VDM over PSP: A Pilot Course for VDM Beginners to Confirm its Suitability for Their Development

Hisayuki Suzumori, Haruhiko Kaiya and Kenji Kaijiri Shinshu University, JAPAN

Contents

- Background and Motivation
- Goal of this Research
- Fundamental Techniques for VDM over PSP (VoP)
 - The PSP: monitoring tech's
 - VDM: evaluated design method in VoP
- VDM over PSP (VoP)
 - Goal and Process
 - Extended Process and Metrics
- Conclusion and Future Works

Background

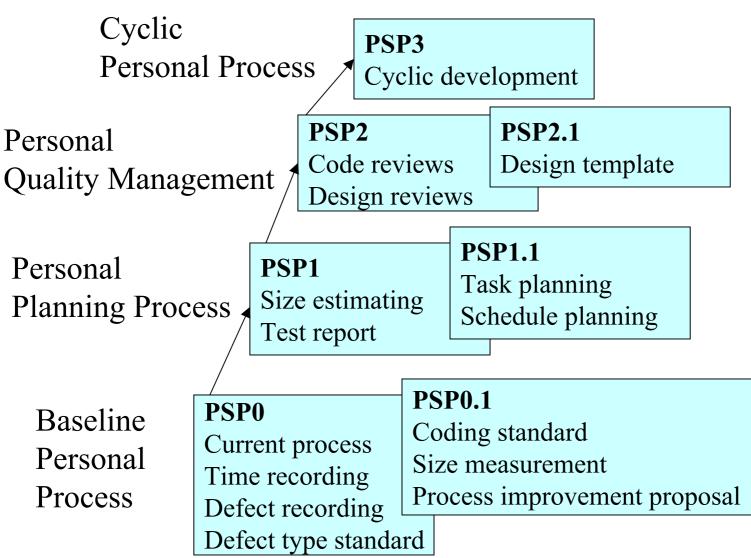
• Software Development Methods will help software engineers develop software.

– Especially, Formal Methods will do so.

- How to encourage engineers to use new and/or unfamiliar method?
 - Text books or reports
 - Advertisements or rumors
 - Command or order from the boss

Our Wishes

- Each engineer should try new or unfamiliar methods, and improve his ability.
- He should be able to confirm the suitability of a method for him
 - by himself
 - by using measured data (his own process & products)
 - by focusing on changes of their works, that are carried by the method.


Our Solution

- Providing a (meta-)method for confirming suitability of a method using empirical data.
- VDM over PSP(VoP) A first instance for confirming suitability of a method.
 - Engineers = Students for engineering courses
 - Measurement and Evaluation = based on the PSP
 - Development Method = the VDM

The PSP

- Personal Software ProcessSM proposed by W. Humphrey
 - 'a self-improvement process designed to help you control, manage and improve the way you work.'
- Tools and Materials
 - Process scripts and forms for measuring time, defects and products for one's work.
 - Metrics for evaluating the work.
 - Concrete 10 exercises for practicing the PSP

The PSP Evolution

Contents of the PSP

	measuring	design		
PSP level	method	method		exercies
				calculate the mean and standard
0	time, defects	water fall development	1A	deviation of a set of data
			2A	LOC counter
0.1	LOC count	code standard	3A	LOC counter for each function
	size, effort			
1	estimation	explicit design	4A	Linear regression parameters
	task schedule		5A	numerical integration
1.1	estimation		6A	4A + the prediction interval
	quality			
2	measurement	review	7A	correlation
		semi-formal design	8A	sorting a linked list
2.1		notations	9A	x2 test for a normal distribution
				3 parameter multiple regression
				parameters and the prediction
3			10A	interval

Process Scripts and Forms

- Process Scripts
 - Define pre-conditions, outputs and the ordering of tasks in each development phases.
 - design, coding, compiling, testing
 - Basis for measurement
- Forms
 - Define recording schema for efforts(time), defects.
 - Size of products(LOC) is also recorded.

VDM

- Vienna Development Method
- Old and typical formal method
- Formal Specification Language (VDM-SL)
 - Abstract data representation based on sets
 - Invariants for data structures
 - Pre/Post spec. for functions
- Tool Support (provided by IFAD)
 - Syntax checker
 - Type checker
 - Interpreter and Debugger

Examples of VDM spec's

Latitude = real

inv lat == lat >= 0 and lat < 360

AircraftPosition:: lat : Latitude long : Longitude alt : Altitude

SelectForLanding(radar: radarInfo) aircraft: AircraftId pre dom radar <> {} post aircraft in set dom radar

Merits and Demerits of VDM

- Merits
 - Rigorous Design
 - Systematic or automatic check for spec's.
 - Validation of design against requirements by tools.
- Demerits or Obstacles
 - Unfamiliar notations for ordinarily engineers.
 - sets, predicate logics....
 - denotational (not operational) representations.

- readability

VoP vs. the PSP

- Main goal: Checking suitability of VDM both
 - for each student and
 - for a problem domain.
- No estimation tasks.
- Techniques of VDM are gradually introduced.
- Exercises are designed for a domain where the student will engage.

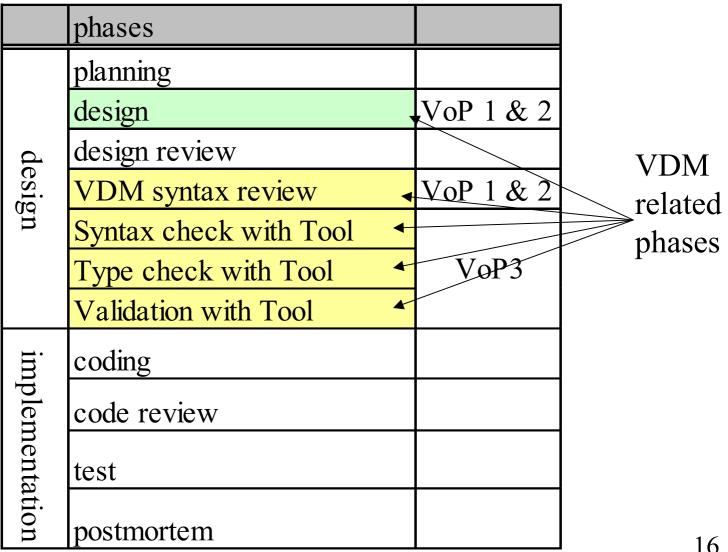
Role of VDM in VoP

- Quality Management
 - Defect prevention
 - Review guideline and check lists (same as the PSP)
 - Defect elimination
 - Review, syntax/type check and validation of VDM specifications.
- Quality Indexes are based on defects
 - in source codes and
 - in VDM-SL spec's.

Process Levels in VoP

• VoP0

baseline of VoP PSP2.1 minus estimation tasks.


- VoP1
 - + data def's with invariants and pre/post function def's using VDM
- VoP2

+ internal spec. for each functions

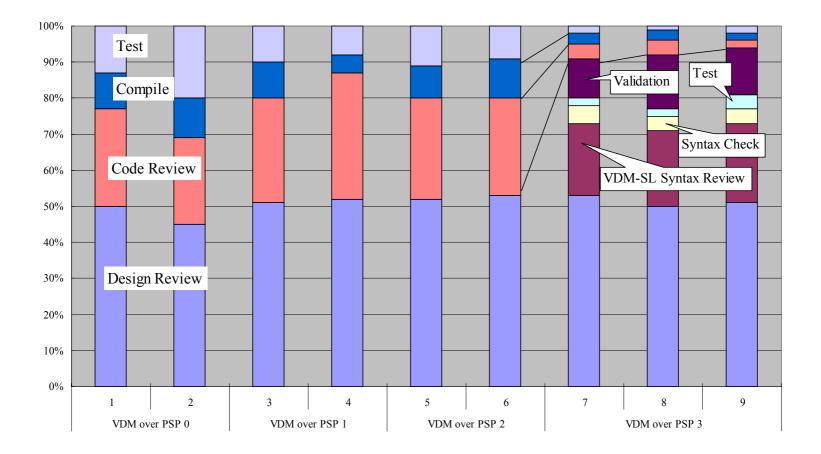
• VoP3

+validation of VDM spec's using tools

VoP3 Process Overview

Metrics in VoP: Role and Usage

- Role: monitoring the changes (improvement) along with the introduction of VDM techniques.
 - during the continuous exercises.
- Usage: calculating the metrics in each VoP level, observing the changes of its value.
 - Each student can decide whether VDM is suited for him and his problem or not, by referring the changes.

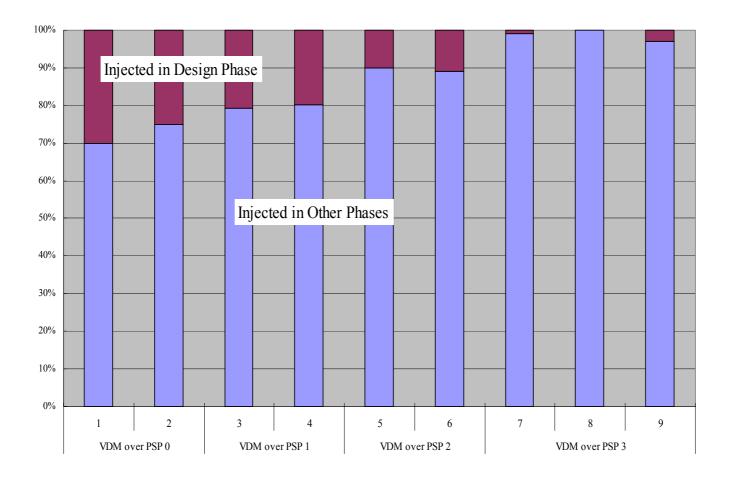

Metrics 1: DDR(design)

- Ratio of design defects removed in a phase to all defects.
- DDR(phase_i)

= <u>#_of_design_defects_removed_in_phase</u>_i #_of_all_design_defects

- Typical Evaluation of DDR(VDM related phases)
 - Increase: VDM contributes to eliminate design defects in early phase.
 - Decline: VDM is harmful or useless for design defects elimination.

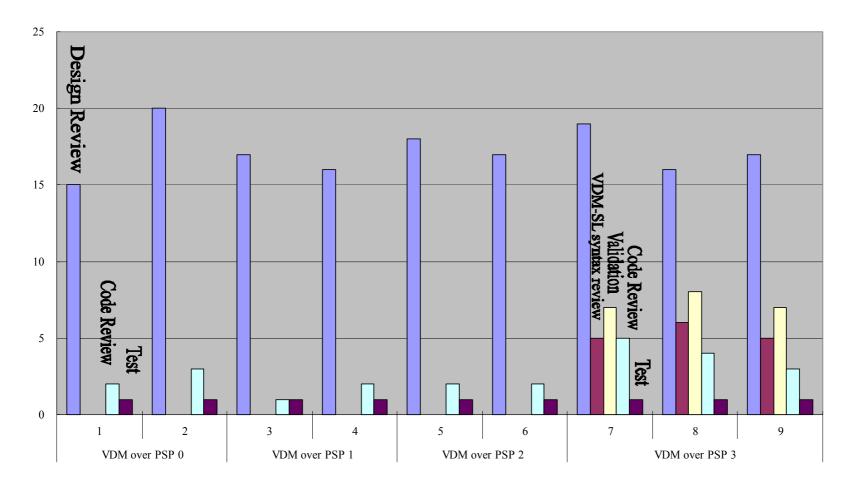
Example of DDR changes


Metrics 2: DDI(design)

- Ratio of design defects injected in a phase to all injected defects.
- DDI(phase_i)

 $= \frac{\#_of_design_defects_injected_in_phase_i}{\#_of_all_design_defects} \times 100$

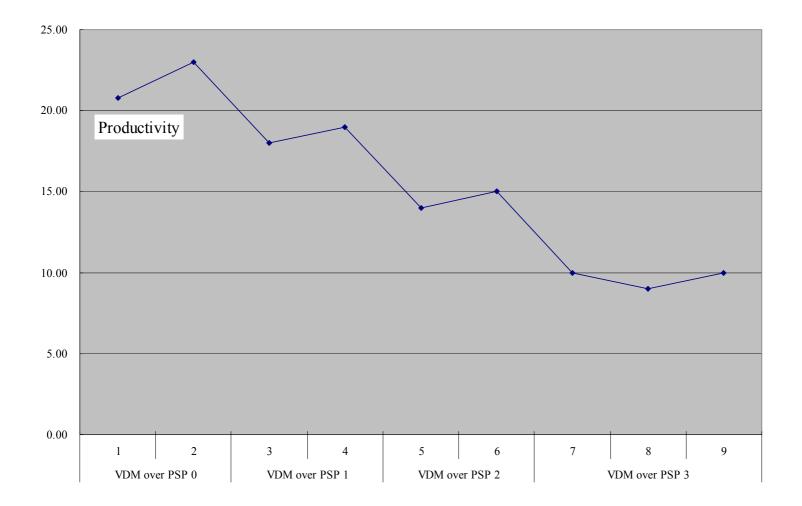
- Typical Evaluation of DDI(VDM related phases)
 - Decline: VDM contributes to prevent design defects in design phase, but VDM may hinder the student deciding design issues in design phase.


Example of DDI changes

Metrics 3: DDRL(design)

- Design defect removal leverage for a phase. - How efficiently one can remove defects in a phase?
- $DDRL(phase_i)$
 - #_of _removed _defect(phasei) / hour(phasei)
 #_of _removed _defect(unit _test) / hour(unit _test)
- Typical Evaluation of DDRL(VDM related phases)
 - Increase: VDM contributes to improve efficiency of design defect removal.

Example of DDRL changes

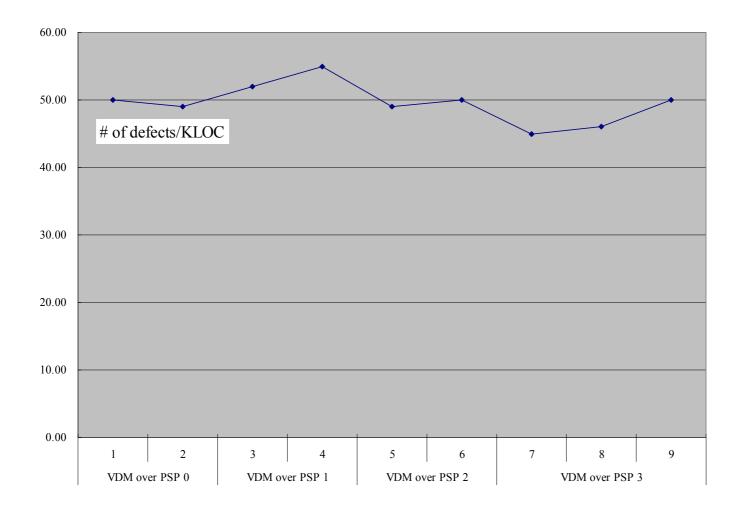


Metrics 4: Productivity

- We only focus on size of source codes(LOC) now.
- Productivity = <u>Lines_of_Codes</u> total_development_hour
- Typical Evaluation of Productivity

 Increase: VDM is useful for cost saving.

Example of Productivity changes


Metrics 5: NDDK

- Number of design defects per KLOC
- NDDK

= $\frac{all_design_defects}{Kilo_Lines_of_Codes}$

- Typical Evaluation of NDDK
 - Decline: VDM contributes to improve the design quality.

Example of NDDK

Notes

• All examples does not come from real experiences of VoP, but an imaginary cases based on the normal PSP experiences.

• Any notations could be OK for these metrics, currently we use normal graph notation.

Conclusion

- We present an instance for confirming the suitability of an method, VDM over PSP.
- VDM over PSP
 - specifies what and when techniques in VDM are introduced in a sequence of exercises.
 - specifies what and how data are evaluated so as to decide VDM suitability.

Future Works

- Applying VoP in an academic course.
 The course will start from Nov. 13! (next week)
- Preparing exercise sets for each problem domain.
- Applying our approach to the other methods
 - e.g. Petri-nets, model checking tech. etc.
 - Using Method Base by exploring suitable method.