Specifying Downloadable
Propertiesfor Reusing Software
Components. A Case Study of Java

Haruhiko Kalya & Kenji Kaijir
Shinshu University, JAPAN
Sep. 13, 2000

Outline

The Role of Specification for Components
Downloadable Components in Javal

Properties of Downloadable Components
— code deployment, class load, security manage.
How to specify Downloadable Components

The Advantages of our Specification
— An example: RMI with Cracking Code

Conclusion and Future Works

Role of Spec. for Components

Spec. as Manual for suitable reuse
Understanding its functionality and limitations
Base for component browser in IDE

Natural Languages: long, vague.

Formal Notation

— Compact, consistent, formal reasoning
— Hard to write

— Retrieve the cost by using it repeatedly

Traditional Functional Spec.

Signatur es: type of arguments, returns and
method name — No semantics!

Pre and Post Condition for each method
| nvariant for aclass

Enough to specify normal components.
Not enough for downloadable components

Downloadable Components

Loaded from remote machines
Dynamically loaded and linked.

Examples. Java Applets, RMI stub and
skeleton.

Not fully trusted, i.e. in the sandbox.

Depending on the services and
environments outside the system.

An example: Applet

Html File

Web

Applet Class

Http Server B EEEeRe

Func. Spec. for D.L. Components

e Traditional Spec: signatures,
pre/post conditions, invariants.

+
e Deployment of bytecodes over the network

e Classloader’s Policy: search path for
bytecodes.

o Security Manager for aMachine: checklist
for accessing system resources.

The Story of this Example

RMI with cracking codein its stub!
We know, but we should use It.
Risk for the progress of cracking.
Set Security Manager.

Deploying the copy of current stub in the
local.

Overview of this Example

Http server

skeleton
]

(X)

Network

stub

Eopy of stub

Insufficient Specification 1

e Only account for security manager.

__SysRes
res : R +— Bool; limit : PR

limit C dom res; YV z : limit o (x,false) € res

__SetLimat

ASysRes; |7 : PR

limit # 0 = 17 = limat’

|nsufficient Specification 2

* Method body and Cracking Code

__Func Crack
z?,yl . Z pas! : R; =SysRes
y! = f(z?) (pas!, true) € res

F = (Crack § Func A ZSysRes) \ {pas!}

Formal Reasoning

e Thisschematells Cracking is established
even if the security manager is set’.

SetLimt g Crack g (Func N\ ZSysRes) | pas! € 17

e Thisisinconsistent.
— Both (pas! ,true) in resand (pas!,false) inres
—resisfunction

Discussion for insufficient spec.

 Infact inthisstage, Cracking Is established!

e Security manager Is helpless because of the
copy of stub in the local system.

* Deployment of bytecodes is ignored.
» Classloader’spolicy isaso ignored.

Sufficient Specification 1
e Deployment of bytecodes
| deploy : Loc + P ByteCode

o SysReswith current location.

___SysRes
res : R +— Bool; limit : PR; here : Loc

limit C dom res
Yz : limit e (x,false) € res
here € dom deploy

Sufficient Specification 2

* Rel. between the component and its src

—Class
birth : Loc; byte : ByteCode
[slctr : seq Loc

birth € ran lsictr
birth € dom deploy

__SetLoader
sl?; seq Loc; AClass

Islctr’ = sl?

Vz,y:Ne byte € deploy Islctr’ zA
x € dom Islctr’ A lslctr’ y = birth’ = y < x

Sufficient Specification 3

» Spec. of Cracking code.

Crack = |pas! : R; ZESysRes; ZClass |
here # birth = (pas!, rmirue) € res]

Formal Reasoning

e Thisschemaalso tells Cracking is
established even if the security manager Is
set’

SetLimit § (SetLoader N =SysRes § Crack §
Func A ZClass N =SysRes) \ Class
| pas! € I7 N\ sl? = (here, there)

 The above becomes consistent under the
deployment:
deploy = {(here, {byte, - -- }), (there, {byte,--- })--- }.

Conclusion

* \We extend traditional functional spec. for
fitting downloadable components in Javal.
o Additional Concept:
— Security Policy and Management.
— Class |oading
— Deployment of bytecodes.

 Suitable reasoning for component use.

Future Works

Extending our Spec. for Java2

— Code signing (since JDK1.1)

— Permisson and AccessController Class
— Extended sandbox model

Other Security Techniques. Proof Carrying...
Spec. for Scripting, VBscript, Javascript
Prog. Lang. Independent Spec.

Embedding our spec. into component browsers

Appendix

Sandbox Security Model (Javal)

* Local codeistrusted to have full access to vital
system resources

 While downloaded remote code is not trusted and
can access only the limited resources provided
Inside the sandbox

Remote code — Sandbox
VM

Vauableres.(filese.g.)

Local code

Class Loader (Javal)

o System for loading ByteCodes into JVM

o System Class Loader:

— From local file system
— Always trusted.

e User Defined Class L oader:

— From any sources, e.g. remote systems, byte streams,
databases.

— Normally untrusted.
— Customizable by programmers.

Security Manager

e Check List for accessing system vital
resources.

— Read/write files system, create net. connection,
create other classloaders........

e Implemented as a class.

 Methods for accessing res. in APl refer the
lists.

