
Specifying Downloadable
Properties for Reusing Software

Components: A Case Study of Java

Haruhiko Kaiya & Kenji Kaijiri
Shinshu University, JAPAN

Sep. 13, 2000

Outline
• The Role of Specification for Components
• Downloadable Components in Java1
• Properties of Downloadable Components

– code deployment, class load, security manage.

• How to specify Downloadable Components
• The Advantages of our Specification

– An example: RMI with Cracking Code

• Conclusion and Future Works

Role of Spec. for Components
• Spec. as Manual for suitable reuse
• Understanding its functionality and limitations
• Base for component browser in IDE

• Natural Languages: long, vague.
• Formal Notation

– Compact, consistent, formal reasoning
– Hard to write
– Retrieve the cost by using it repeatedly

Traditional Functional Spec.

• Signatures: type of arguments, returns and
method name – No semantics!

• Pre and Post Condition for each method
• Invariant for a class

• Enough to specify normal components.
• Not enough for downloadable components

Downloadable Components
• Loaded from remote machines
• Dynamically loaded and linked.
• Examples: Java Applets, RMI stub and

skeleton.

• Not fully trusted, i.e. in the sandbox.
• Depending on the services and

environments outside the system.

An example: Applet

Network

Html File

Called Class

Applet Class

Http Server

Web
Browser

Web
Browser

Html File

Called Class

Applet Class

Html File

URL

URL

Func. Spec. for D.L. Components

• Traditional Spec: signatures,
pre/post conditions, invariants.

• Deployment of bytecodes over the network
• Class loader’s Policy: search path for

bytecodes.
• Security Manager for a Machine: checklist

for accessing system resources.

+

The Story of this Example

• RMI with cracking code in its stub!
• We know, but we should use it.

• Risk for the progress of cracking.

• Set Security Manager.

• Deploying the copy of current stub in the
local.

Http server

Overview of this Example

CallerCallee

x

f(x)

stubNetwork
skeleton

Sig.Impl.

skeleton
stub

skeleton Copy of stub

Insufficient Specification 1

• Only account for security manager.

Insufficient Specification 2

• Method body and Cracking Code

Formal Reasoning

• This schema tells `Cracking is established
even if the security manager is set’.

• This is inconsistent.
– Both (pas!,true) in res and (pas!,false) in res

– res is function

Discussion for insufficient spec.

• In fact in this stage, Cracking is established!
• Security manager is helpless because of the

copy of stub in the local system.

• Deployment of bytecodes is ignored.

• Class loader’s policy is also ignored.

• Deployment of bytecodes

• SysRes with current location.

Sufficient Specification 1

Sufficient Specification 2
• Rel. between the component and its src

Sufficient Specification 3

• Spec. of Cracking code.

Formal Reasoning
• This schema also tells `Cracking is

established even if the security manager is
set’.

• The above becomes consistent under the
deployment:

Conclusion

• We extend traditional functional spec. for
fitting downloadable components in Java1.

• Additional Concept:
– Security Policy and Management.

– Class loading

– Deployment of bytecodes.

• Suitable reasoning for component use.

Future Works
• Extending our Spec. for Java2

– Code signing (since JDK1.1)
– Permisson and AccessController Class
– Extended sandbox model

• Other Security Techniques: Proof Carrying...
• Spec. for Scripting, VBscript, JavaScript ….

• Prog. Lang. Independent Spec.

• Embedding our spec. into component browsers

Appendix

Sandbox Security Model (Java1)
• Local code is trusted to have full access to vital

system resources
• While downloaded remote code is not trusted and

can access only the limited resources provided
inside the sandbox

JVM

Valuable res.(files e.g.)

sandbox

Local code

Remote code

Class Loader (Java1)
• System for loading ByteCodes into JVM

• System Class Loader:
– From local file system
– Always trusted.

• User Defined Class Loader:
– From any sources, e.g. remote systems, byte streams,

databases.
– Normally untrusted.
– Customizable by programmers.

Security Manager

• Check List for accessing system vital
resources.
– Read/write files system, create net. connection,

create other class loaders……..

• Implemented as a class.

• Methods for accessing res. in API refer the
lists.

