
1

Ontology Based Req. Analysis:
Lightweight Semantic Processing

Approach

Haruhiko Kaiya
Shinshu University, Japan

Motoshi Saeki
Tokyo Institute of Technology, Japan

2

Contents
• Background and Purpose
• Semantic Issues in Req. Analysis
• Ontology in THIS Research
• Detecting Problems in Requirements
• Evaluating Req. by Metrics
• Predicting Req. Changes
• Conclusions and Future Works

3

Background
• Support Requirements Analysis

Systematically and Automatically
• Semantic Processing is required for such

Support
• Formal or Semi-formal notations for

requirements are costly
– e.g., cost for training software engineers

4

Research Goal
• Lightweight Semantic Processing in

Requirements Analysis
– Lightweight without rigorous Natural or

Formal Language Processing
– Semantic focusing on meaning of each

requirements statement.
– Processing using Inference Tools like Prolog

5

Important Semantic Processing in RE
• Consistency

– Mutual inconsistent requirements confuse issues in
design and implementation.

• Completeness
– Missing requirements cause additional cost.

• Correctness
– Customers never accept a product based on incorrect

requirements.
• Unambiguousness

– Ambiguousness also confuses issues in design and
implementation.

6

Ontology in THIS Research
• Ontology Domain Ontology

– Ontology for a specific area or a field
e.g., Chemical Plant, Web Commerce....

• Ontology = Thesaurus + Inference Rules
• Usages of such Ontology

– Interpreting sentences in Requirements
• Relate each sentence with concepts in thesaurus.

– Confirming properties of Requirements
• Inferring propositions on the thesaurus.

7

Relationship: Req’s and Ontology
Requirements
Specification
(RS)

Domain Ontology

C D

A

E

B

1. aaa
2. bbb
3. ccc

require

F: Interpretation Function

Symbolic Calculation (Inferences)
instead of Direct Processing in RS

8

Requirements Specification (RS)
• A Document written in Natural Language,

e.g., English.
• Especially, a List of Requirements

Statements.
• Currently, we do not handle Figures and

Tables.
• In the Future, we want to use standard

formats recommended in IEEE830 std.

9

Example of RS in This Research
1. Play a music, pause. Go to next or

previous music.
2. Forward and rewind.
3. Adjust volume and mute.
4. Repeat play list.
5. Random play list.

......

RS for software music player like Windows Media Player

10

Thesaurus in THIS research
• Simple Directed Graph

– Node = Concept = Word
– Arc = Relations between two concepts

• Nodes and Arcs are typed.
– Such types are used to infer properties in RS.

• How to create such thesaurus...
– Out of scope of this paper, but...
– Results in last presentation could be used for.

11

Types in our Thesaurus
Concept

platform

2 1
{ordered} Relation

function generalize
object aggregate

actor
environment synonym

constraint antonym
quality associate

contradict

cause

apply

perform

support

require

12

Example of Thesaurus (partially)

<<function>>
music op

<<object>>
music<<apply>>

play

pause<<antonym>>

<<object>>
play list

<<object>>
music file

<<require>>

<<function>>
decode<<apply>>

<<object>>
codec

<<require>>

<<function>>
dynamic load<<apply>>

<<quality>>
time efficiency

<<contradict>>

sequential<<require>>

<<object>>
title<<function>>

select

<<apply>>

<<apply>>

<<cause>>

13

Inference Mechanism
• Simple First Order Logic

– Predicate types in thesaurus
– Variables and constants instances of concepts and

relationships.
– Using existing tools and/or languages, e.g., prolog.

• Logical Formulas
– Logical facts corresponding to a part of thesaurus
– Rules based on the types.
– Formulas corresponding to a property to be proved.

14

Facts from parts of Thesaurus

<<function>>
music op

<<object>>
music<<apply>>

play

pause<<antonym>>

<<object>>
play list

<<object>>
music file

<<require>>

<<function>>
decode<<apply>>

<<object>>
codec

<<require>>

<<function>>
dynamic load<<apply>>

<<quality>>
time efficiency

<<contradict>>

sequential<<require>>

<<object>>
title<<function>>

select

<<apply>>

<<apply>>

<<cause>>

contradict(time efficiency, dynamic load).

apply(play list, select).
require(sequential, play).

15

Rules for Types
• Rule for Generalization type

forall x gen(x, x)
• Reflective rule

gen(x, y) & gen(y,z) gen(x,z)
• Transitive rule

• Rule for Antonym type
antonym(x, y) antonym(y,x)

• symmetrical rule

• Mixed
gen(a,d) and require(a,c) require(d,c)

16

Steps to prove RS properties
1. Prepare an Ontology (Thesaurus + Rules) for the

problem domain.
2. For each statement in RS,

map the statement to concepts and relations on the
Thesaurus.

3. Identify logical facts from the mapped concepts
and relations.

4. On the mapped concepts and relations,
prove specific formulas to detect properties the
statement
using rules and facts.

17

Relationship: Req’s and Ontology
again

Requirements
Specification
(RS)

Domain Ontology

C D

A

E

B

1. aaa
2. bbb
3. ccc

require

F: Interpretation Function

Symbolic Calculation (Inferences)
instead of Direct Processing in RS

18

Properties of RS to be detected
• Completeness of Requirements Spec.

– All significant requirements are described.
• Inconsistency in Requirements Spec.

– No requirements conflict with each other.

19

Completeness 1
• When an object is mentioned in a RS and

there are functions that can be applied to the
object, such functions should be examined.
forall s, x, exists y (object(x) & inSpec(x, s))

(function(y) & apply(y, x) & inSpec(y,s)))
• Prove the formula above and find

corresponding instances of function(y).

20

inSpec(x,s)
Requirements
Specification

S

Domain Ontology

C D

A

E

B

1. bbb
2. ccc

require

S

inSpec(A,S), inSpec(B,S), inSpec(E,S), inSpec(D,S)
are all true.

21

object(x), function(y)...

<<function>>
music op

<<object>>
music<<apply>>

play

pause<<antonym>>

<<object>>
play list

<<object>>
music file

<<require>>

<<function>>
decode<<apply>>

<<object>>
codec

<<require>>

<<function>>
dynamic load<<apply>>

<<quality>>
time efficiency

<<contradict>>

sequential<<require>>

<<object>>
title<<function>>

select

<<apply>>

<<apply>>

<<cause>>

object(music file) function(decode)

22

Completeness 2
• When a concept in a RS and the concept

requires other concepts, such concepts
should be examined.
forall s, x, y (InSpec(x,s) & require(x,y)

InSpec(y,s))
• Prove the formula above and find

corresponding instances of y.

23

Consistency
• Find relationships typed by `inconsistent’ in

relationships corresponding to a RS.
forall s, x (InSpec(x,s)
exists y (InSpec(y,s) & contradict(x,y))

• If the formula above is true, the RS can be
inconsistent.

• We explicitly have inconsistent
relationships in our domain ontology.

24

Semantic Metrics for RS
• Indexes to know how far a RS is good.
• Good: correctness, completeness,

consistency, unambiguity.
– mentioned in IEEE 830 standard.

• To measure (count) the numbers of
– concepts, relationships with certain types in

ontology.
– requirements statements.

25

Correctness Metric
• Because a domain ontology can be a

guideline to decide req’s naturally required
in the domain, all statements in RS should
correspond to elements in the ontology.

• Formal definition

26

Example

Requirements
Specification
(RS)

Domain Ontology

C D

A

E

B

1. aaa
2. bbb
3. ccc

require

Fint

Correctness = 2/3 = 66 %

27

Completeness Metric
• All in ontology should be mentioned in RS

ideally.
• Formal definition:

28

Example

Requirements
Specification
(RS)

Domain Ontology

C D

A

E

B

1. aaa
2. bbb
3. ccc

require

Fint

Completeness = (4+1) / (5+4) = 55 %

29

Consistency Metric
• The relative number of `contradict

relationships’ out of all relationships can
indicate the degree of inconsistency.

• Formal Definition:

• Where RCC is a set of relationships that can
connect concepts corresponding to RS.

30

Example
Requirements
Specification
(RS)

Domain Ontology

C D

A

E

B

1. aaa
2. bbb
3. ccc

P

Fint

Q

R

S
= Contradict

RCC = { R, Q, S}
If type of S is `contradict’,
Consistency = 2/3 = 66 %

31

Unambiguity Metric
• When a req. statement is mapped onto

several elements that are not semantically
related, the statement is regarded as an
ambiguous one.

• Formal Definition:

• `Clo’ is a transitive closure of relationships
except contradict and antonym.

32

Example
Requirements
Specification
(RS)

Domain Ontology

C D

A

E

B

1. aaa
2. bbb
3. ccc

P

Fint

Q

R
S

Clo

If statement ‘bbb’ is mapped to A and E,
but closure Clo including A cannot include E,
we regard ‘bbb’ is ambiguous.

33

Small Case Study
• Goal: observe the values of metrics and

compare the values with our intuition.
• Ontology for software music player.

– developed by using the manuals of existing
systems.

• A requirements specification (Fig. 6)
– written by one of authors.
– Several contradictions were embedded

intentionally.

34

Results
• Correctness = 87 %

– This result meets our intuition.
– Excluded items in RS seemed to unfit for this kind of

applications.
• Completeness = 44 %

– Too small!
– The metric should be reconsidered.

• Consistency = 97 %
– Embedded errors could be handled, but too large!

• Unambiguity = 87 %
– Actually, detect statements seems to be ambiguous.

35

Predict Requirements Changes
• Hypothesis:

– In a specific application domain, similar kinds of
requirements changes may frequently occur.

– Such changes will help requirements analysts to
analyze/elicit requirements.

– Such changes can be represented by using types in our
Ontology.

• Advantages:
– Identify stable/unstable parts in RS in advance.
– Pay attention to expected requirements in advance.

36

Small Case Study
• Goal: Explore such patterns, and identify

their advantages.
• Resources: changes logs of several software

products.
• Results:

– Several patterns of changes could be identified.
– Such patterns can be represented by using types

in ontology.
• e.g., After a function is added, its quality is often

improved.

37

Conclusions
• Propose a method to analyze/elicit

requirements by using domain ontology.
– Mapping requirements statements onto

elements in ontology.
– Symbolic calculation and simple proof on such

elements instead of NLP for the statements.
• Show small case studies.

38

Future Works
• Propose a method to create domain

ontology.
– We are going to progress another project for

this issue.
• Procedural support to requirements analysis.

– And we will provide supporting tool.
• Compatibility with standard notation of

ontology.
– RDF/OWL

Thank you for your attention.

	Ontology Based Req. Analysis:Lightweight Semantic Processing Approach
	Contents
	Background
	Research Goal
	Important Semantic Processing in RE
	Ontology in THIS Research
	Relationship: Req’s and Ontology
	Requirements Specification (RS)
	Example of RS in This Research
	Thesaurus in THIS research
	Types in our Thesaurus
	Example of Thesaurus (partially)
	Inference Mechanism
	Facts from parts of Thesaurus
	Rules for Types
	Steps to prove RS properties
	Relationship: Req’s and Ontology
	Properties of RS to be detected
	Completeness 1
	inSpec(x,s)
	object(x), function(y)...
	Completeness 2
	Consistency
	Semantic Metrics for RS
	Correctness Metric
	Example
	Completeness Metric
	Example
	Consistency Metric
	Example
	Unambiguity Metric
	Example
	Small Case Study
	Results
	Predict Requirements Changes
	Small Case Study
	Conclusions
	Future Works

