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Outline of this Presetation

• What kind of Requirements Acquisition?
• Basic techniques and concenpts:

Activity Digaram, Design by Contract, Spec. Match.
• How to encourage requirements evolution by the Component

Change?
• Requirements Evalution:

Rules and Procedure.
• Example.
• Conclusion and Discussion.
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Requirements Acquisition

���������

	
�������
	��������

��������

�����������	��������������������

	������������������������������

��������� 	
�������
	��������

��������

New Technologies (Components)
can encourage the evolution of the Tasks (Requirements)!!
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Requirements evolution by the Component Change
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• How to represent the task to specify.
• How to find alternatives of the current components.
• How to clarify the differences of them.
• How to exploare new possibilities of the task.



Conducting Requirements Evolution by Replacing Components in the Current System
http://www.cs.shinshu-u.ac.jp/˜kaiya/ 4

Basic Techniques and Concepts

• Activity Diagram in UML –
Representing the structure of req. spec.

• Pre/Post specification –
Specifying each component.

• Design by Contract (DBC)–
Invariant during evolution.

• Specification Matching –
Finding the alternative components and clarify the
difference.
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Activity Diagram

• An activity diagram shows a sequential flow of activities.
• Similar to a flow-chart and a petri-net.
• It can be used for representing scenario of users and system.
• We regard each activity as replaceable component.

Practice Presentation

Prepare Material

Modify MaterialGive Comments

H. Eriksson and M. Penker. UML Toolkit.
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Pre/Post Spec. for Components & Design by Contract(DBC)

• Component:a funtion.
• Pre/Post specification: traditional way to specify a function.
• Pre-condition: specify the responsibilities of the component

users, i.e. caller’s responsibilities.
• Post-condition: specify the responsibilities of the component

itself.
• Non-Redundancy principle (of DBC):

A componentshould not guarantee its pre-condition,
and only the callers of the componentshould guarantee the
pre-condition.

Bertrand Meyer. Object-oriented software construction, 2nd edition. Prentice
Hall, 1997, p.412.
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Specification Matching (1/2)

• Pre/Post Match is one of the matchings for components pre-
sented by Zaremski.

• match(S, Q) = (QpreR1Spre) ∧ (Ŝ R2Qpost)
. . . . . . . . . . . . . . . . . . . . . . . predicate for deciding match or not.

Match Predicate Symbol �1 �2 Ŝ

Exact pre/post matchE-pre/post N N Spost

Plug-in matchplug-in f f Spost

Plug-in post matchplug-in-post � f Spost

Guarded plug-in matchguarded-plug-in f f Spre ∧ Spost

Guarded post matchguarded-post � f Spre ∧ Spost

� : dropped

Q: query function. S: library function.

Amy Moormann Zaremski and Jeannette M. Wing. Specification Matching of
Software Components. ACM TOSEM, Vol. 6, No. 4, pp. 333-369, Oct. 1997.
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Specification Matching (2/2), Example

Plug-In Match:match(S, Q) = (Qpre ⇒ Spre) ∧ (Spost ⇒ Qpost)
• BoundedBug’s add operation (Query):

pre.add =̂ [ s : seqX |#s < 50 ]
post.add =̂ [∆s : seqX; e? : X |#s′ = #s + 1 ]

• Stack’s push operation (in Library):
pre.push =̂ true
post.push =̂ [∆s : seqX; e? : X | s′ = s � 〈e?〉 ]

Then
match(push, add)

is hold. i.e.add is matched by push, because
• pre.add ⇒ pre.push
• post.push ⇒ post.add
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Beyond the Matching – Requirements Evolution

• Qpre ⇒ Spre and Spost ⇒ Qpost

– Under guard and Over functionality of a component.
– Redundant properties– against the mind of DBC.

• Qpre ⇐ Spre and Spost ⇐ Qpost

– These are NOT match.
– Over guard and Under functionality.

Requirements Evolution
• by modifying the topology of the Activity Diagram
• or by replacing precedent and/or succeeding components.

We renamematchpre/post(S, Q) asEvolutional Predicate, evolve(S,Q).
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Rule for exploring new Possible Requirements

evolve(S, Q) = (Qpre R1 Spre) ∧ (Spost R2 Qpost)

Rule1 [R1or2 in evolve(S, Q) = ⇒]:
an activity of the new component is moved forward in the
sequence of activities.

Rule2 [R1or2 in evolve(S, Q) = ⇐]:
an activity of the new component is moved backward in the
sequence of activities.

Note that this strategy is only valid when the conditions are gradu-
ally strengthened.
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Summary of our Method

pre−condition D=....

post−conditon D=....

A

B

C D
new

pre−condition A=....
post−conditon A=....

pre−condition B=....
post−conditon B=....

pre−condition C=....
post−conditon C=....

new

new Step3

Current Requirements

Evolved Requirements

A

B

C

D

pre−condition A=....
post−conditon A=....

pre−condition B=....
post−conditon B=....

pre−condition C=....
post−conditon C=....

pre−condition D=....
post−conditon D=....

Step1

Step2

Q

S
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Example: Assigning Reviewers of a Conference(1/4)

Tasks: You become a program chair of APSEC’99,
you should
• Organize the committee from all over the world.
• Call for papers.
• Assign the reviewers of each submitted paper.

Circumstances: The committee members have
• Suitable ways to share and to read the papers

– multicast distribution by PDF.
• A meeting easily even if they lives in the different countries

– email.
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Example: Assigning Reviewers of a Conference(2/4)

Current Component & Requirements:
pre.Assign Reviewers
true

. . . . . . . . .Qpre

post.Assign Reviewers
p′ : P Paper; c′ : P Committee; m′ : Paper × Committee

m′ = assign(p′, c′)

. . . . . . . .Qpost

Call for Papers Assign Reviewers

Review Papers

Appoint Committee
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Example: Assigning Reviewers of a Conference(3/4)

Circumstances are changed → Spec.of Component is changed:
pre.Assign Reviewersnew

p : P Paper

fixed(p)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Spre

post.Assign Reviewersnew

(not changed)
. . . . . . . . Spost

Then,

evolve(S, Q) = (Qpre ⇐ Spre) ∧ (Spost ⇔ Qpost).

where

Q = Assign Reviewers

S = Assign Reviewersnew
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Example: Assigning Reviewers of a Conference(4/4)

Applying rule2, the structure can be changed as follows;

Call for Papers Assign Reviewers

Review Papers

Appoint Committee

⇒

Call for Papers

Assign Reviewers

Review Papers

Appoint Committee
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Conclusion

• Define a concept of Requirements Evolution by Replacing
Components.

• Present a method for the Evolution.
• Give an Example.
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Discussion

• Introduce a class, i.e. set of functions for specifying a Com-
ponent.

• Introduce more flexible Comparison Predicate: we do not al-
ways use evolve(and matchpre/post) predicate for comparison.

• Refine the rule of evolution: current rule is too limited.
• Build a natural and realistic example for this technique.


