Weaving Multiple Viewpoint Specifications in Goal Oriented Requirements Analysis

December 3, 2004 **Haruhiko Kaiya** (Shinshu Univ., Japan) Motoshi Saeki (Tokyo Inst. of Tech., Japan)

Outline

- Background and Purpose of this Research
- Techniques for weaving viewpoints.
 - Graph composition, and
 - Cross-Cutting Tables for weaving goal graphs.
 - Aspect Patterns for weaving elements in a use case model.
- Case Study
- Conclusions and Future Works.

What is Viewpoint?

- One view point shows fragments of req. of a stakeholder.
- There are multiple viewpoints because of multiple stakeholders.
- Viewpoints should be integrated in a req. specification.
- Viewpoints are hard to be managed when they are written together.
- Examples of different viewpoints:
 - Functional view and Non-functional view.
 - Users' view, developers' view, maintainers' view

Background

- Goal Oriented Requirements Analysis (GORA) and Use Case Modeling (UCM) are useful for requirements elicitation.
- Two Problems:
 - 1. No guideline to describe different viewpoints respectively.
 - 2. No support for collaboration among stakeholders.

Purpose of this Research

- An Integration of viewpoints approach into GORA and UCM
 - for overcoming last two problems.
- Techniques for weaving viewpoints:
 - Weaving several Goal Graphs by the graph composition and Cross-Cutting Table.
 - Weaving Non-Functional Req. (NFR) into a Use Case Model or a Use Case Description by Aspect patterns.

Req. Elicitation Process

Weaving Goal Graphs

- Goal hierarchy is represented in simple AND-OR (directed acyclic) graphs.
- Relationship among goals can be written in logical formula.

• We can weave goals graphs in the same way as logical formulas.

Weaving Two Goal Graphs

Goal Graph of FR: A viewpoint

Non-Functional Goals: Another

From ISO9126 standards or other taxonomies.

Mixture of FR and NFR in a Graph

This graph is too complex without multiple viewpoint. Multiple viewpoint prevent such complexity. However ... too many possibilities.

Cross-Cutting Table (Matrix)

- Represent explicit relationship between two different viewpoints, e.g. FR and NFR.
- Advantages
 - Do not have to examine all possibilities in weaving goal graphs.
 - Easy to find trade-offs between two viewpoints.
- Hierarchical representation is OK.

Example of Cross-Cutting Table

FR NFR	Security	Reliability
Appoint PC members		
Receiving Paper Submissions	Х	Х
Distributing Papers to Reviewers	Х	Х
Receiving Review Reports	Х	Х
Deciding Acceptance or rejection	Х	Х
Notifying Acceptance or Rejection	X	Х
Composing & Distributing a Program		

1st level

			1
FR NFR	Maturity	Fault- tolerantness	Recoverability
Appoint PC members			
Receiving Paper Submissions		Х	Х
Distributing Papers to Reviewers	Х		Х
Receiving Review Reports		Х	Х
Deciding Acceptance or Rejection	Х		Х
Notifying Acceptance or Rejection	Х		Х
Composing & Distributing a Program			

2nd level

Elements of Use Case Modeling

- Use Case Diagram with data and control dependencies.
 - Use Case Map technique.
- Use Case Description represented by notations for behavior. e.g. scenario.

Aspect Patterns

- Templates for weaving several viewpoints in the level of use case modeling.
- Two types of patterns:
 - Transforming topology of a part of use case map so as to weave a specific viewpoint.
 - Transforming use case description so as to weave a specific viewpoint.
 - e.g. inserting specific activity in an original scenario

Example of use case map transformation

Example of UCD transformation

Aspect Pattern (Reliability)

Receiving [Something]

Objective, Actors, Activation Condition Activity Flow

- 1. Receiving [Something] from [Sender].
- 2. Checking [Something].
- Alternative or Exceptional Flow 2.5 Inform [Sender] if incomplete.

Receiving [Something] Objective, Actors, Activation Condition Activity Flow

- 1. Receiving [Something] from [Sender].
- 2. Checking [Something].

3. Sending a Confirmation to [Sender].

Alternative or Exceptional Flow 2.5 Inform [Sender] if incomplete.

A Case Study

- Purpose: to examine the advantages/disadvantages of our method.
- Problem: A simple system to support business persons.
- Four viewpoints and six cross-cutting tables. V1: Functional viewpoint
 - V2: Comm. channel feature
 - V3: Encryption
 - V4: Peer Feature
- No aspect patterns were used.

Goal Graphs in each viewpoint

V1: Functional viewpoint

Cross-Cutting Tables

V2 V1	Report	Get next	Collect
Pub chan.	X	Х	Х
Pri. chan.	Х	Х	

V2 V3	Pub. key	Pri. key
Pub chan.	Х	X
Pri. chan.		

V1 V3	Report	Get next	Collect
Pub key	Х	Х	
Pri. key	Х	Х	

V4	Specific	Public
V2	peer	peer
Pub chan.	Х	Х
Pri. chan.	Х	

V1 V4	Report	Get next	Collect
Specific	X	Х	
Public			Х

V4	Specific	Public
$\sqrt{3}$	peer	peer
Pub. key	Х	Х
Pri. key	Х	

Weaved Graphs (two possibilities)

Lesson Learned

- We could concentrate on each viewpoint respectively because we could weave them later.
- Viewpoints of NFR seem to be reusable because they do not depend on a problem.
 - Also, cross-cutting tables about NFR viewpoints seem to be reusable.
- We can systematically find alternatives of weaved goal graphs.
- CASE tool support must be required because it was hard to write and weave goals graphs manually.

Conclusion

- Propose a method to weave different viewpoints in goal oriented req. analysis and use case modeling.
- Basic techniques:
 - Goal composition
 - Cross-Cutting Tables
 - Aspect patterns
- We achieved a small case study to examine this method.

Future Works

- CASE tool support must be required especially in weaving goal graphs.
- Aspect patterns and its mining methods are required.
- Combination between our method (and its supporting tools) and collaboration tools such as groupware should be investigated.
 - Stakeholders can intrinsically collaborate with each other with our method,
 - but there is no explicit guideline now.