaints. Most subjects mentioned easiness
to update software or usefulness as positive reasons with re-
spect to users. With respect to developers, more subjects
gave negative answers. Typical reasons were as follows; it



Table 3. Results of Questionnaires
yes ever since no

M1 17 3
M2 18 2
M3 16 4
M4 12 8
R1 11 4 5
R2 20 0
R3 20 0
R4 19 1
R5 14 3 3
R6 16 4 0

yes partially no
T1 17 3
T2 9 10 1

was hard to manage multiple versions of codes or to take
threats into account during development.

About the issues of requirements analysis, our question-
naires showed positive results as shown in Table 3. One
subject who answered “no” in R1 wrote a comment that
it was difficult to avoid threats even if he could identify
them. Thus we have to provide effective mechanism to
avoid threats in the next step. From the result of R5 and R6,
our subjects assumed that developers were more responsi-
ble for identifying requirements and threats than users. This
assumption seems to be quite rational because developers
have more knowledge than users. So our tool is dedicated
for application developers or integrator rather than users.

Finally, we review evaluation of our tool by our subjects.
From the results of T1 and T2 in Table 3, their evaluation
was not bad. It seems to be easy for our subjects to learn
our tool because less than three hours were spent to learn
it and the result T1 tells us most of them could understand
how to use it. Typical positive comments were as follows.
• By using color changes, it is easy to identify permis-

sions that are used in a requirement or a threat.
• In the same way, it is easy to identify requirements and

threats that depend on the same permission.
• Automatically generated minimal policy is useful.

However, there were following negative comments.
• It is inconvenient to make relationship between a re-

quirement or a threat and permissions.
• Because each permission is separated from a class

where the permission belongs, it is difficult to under-
stand the role of the permission.

6. Related Work
We suppose information systems in this research use

fine-grained software components such as functions and/or
classes. If such kinds of reuse are widely accepted, vari-
ety of components selection largely spreads and markets of
such components grows soundly. There are already many
researches about component selection and acquisition [8],
[14]. However, threats caused by components composition
were rarely discussed. This research and the tool directly

handle such issue and partially support users and software
integrators to such threats.

Requirements elicitation using interview is costly in gen-
eral and [3] argued that a method to make it efficient is re-
quired. By using our tool, requirements analysts can enu-
merate the potential threats thus the tool helps such analysts
to ask and explore what should not occur in an information
system to be. This function largely contributes to elicit re-
quirements efficiently.

Threats in this paper are very similar to obstacles in
KAOS [18]. Their difference is that threats do not have
to obstruct existing requirements but obstacles are basically
identified by obstructing existing requirements or goals.
Thus, threats in this paper are not easy to be identified
by KAOS approach. Misuse case approach is also useful
method to identify security requirements, but its weakness
was argued in [16]. Our tool can partially overcome such
weakness, for example, the process navigated by our tool
is not open-ended but systematically terminated if the user
can compromise on a specific policy and its consequences;
giving up requirements and/or accepting threats. Software
fault tree [10] is also systematic approach, but it is special-
ized for the requirements analysis of intrusion detection sys-
tems. A system called SoftwarePot [13] can be also applied
to the problems we focused. In SoftwarePot, applications
are executed in some kind of sandbox, and users have to
decide whether an access to the valuable resources should
be granted or not in each time. We think SoftwarePot ap-
proach seems to be practical, but it does not contribute to
improving users’ understanding about security problems.

Our research and tool focus on one application used by
one user rather than an information system used in an orga-
nization (many users). Thus, our research does not and can-
not handle multiple users and/or roles in an information sys-
tem because the application we focused basically has only
one role. Taking such multiple roles into account, model-
ing techniques such as [7] or [9] are required. With respect
to the Java specification and implementation, we only fo-
cus on the so-called “code-centric style” now. Therefore,
we do not mind “who runs/executes a function” now. Java
system already has a mechanism called “user-centric style”
in Java Authentication and Authorization Service (JAAS)
framework, so we want to extend our tool by taking roles
into account by using JAAS framework.

In [2], an organizational policy is handled but our re-
search is about security policy for an application. Thus,
discussion and results in both researches cannot be simply
compared. We think an organizational policy is a sum or
product set of policies of applications in the organization.
Thus, defining each application policy will sometimes con-
tribute to define organizational policy.

In contrast with other researches about security require-
ments, our work is too simple. However, this is one of its
advantages because our tool can be easily and effectively
applied in educational settings. As shown in the case study
in the previous section, students could use our tool easily,
and they could have real experiences of threat activation. In
fact, the educational materials in the case study embedded
real malicious codes such as stealing personal information,



and the codes were sometimes activated during the course.
By facing such real threats, students could deeply under-
stand the importance of identifying threats as well as re-
quirements. Tools and/or methods of other researches seem
to be too complex to use in educational settings. There were
a few researches about requirements engineering education
[19] [5], and there is no research about educational aspects
of security requirements. As reported in the previous sec-
tion, a lecture using our tool gave good effect to students
with respect to understanding requirements and threats.

In our research and tool, decision making such as how to
reach trade-offs and/or mitigate threats is out of scope. Ex-
isting research results such as WinWin [1], DDP [4] and/or
[15] can cope with our tool.

7. Conclusion
In this paper, we introduce a tool called PORATAM. The

tool supports users, software providers and/or integrators to
identify requirements, threats and policy for a mobile code
application. Because our tool handles Java mobile code ap-
plications, users of our tool can easily meet threats caused
by such applications during their analysis. From the result
of our case study, our tool contributed learners to under-
stand the importance of threats as well as requirements. Our
tool also contributed them to find significant threats.

Basically, threats can be caused by a combination of sev-
eral permissions. Currently, users of our tool have to find
such combinations manually. We will extend our tool to
propose possible combinations. It is difficult to decide a
combination causes threats or not, but it is not difficult to
enumerate possible combinations by using the dependen-
cies and flows of data. Such combinations can also suggest
unidentified requirements of users. In addition, our tool has
to support stopping the gaps between such a combination
and the meaning of a requirement or a threat as discussed
in 5.3. Because semantic processing of a requirement or a
threat is very difficult, such gaps can be stopped by using
the empirical knowledge like design patterns. Another plan
is to provide comparison mechanism of alternative codes.
Currently, users have to replace a code to another manu-
ally, but the tool should recommend alternatives. If such
comparison mechanism is provided, we can also compare
non-functional features such as costs or response of codes.
Current version of our tool does not explicitly handle the
priority among requirements and threats. The tool currently
enables its user to put requirements and threats in order re-
spectively, but the ordering is not used formally in our tool.
We will extend our tool by utilizing such priority for e.g.,
deciding trade-offs.

References
[1] B. Boehm, P. Grunbacher, and R. O. Briggs. Devel-

oping Groupware for Requirements Negotiation: Lessons
Learned. IEEE Software, 18(3):46–55, May/Jun. 2001.

[2] T. D. Breaux and A. I. Anton. Analyzing Goal Semantics for
Rights, Permissions, and Obligations. In 13th IEEE Inter-
national Conference on Requirements Engineering (RE’05),
pages 177–188, 2005.

[3] T. Cohene and S. Easterbrook. Contextual Risk Analysis for
Interview Design . In 13th IEEE International Conference
on Requirements Engineering (RE’05), pages 95–104, 2005.

[4] S. L. Cornford, M. S. Feather, J. C. Kelly, T. W. Larson,
B. Sigal, and J. D. Kiper. Design and Development Assess-
ment. In Proceedings of the Tenth International Workshop
on Software Specification and Design (IWSSD’00), pages
105–114, 2000.

[5] C. Coulin et al. GONDOLA: An Interactive Computer
Game-Based Teaching and Learning Environment for Re-
quirements Engineering. In REFSQ’04, pages 113–126,
2004.

[6] R. Crook, D. Ince, L. Lin, and B. Nuseibeh. Security Re-
quirements Engineering: When Anti-requirements Hit the
Fan. In IEEE Joint International Requirements Engineering
Conference, RE’02, pages 203–205, Sep. 2002.

[7] R. Crook, D. Ince, and B. Nuseibeh. On Modelling Access
Policies: Relating Roles to their Organisational Context. In
13th IEEE International Conference on Requirements Engi-
neering (RE’05), pages 157–166, 2005.

[8] X. Franch et al. Using Quality Models in Software Package
Selection. Software, 20(1):34–33, Jan./Feb. 2003.

[9] P. Giorgini et al. Modeling Security Requirements Through
Ownership, Permission and Delegation. In 13th IEEE Inter-
national Conference on Requirements Engineering (RE’05),
pages 167–176, 2005.

[10] G. Helmer, J. Wong, M. Slagell, V. Honavar, L. Miller, and
R. Lutz. A Software Fault Tree Approach to Requirements
Analysis of an Intrusion Detection System. Requirements
Engineering, 7(4):207 – 220, Dec. 2002.

[11] H. Kaiya, K. Sasaki, and K. Kaijiri. A Method to Develop
Feasible Requirements for Java Mobile Code Application.
IEICE Trans. Inf. and Syst., E87-D(4):811–821, Apr. 2004.

[12] H. Kaiya, K. Sasaki, Y. Maebashi, and K. Kaijiri. Trade-off
Analysis between Security Policies for Java Mobile Codes
and Requirements for Java Application. In 11th IEEE Inter-
national Requirements Engineering Conference, pages 357–
358, Sep. 2003.

[13] K. Kato and Y. Oyama. SoftwarePot: An Encapsulated
Transferable File System for Secure Software Circulation.
Lecture Notes in Computer Science, 2609:112 – 132, 2003.

[14] S. Lauesen. COTS Tenders and Integration Requirements .
In 12th IEEE International Requirements Engineering Con-
ference (RE’04), pages 166–175, 2004.

[15] M. C. Robinson, S. E. Wallace, and D. C. Woodward. Risk
Mitigation of Design Requirements Using a Probabilistic
Analysis. In 13th IEEE International Conference on Re-
quirements Engineering (RE’05), pages 231–239, 2005.

[16] G. Sindre and A. L. Opdahl. Eliciting security requirements
with misuse cases. Requirements Engineering, 10(1):34 –
44, Jan. 2005.

[17] Sun Microsystems, Inc. Java Security Architecture
(JDK1.2), Oct. 1998. Version 1.0.

[18] A. van Lamsweerde. Elaborating Security Requirements by
Construction of Intentional Anti-Models. In Proceedings of
ICSE’04, 26th International Conference on Software Engi-
neering, pages 148–157, Edinburgh, May 2004.

[19] D. Zowghi and S. Paryani. Teaching Requirements Engi-
neering through Role Playing: Lessons Learnt. In 12th
IEEE International Requirements Engineering Conference
(RE’04), pages 233–241, 2004.


