
Conducting Requirements Evolution
by Replacing Components

in the Current System

Haruhiko Kaiya & Kenji Kaijiri
Shinshu University, Japan

Dec. 8, 1999



Conducting Requirements Evolution by Replacing Components in the Current System
http://www.cs.shinshu-u.ac.jp/˜kaiya/ 1

Outline of this Presetation

• What kind of Requirements Acquisition?
• Basic techniques and concenpts:

Activity Digaram, Design by Contract, Spec. Match.
• How to encourage requirements evolution by the Component

Change?
• Requirements Evalution:

Rules and Procedure.
• Example.
• Conclusion and Discussion.



Conducting Requirements Evolution by Replacing Components in the Current System
http://www.cs.shinshu-u.ac.jp/˜kaiya/ 2

Requirements Acquisition

���������

	
�������
	��������

��������

�����������	��������������������

	������������������������������

��������� 	
�������
	��������

��������

New Technologies (Components)
can encourage the evolution of the Tasks (Requirements)!!



Conducting Requirements Evolution by Replacing Components in the Current System
http://www.cs.shinshu-u.ac.jp/˜kaiya/ 3

Requirements evolution by the Component Change

��������	
���������
�����
��

�������
����

�������
�����

• How to represent the task to specify.
• How to find alternatives of the current components.
• How to clarify the differences of them.
• How to exploare new possibilities of the task.



Conducting Requirements Evolution by Replacing Components in the Current System
http://www.cs.shinshu-u.ac.jp/˜kaiya/ 4

Basic Techniques and Concepts

• Activity Diagram in UML –
Representing the structure of req. spec.

• Pre/Post specification –
Specifying each component.

• Design by Contract (DBC)–
Invariant during evolution.

• Specification Matching –
Finding the alternative components and clarify the
difference.



Conducting Requirements Evolution by Replacing Components in the Current System
http://www.cs.shinshu-u.ac.jp/˜kaiya/ 5

Activity Diagram

• An activity diagram shows a sequential flow of activities.
• Similar to a flow-chart and a petri-net.
• It can be used for representing scenario of users and system.
• We regard each activity as replaceable component.

Practice Presentation

Prepare Material

Modify MaterialGive Comments

H. Eriksson and M. Penker. UML Toolkit.



Conducting Requirements Evolution by Replacing Components in the Current System
http://www.cs.shinshu-u.ac.jp/˜kaiya/ 6

Pre/Post Spec. for Components & Design by Contract(DBC)

• Component:a funtion.
• Pre/Post specification: traditional way to specify a function.
• Pre-condition: specify the responsibilities of the component

users, i.e. caller’s responsibilities.
• Post-condition: specify the responsibilities of the component

itself.
• Non-Redundancy principle (of DBC):

A componentshould not guarantee its pre-condition,
and only the callers of the componentshould guarantee the
pre-condition.

Bertrand Meyer. Object-oriented software construction, 2nd edition. Prentice
Hall, 1997, p.412.



Conducting Requirements Evolution by Replacing Components in the Current System
http://www.cs.shinshu-u.ac.jp/˜kaiya/ 7

Specification Matching (1/2)

• Pre/Post Match is one of the matchings for components pre-
sented by Zaremski.

• match(S, Q) = (QpreR1Spre) ∧ (Ŝ R2Qpost)
. . . . . . . . . . . . . . . . . . . . . . . predicate for deciding match or not.

Match Predicate Symbol �1 �2 Ŝ

Exact pre/post matchE-pre/post N N Spost

Plug-in matchplug-in f f Spost

Plug-in post matchplug-in-post � f Spost

Guarded plug-in matchguarded-plug-in f f Spre ∧ Spost

Guarded post matchguarded-post � f Spre ∧ Spost

� : dropped

Q: query function. S: library function.

Amy Moormann Zaremski and Jeannette M. Wing. Specification Matching of
Software Components. ACM TOSEM, Vol. 6, No. 4, pp. 333-369, Oct. 1997.



Conducting Requirements Evolution by Replacing Components in the Current System
http://www.cs.shinshu-u.ac.jp/˜kaiya/ 8

Specification Matching (2/2), Example

Plug-In Match:match(S, Q) = (Qpre ⇒ Spre) ∧ (Spost ⇒ Qpost)
• BoundedBug’s add operation (Query):

pre.add =̂ [ s : seqX |#s < 50 ]
post.add =̂ [∆s : seqX; e? : X |#s′ = #s + 1 ]

• Stack’s push operation (in Library):
pre.push =̂ true
post.push =̂ [∆s : seqX; e? : X | s′ = s � 〈e?〉 ]

Then
match(push, add)

is hold. i.e.add is matched by push, because
• pre.add ⇒ pre.push
• post.push ⇒ post.add



Conducting Requirements Evolution by Replacing Components in the Current System
http://www.cs.shinshu-u.ac.jp/˜kaiya/ 9

Beyond the Matching – Requirements Evolution

• Qpre ⇒ Spre and Spost ⇒ Qpost

– Under guard and Over functionality of a component.
– Redundant properties– against the mind of DBC.

• Qpre ⇐ Spre and Spost ⇐ Qpost

– These are NOT match.
– Over guard and Under functionality.

Requirements Evolution
• by modifying the topology of the Activity Diagram
• or by replacing precedent and/or succeeding components.

We renamematchpre/post(S, Q) asEvolutional Predicate, evolve(S,Q).



Conducting Requirements Evolution by Replacing Components in the Current System
http://www.cs.shinshu-u.ac.jp/˜kaiya/ 10

Rule for exploring new Possible Requirements

evolve(S, Q) = (Qpre R1 Spre) ∧ (Spost R2 Qpost)

Rule1 [R1or2 in evolve(S, Q) = ⇒]:
an activity of the new component is moved forward in the
sequence of activities.

Rule2 [R1or2 in evolve(S, Q) = ⇐]:
an activity of the new component is moved backward in the
sequence of activities.

Note that this strategy is only valid when the conditions are gradu-
ally strengthened.



Conducting Requirements Evolution by Replacing Components in the Current System
http://www.cs.shinshu-u.ac.jp/˜kaiya/ 11

Summary of our Method

pre−condition D=....

post−conditon D=....

A

B

C D
new

pre−condition A=....
post−conditon A=....

pre−condition B=....
post−conditon B=....

pre−condition C=....
post−conditon C=....

new

new Step3

Current Requirements

Evolved Requirements

A

B

C

D

pre−condition A=....
post−conditon A=....

pre−condition B=....
post−conditon B=....

pre−condition C=....
post−conditon C=....

pre−condition D=....
post−conditon D=....

Step1

Step2

Q

S



Conducting Requirements Evolution by Replacing Components in the Current System
http://www.cs.shinshu-u.ac.jp/˜kaiya/ 12

Example: Assigning Reviewers of a Conference(1/4)

Tasks: You become a program chair of APSEC’99,
you should
• Organize the committee from all over the world.
• Call for papers.
• Assign the reviewers of each submitted paper.

Circumstances: The committee members have
• Suitable ways to share and to read the papers

– multicast distribution by PDF.
• A meeting easily even if they lives in the different countries

– email.



Conducting Requirements Evolution by Replacing Components in the Current System
http://www.cs.shinshu-u.ac.jp/˜kaiya/ 13

Example: Assigning Reviewers of a Conference(2/4)

Current Component & Requirements:
pre.Assign Reviewers
true

. . . . . . . . .Qpre

post.Assign Reviewers
p′ : P Paper; c′ : P Committee; m′ : Paper × Committee

m′ = assign(p′, c′)

. . . . . . . .Qpost

Call for Papers Assign Reviewers

Review Papers

Appoint Committee



Conducting Requirements Evolution by Replacing Components in the Current System
http://www.cs.shinshu-u.ac.jp/˜kaiya/ 14

Example: Assigning Reviewers of a Conference(3/4)

Circumstances are changed → Spec.of Component is changed:
pre.Assign Reviewersnew

p : P Paper

fixed(p)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Spre

post.Assign Reviewersnew

(not changed)
. . . . . . . . Spost

Then,

evolve(S, Q) = (Qpre ⇐ Spre) ∧ (Spost ⇔ Qpost).

where

Q = Assign Reviewers

S = Assign Reviewersnew



Conducting Requirements Evolution by Replacing Components in the Current System
http://www.cs.shinshu-u.ac.jp/˜kaiya/ 15

Example: Assigning Reviewers of a Conference(4/4)

Applying rule2, the structure can be changed as follows;

Call for Papers Assign Reviewers

Review Papers

Appoint Committee

⇒

Call for Papers

Assign Reviewers

Review Papers

Appoint Committee



Conducting Requirements Evolution by Replacing Components in the Current System
http://www.cs.shinshu-u.ac.jp/˜kaiya/ 16

Conclusion

• Define a concept of Requirements Evolution by Replacing
Components.

• Present a method for the Evolution.
• Give an Example.



Conducting Requirements Evolution by Replacing Components in the Current System
http://www.cs.shinshu-u.ac.jp/˜kaiya/ 17

Discussion

• Introduce a class, i.e. set of functions for specifying a Com-
ponent.

• Introduce more flexible Comparison Predicate: we do not al-
ways use evolve(and matchpre/post) predicate for comparison.

• Refine the rule of evolution: current rule is too limited.
• Build a natural and realistic example for this technique.


